Skip to content
1900

Blue Hydrogen Production from Natural Gas Reservoirs: A Review of Application and Feasibility

Abstract

Recently, interest in developing H2 strategies with carbon capture and storage (CCS) technologies has surged. Considering that, this paper reviews recent literature on blue H2, a potential low-carbon, short-term solution during the H2 transition period. Three key aspects were the focus of this paper. First, it presents the processes used for blue H2 production. Second, it presents a detailed comparison between blue H2 and natural gas as fuels and energy carriers. The third aspect focuses on CO2 sequestration in depleted natural gas reservoirs, an essential step for implementing blue H2. Globally, ~ 75% of H2 is produced using steam methane reforming, which requires CCS to obtain blue H2. Currently, blue H2 needs to compete with other advancing technologies such as green H2, solar power, battery storage, etc. Compared to natural gas and liquefied natural gas, blue H2 gas results in lower CO2 emissions since CCS is applied. However, transporting liquefied and compressed blue H2 entails higher energy, economic, and environmental costs. CCS must be appropriately implemented to produce blue H2 successfully. Due to their established capacity to trap hydrocarbons over geologic time scales, depleted natural gas reservoirs are regarded as a viable option for CCS. Such a conclusion is supported by several simulation studies and field projects in many countries. Additionally, there is much field experience and knowledge on the injection and production performance of natural gas reservoirs. Therefore, using the existing site infrastructure, converting these formations into storage reservoirs is undemanding.

Funding source: This publication was supported by the National Priorities Research Program grant NPRP11S-1210-170079 from Qatar National Research Fund, Qatar. Furthermore, this publication was funded for open access publication by Qatar National Library (QNL).
Related subjects: Production & Supply Chain
Countries: Qatar
Loading

Article metrics loading...

/content/journal4483
2023-02-27
2024-12-22
/content/journal4483
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error