Policy & Socio-Economics
Ireland National Hydrogen Strategy
Jul 2023
Publication
The National Hydrogen Strategy sets out the strategic vision on the role that hydrogen will play in Ireland’s energy system looking to its long-term role as a key component of a zero-carbon economy and the short-term actions that need to be delivered over the coming years to enable the development of the hydrogen sector in Ireland.<br/>The Strategy is being developed for three primary reasons:<br/>1. Decarbonising our economy providing a solution to hard to decarbonise sectors where electrification is not feasible or cost-effective<br/>2. Enhancing our energy security through the development of an indigenous zero carbon renewable fuel which can act as an alternative to the 77% of our energy system which today relies on fossil fuel imports<br/>3. Developing industrial opportunities through the potential development of export markets for renewable hydrogen and other areas such as Sustainable Aviation Fuels<br/>The Strategy considers the needs of the entire hydrogen value chain including production end-uses transportation and storage safety regulation markets innovation and skills.<br/>It also sets out that Ireland will focus its efforts on the scale up and production of renewable ""green"" hydrogen as it supports both our decarbonisation needs and energy security needs given our vast indigenous renewable resources. Renewable hydrogen is a renewable and zero-carbon fuel that can play a key role in the ""difficult-to-decarbonise"" sectors of our economy where other solutions such as direct electrification are not feasible or cost effective.<br/>In the coming years renewable hydrogen is envisioned to play an important role as a zero-emission source of dispatchable flexible electricity as a long duration store of renewable energy in decarbonising industrial processes and as a transport fuel in sectors such as heavy goods transport maritime and aviation. The Strategy will provide clarity for stakeholders on how we expect the hydrogen economy to develop and scale up over the coming decades across the entire value chain.
Price Promises, Trust Deficits and Energy Justice: Public Perceptions of Hydrogen Homes
Oct 2023
Publication
In an era characterised by political instability economic uncertainty and mounting environmental pressures hydrogen fuel is being positioned as a critical piece of the global energy security and clean energy agenda. The policy push is noteworthy in the United Kingdom where the government is targeting industrial decarbonisation via hydrogen while exploring a potential role for hydrogen-fuelled home appliances. Despite the imperative to secure social acceptance for accelerating the diffusion of low-carbon energy technologies public perceptions of hydrogen homes remain largely underexplored by the researcher community. In response this analysis draws on extensive focus group data to understand the multi-dimensional nature of social acceptance in the context of the domestic hydrogen transition. Through an integrated mixed-methods multigroup analysis the study demonstrates that socio-political and market acceptance are strongly interlinked owing to a trust deficit in the government and energy industry coupled to underlying dissatisfaction with energy markets. At the community level hydrogen homes are perceived as a potentially positive mechanism for industrial regeneration and local economic development. Households consider short-term disruptive impacts to be tolerable provided temporary disconnection from the gas grid does not exceed three days. However to strengthen social acceptance clearer communication is needed regarding the spatial dynamics and equity implications of the transition. The analysis concludes that existing trust deficits will need to be overcome which entails fulfilling not only a ‘price promise’ on the cost of hydrogen appliances but also enacting a ‘price pledge’ on energy bills. These deliverables are fundamental to securing social acceptance for hydrogen homes.
Global Hydrogen Review 2023
Sep 2023
Publication
The Global Hydrogen Review is an annual publication by the International Energy Agency that tracks hydrogen production and demand worldwide as well as progress in critical areas such as infrastructure development trade policy regulation investments and innovation. The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals the Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies at the same time as creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry. This year’s report includes a focus on demand creation for low-emission hydrogen. Global hydrogen use is increasing but demand remains so far concentrated in traditional uses in refining and the chemical industry and mostly met by hydrogen produced from unabated fossil fuels. To meet climate ambitions there is an urgent need to switch hydrogen use in existing applications to low-emission hydrogen and to expand use to new applications in heavy industry or long-distance transport.
Towards Green Hydrogen? - A Comparison of German and African Visions and Expectations in the Context of the H2Atlas-Africa Project
Sep 2023
Publication
Green hydrogen promises to be critical in achieving a sustainable and renewable energy transition. As green hydrogen is produced with renewables green hydrogen could become an energy storage medium of the future and even substitute the current unsustainable grey or blue hydrogen used in the industry. Bringing this transition into reality for instance in Germany there are visions to rapidly build hydrogen facilities in Africa and export the produced green hydrogen to Europe. One problem however is that these visions presumably conflict with the visions of actors within Africa. Therefore this study aims to provide an initial assessment of African stakeholders’ visions for future energy exports and renewable energy expectations. By comparing visions from Germany and Africa this assessment was conducted to identify differences in green energy and hydrogen visions that could lead to conflict and similarities that could be the basis for cooperation. The National Hydrogen Strategy outlines the German visions which clarifies that Germany will have to import green hydrogen to meet its green transition target. In this context of future energy export demand a partnership between German and African researchers on assessing green hydrogen potentials in Africa started. The African visions were explored by surveying the partners from different African countries working on the project. The results revealed that while both sides see the need for an immediate transition to renewable energy the African side is not envisioning the immediate export of green hydrogen. Based on the responses the partners are primarily concerned with improving the continent’s still deficient energy access for both the population and industry. Nevertheless this African perspective greatly emphasises cross-border cooperation where both sides can realise their visions. In the case of Germany that German investment could build infrastructure which would benefit the receiving African country or countries and open up the possibility for the envisioned green hydrogen export to Europe.
Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case
Oct 2023
Publication
For lignite intense regions such as the case of Western Macedonia (WM) the production and utilization of green hydrogen is one of the most viable ways to achieve near zero emissions in sectors like transport chemicals heat and energy production synthetic fuels etc. However the implementation of each technology that is available to a respective sector differs significantly in terms of readiness and the current installation scale of each technology. The goal of this study is the provision of a transition roadmap for a decarbonized future for the WM region through utilizing green hydrogen. The technologies which can take part in this transition are presented along with the implementation purpose of each technology and the reasonable extension that each technology could be adopted in the present context. The WM region’s limited capacity for green hydrogen production leads to certain integration scenarios with regards to the required hydrogen electrolyzer capacities and required power whereas an environmental assessment is also presented for each scenario.
Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia
Oct 2023
Publication
About 95% of current hydrogen production uses technologies involving primary fossil resources. A minor part is synthesized by low-carbon and close-to-zero-carbon-footprint methods using RESs. The significant expansion of low-carbon hydrogen energy is considered to be a part of the “green transition” policies taking over in technologically leading countries. Projects of hydrogen synthesis from natural gas with carbon capture for subsequent export to European and Asian regions poor in natural resources are considered promising by fossil-rich countries. Quality changes in natural resource use and gas grids will include (1) previously developed scientific groundwork and production facilities for hydrogen energy to stimulate the use of existing natural gas grids for hydrogen energy transport projects; (2) existing infrastructure for gas filling stations in China and Russia to allow the expansion of hydrogen-fuel-cell vehicles (HFCVs) using typical “mini-plant” projects of hydrogen synthesis using methane conversion technology; (3) feasibility testing for different hydrogen synthesis plants at medium and large scales using fossil resources (primarily natural gas) water and atomic energy. The results of this study will help focus on the primary tasks for quality changes in natural resource and gas grid use. Investments made and planned in hydrogen energy are assessed.
Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential
Dec 2023
Publication
This review article provides a comprehensive analysis of the hydrogen landscape outlining the imperative for enhanced hydrogen production implementation and utilisation. It places the question of how to accelerate hydrogen adoption within the broader context of sustainable energy transitions and international commitments to reduce carbon emissions. It discusses influencing factors and policies for best practices in hydrogen energy application. Through an in-depth exploration of key factors affecting hydrogen implementation this study provides insights into the complex interplay of both technical and logistical factors. It also discusses the challenges of planning constructing infrastructure and overcoming geographical constraints in the transition to hydrogen-based energy systems. The drive to achieve net-zero carbon emissions is contingent on accelerating clean hydrogen development with blue and green hydrogen poised to complement traditional fuels. Public–private partnerships are emerging as catalysts for the commercialisation of hydrogen and fuel-cell technologies fostering hydrogen demonstration projects worldwide. The anticipated integration of clean hydrogen into various sectors in the coming years signifies its importance as a complementary energy source although specific applications across industries remain undefined. The paper provides a good reference on the gradual integration of hydrogen into the energy landscape marking a significant step forward toward a cleaner greener future.
Renewable Heating and Cooling Pathways - Towards Full Decarbonisation by 2050
Feb 2023
Publication
With the adoption of the EU Climate Law in 2021 the EU has set itself a binding target to achieve climate neutrality by 2050 and to reduce greenhouse gas emissions by 55 percent compared to 1990 levels by 2030. To support the increased ambition the EU Commission adopted proposals for revising the key directives and regulations addressing energy efficiency renewable energies and greenhouse gas emissions in the Fit for 55 package. The heating and cooling (H&C) sector plays a key role for reaching the EU energy and climate targets. H&C accounts for about 50 percent of the final energy consumption in the EU and the sector is largely based on fossil fuels. In 2021 the share of renewable energies in H&C reached 23%.
Regional Capabilities and Hydrogen Adoption Barriers
Dec 2023
Publication
Hydrogen is gaining importance to decarbonize the energy system and tackle the climate crisis. This exploratory study analyzes three focus groups with representatives from relevant organizations in a Northern German region that has unique beneficial characteristics for the transition to a hydrogen economy. Based upon this data (1) a category system of innovation adoption barriers for hydrogen technologies is developed (2) decision levels associated with the barriers are identified (3) detailed insights on how decision levels contribute to the adoption barriers are provided and (4) the barriers are evaluated in terms of their importance. Our analysis adds to existing literature by focusing on short-term barriers and exploring relevant decision levels and their associated adoption barriers. Our main results comprise the following: flaws in the funding system complex approval procedures lack of networks and high costs contribute to hydrogen adoption barriers. The (Sub-)State level is relevant for the uptake of the hydrogen economy. Regional entities have leeway to foster the hydrogen transition especially with respect to the distribution infrastructure. Funding policy technological suitability investment and operating costs and the availability of distribution infrastructure and technical components are highly important adoption barriers that alone can impede the transition to a hydrogen economy.
Which Is Preferred between Electric or Hydrogen Cars for Carbon Neutrality in the Commercial Vehicle Transportation Sector of South Korea? Implications from a Public Opinion Survey
Feb 2024
Publication
South Korea has drawn up plans to reduce greenhouse gases by 29.7 million tons by supplying 4.5 million electric and hydrogen cars by 2030 to implement the “2050 carbon neutrality” goal. This article gathers data on public preferences for electric cars (ECs) over hydrogen cars (HCs) in the commercial vehicle transportation sector through a survey of 1000 people. Moreover the strength of the preference was evaluated on a five-point scale. Of all respondents 60.0 percent preferred ECs and 21.0 percent HCs the former being 2.86 times greater than the latter. On the other hand the strength of the preference for HCs was 1.42 times greater than that for ECs. Factors influencing the preference for ECs over HCs were also explored through adopting the ordered probit model which is useful in examining ordinal preference rather than cardinal preference. The analyzed factors which are related to respondents’ characteristics experiences and perceptions can be usefully employed for developing strategies of promoting carbon neutrality in the commercial vehicle transportation sector and preparing policies to improve public acceptance thereof.
Towards a Unified Theory of Domestic Hydrogen Acceptance: An Integrative, Comparative Review
Dec 2023
Publication
Hydrogen energy technologies are envisioned to play a critical supporting role in global decarbonisation. While low-carbon hydrogen is primarily targeted for reducing industrial emissions alongside decarbonising parts of the transport sector environmental benefits could also be achieved in the residential context. Presently gasdependent countries such as Japan and the United Kingdom are assessing the feasibility of deploying hydrogen home appliances as part of their national energy strategies. However prospects for the transition will hinge on consumer acceptance alongside an array of other socio-technical factors. To support potential ambitions for large-scale and sustained technology diffusion this study advances a Unified Theory of Domestic Hydrogen Acceptance. Through an integrative comparative literature review targeting hydrogen and domestic energy studies the paper proposes a novel Domestic Hydrogen Acceptance Model (DHAM) which accounts for the cognitive and emotional dimensions of human perceptions. Through this dual interplay the proposed framework can increase the predictive power of hydrogen acceptance models.
A Cost Comparison of Various Hourly-reliable and Net-zero Hydrogen Production Pathways in the United States
Nov 2023
Publication
Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors but to maximize emission reductions supplied hydrogen must be reliable low-emission and low-cost. Here we build a model that enables direct comparison of the cost of producing net-zero hourly-reliable hydrogen from various pathways. To reach net-zero targets we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California Texas and New York) model results indicate nextdecade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/ kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However when omitting the net-zero emission constraint and considering the U.S. regulatory environment electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.
Parameterization Proposal to Determine the Feasibility of Geographic Areas for the Green Hydrogen Industry under Socio-environmental and Technical Constraints in Chile
Oct 2023
Publication
Chile abundant in solar and wind energy resources presents significant potential for the production of green hydrogen a promising renewable energy vector. However realizing this potential requires an understanding of the most suitable locations for the installation of green hydrogen industries. This study proposes a quantitative methodology that identifies and ranks potential public lands for industrial use based on a range of technical parameters (such as solar and wind availability) and socio-environmental considerations (including land use restrictions and population density). The results reveal optimal locations that can facilitate informed sustainable decision-making for large-scale green hydrogen implementation in Chile. While this methodology does not replace project-specific technical or environmental impact studies it provides a flexible general classification to guide initial site selection. Notably this approach can be applied to other regions worldwide with abundant solar and wind resources such as Australia and Northern Africa promoting more effective and sustainable global decision-making for green hydrogen production.
The Hydrogen Storage Challenge: Does Storage Method and Size Affect the Cost and Operational Flexbility of Hydrogen Supply Chains?
Jun 2023
Publication
Hydrogen is seen as a key energy vector in future energy systems due to its ability to be stored in large volumes for long periods providing energy flexibility and security. Despite the importance of storage in hydrogen's potential role in a zero-carbon energy system many techno-economic analyses fail to adequately model different storage methods in hydrogen supply chains often ignoring storage requirements altogether. Therefore this paper uses a data-driven techno-economic analysis (TEA) tool to examine the effect of storage size and cost on three different 2030 hydrogen supply chain scenarios: wind-based solar-based and mixed-source grid electrolysis. For varying storage sizes and specific capital costs the overall levelised cost of hydrogen (LCOH) including production storage and delivery to a constant demand varies significantly. The LCOH ranges from V3.90 e12.40/kgH2 V5.50e12.75/kgH2 and V2.80e15.65/kgH2 for the wind-based solar-based and mixed-source grid scenarios respectively with lower values for scenarios with low-cost storage. This highlights the critical role of low-cost hydrogen storage in realising the energy flexibility and security electrolytic hydrogen can provide.
Stakeholder Perspectives on the Scale-up of Green Hydrogen and Electrolyzers
Nov 2023
Publication
Green hydrogen is a promising alternative to fossil fuels. However current production capacities for electrolyzers and green hydrogen are not in line with national political goals and projected demand. Considering these issues we conducted semi-structured interviews to determine the narratives of different stakeholders during this transformation as well as challenges and opportunities for the green hydrogen value chain. We interviewed eight experts with different roles along the green hydrogen value chain ranging from producers and consumers of green hydrogen to electrolyzer manufacturers and consultants as well as experts from the political sphere. Most experts see the government as necessary for scale-up by setting national capacity targets policy support and providing subsidies. However the experts also accuse the governments of delaying development through overregulation and long implementation times for regulations. The main challenges that were identified are the current lack of renewable electricity and demand for green hydrogen. Demand for green hydrogen is influenced by supply costs which partly depend on prices for electrolyzers. However one key takeaway of the interviews is the skeptical assessments by the experts on the currently discussed estimates for price reduction potential of electrolyzers. While demand supply and prices are all factors that influence each other they result in feedback loops in investment decisions for the energy and manufacturing industries. A second key takeaway is that according to the experts current investment decisions in new production capacities are not solely dependent on short-term financial gains but also based on expected first mover advantages. These include experience and market share which are seen as factors for opportunities for future financial gains. Summarized the results present several challenges and opportunities for green hydrogen and electrolyzers and how to address them effectively. These insights contribute to a deeper understanding of the dynamics of the emerging green hydrogen value chain.
THyGA - Roadmap H2NG for Europe
May 2023
Publication
This report aims at summarizing the different stakeholders’ opinions on H2NG blends and cross them with the THyGA results to recommend some necessary actions to prepare the field for operational large-scale blending (liability delayed ignition adjustment…).
Energy Futures and Green Hydrogen Production: Is Saudi Arabia Trend?
May 2023
Publication
This paper explores the potential for hydrogen energy to become a future trend in Saudi Arabia energy industry. With the emergence of hydrogen as a promising clean energy source there has been growing interest and investment in this area globally. This study investigated whether the country is likely to pursue this trend given its current energy mix and policies. A study was conducted to provide an overview of the global trends and best practices in hydrogen energy adoption and investment. The outcomes of the analysis show that the country current energy mix has the potential to produce green hydrogen energy. The evaluation of its readiness and potential obstacles for hydrogen energy adoption has been drowned and there are several challenges that need to be addressed. The study outcomes also conclude with policy implications and recommendations for the country energy industry.
Designing a Future-proof Gas and Hydrogen Infrastructure for Europe - A Modelling-based Approach
Jun 2023
Publication
Hydrogen has been at the centre of attention since the EU kicked-off its decarbonization agenda at full speed. Many consider it a silver bullet for the deep decarbonization of technically challenging sectors and industries but it is also an attractive option for the gas industry to retain and future-proof its well-developed infrastructure networks. The modelling methodology presented in this report systematically tests the feasibility and cost of different pipeline transportation methods – blending repurposing and dedicated hydrogen pipelines - under different decarbonization pathways and concludes that blending is not a viable solution and pipeline repurposing can lead to excessive investment outlays in the range of EUR 19–25 bn over the modelled period (2020–2050) for the EU-27.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the open-source software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030–2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250–265 e/tCO2 will be necessary for renewable fuels to become competitive.
Insights into Decision-making for Offshore Green Hydrogen Infrastructure Developments
Apr 2023
Publication
Green hydrogen is a key element that has the potential to play a critical role in the global pursuit of a resilient and sustainable future. However like other energy production methods hydrogen comes with challenges including high costs and safety concerns across its entire value chain. To overcome these low-cost productions are required along with a promised market. Offshore renewables have an enormous potential to facilitate green hydrogen production on a large scale. Their plummeting cost technological advances and rising cost of carbon pave a pathway where green hydrogen can be cost-competitive against fossil-fuel-based hydrogen. Offshore industries including oil and gas aquaculture and shipping are looking for cleaner energy solutions to decarbonize their systems/operations and can serve as a substantial market. Offshore industrial nexus moreover can assist the production storage and transmission of green hydrogen through infrastructure sharing and logistical support. The development of offshore green hydrogen production facilities is in its infancy and requires a deeper insight into the key elements that govern decision-making during their life-cycle. This includes the parameters that reflect the performance of hydrogen technology with technical socio-political financial and environmental considerations. Therefore this study provides critical insight into the influential factors discovered through a comprehensive analysis that governs the development of an offshore green hydrogen system. Insights are also fed into the requirements for modelling and analysis of these factors considering the synergy of hydrogen production with the offshore industries coastal hydrogen hub and onshore energy demand. The results of this critical review will assist the researchers and developers in establishing and executing an effective framework for offshore site selection in largely uncertain and hazardous ocean environments. Overall the study will facilitate the stakeholders and researchers in developing decision-making tools to ensure sustainable and safe offshore green hydrogen facilities.
What Can Accelerate Technological Convergence of Hydrogen Energy: A Regional Perspective
Jun 2023
Publication
Focusing on technological innovation and convergence is crucial for utilizing hydrogen energy an emerging infrastructure area. This research paper analyzes the extent of technological capabilities in a region that could accelerate the occurrence of technological convergence in the fields related to hydrogen energy through the use of triadic patents their citation information and their regional information. The results of the Bayesian spatial model indicate that the active exchange of diverse original technologies could facilitate technological convergence in the region. On the other hand it is difficult to achieve regional convergence with regard to radical technology. The findings could shed light on the establishment of an R&D strategy for hydrogen technologies. This study could contribute to the dissemination and utilization of hydrogen technologies for sustainable industrial development.
Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example
Aug 2023
Publication
Because of the pressure to meet carbon neutrality targets carbon reduction has become a challenge for fossil fuel resource-based regions. Even though China has become the most active country in carbon reduction its extensive energy supply and security demand make it difficult to turn away from its dependence on coal-based fossil energy. This paper analyzes the Chinese coal capital—Shanxi Province—to determine whether the green low-carbon energy transition should be focused on coal resource areas. In these locations the selection and effect of transition tools are key to ensuring that China meets its carbon reduction goal. Due to the time window of clean coal utilization the pressure of local governments and the survival demands of local high energy consuming enterprises Shanxi Province chose hydrogen as its important transition tool. A path for developing hydrogen resources has been established through lobbying and corporative influence on local and provincial governments. Based on such policy guidance Shanxi has realized hydrogen applications in large-scale industrial parks regional public transport and the iron and steel industry. This paper distinguishes between the development strategies of gray and green hydrogen. It shows that hydrogen can be an effective development model for resource-based regions as it balances economic stability and energy transition.
The Hydrogen Economy can Reduce Costs of Climate Change Mitigation by up to 22%
May 2024
Publication
In response to the urgent need to mitigate climate change via net-zero targets many nations are renewing their interest in clean hydrogen as a net-zero energy carrier. Although clean hydrogen can be directly used in various sectors for deep decarbonization the relatively low energy density and high production costs have raised doubts as to whether clean hydrogen development is worthwhile. Here we improve on the GCAM model by including a more comprehensive and detailed representation of clean hydrogen production distribution and demand in all sectors of the global economy and simulate 25 scenarios to explore the costeffectiveness of integrating clean hydrogen into the global energy system. We show that due to costly technical obstacles clean hydrogen can only provide 3%–9% of the 2050 global final energy use. Nevertheless clean hydrogen deployment can reduce overall energy decarbonization costs by 15%–22% mainly via powering ‘‘hard-to-electrify’’ sectors that would otherwise face high decarbonization expenditures. Our work provides practical references for cost-effective clean hydrogen planning.
Route-to-Market Strategy for Low-carbon Hydrogen from Natural Gas in the Permian Basin
Aug 2023
Publication
This paper investigates the untapped potential of the Permian Basin a multifaceted energy axis in Texas and adjoining states in the emerging era of decarbonization. Aligned with current policy directives on regional hydrogen hubs this study explores the viability of developing a hydrogen energy hub in the Permian Basin thereby producing low-carbon intensity hydrogen from natural gas in the Basin and transporting it to the Greater Houston area. Diverging from existing literature this study provides an integrated techno-economic evaluation of the entire hydrogen value chain in the Permian Basin encompassing production storage and transportation. Furthermore it comparatively analyzes the scenario of interest against an optimized base scenario thereby underlining comparative advantages and disadvantages. The paper concludes that the delivered cost of Permian based low-carbon intensity hydrogen to the Greater Houston area is $1.85/kg benchmarked to the scenario with hydrogen produced close to the Greater Houston area and delivered at $1.42/kg. Our findings reveal that Permian-based low-carbon intensity hydrogen production can achieve cost savings in feedstock ($0.25/kg) and potentially accrue a higher production tax credit due to a shorter gas supply chain to production ($0.33/kg). Nevertheless a significant cost barrier is the expense of long-haul pipeline transport ($0.90/kg) from the Permian Basin to Houston as opposed to local production. Despite the obstacles the study identifies a potential breakeven solution where increasing the production scale to at least 412000 metric ton per year (about 3 steam reforming plants) in the Permian Basin can effectively lower costs in the transport sector. Hence a scaled-up production can mitigate the cost difference and establish the Permian Basin as a competitive player in the hydrogen market. In conclusion a SWOT analysis presents Strengths Weaknesses Opportunities and Threats associated with Permian-based hydrogen production.
Conflicts Between Economic and Low-carbon Reorientation Processes: Insights from a Contextual Analysis of Evolving Company Strategies in the United Kingdrom Petrochemical Industry (1970-2021)
Jul 2022
Publication
To situate its low-carbon transition process in longer-term real-world business contexts this article makes a longitudinal analysis of the UK petrochemical industry focusing on changing economic and socio-political environments and company strategies in the last 50 years. Using the Triple Embeddedness Framework the paper identifies two parallel and conflicting reorientation processes in the UK petrochemical industry. The first one which started in the 1970s and is driven by long-standing competitiveness problems led to retrenchment in the 1980s exit of incumbent companies (BP Shell ICI) and the entry of new firms (INEOS SABIC) in the 1990s and 2000s and diversification into upstream fossil fuel production and ethane imports in the 2010s. The second reorientation process which started in the 2010s is driven by climate change considerations and has led petrochemical firms to reluctantly explore low-carbon alternatives. Despite advancing ambitious visions and plans companies are weakly committed to low-carbon reorientation because this is layered on top of and conflicts with the deeper economically-motivated reorientation process. The paper further concludes that the industry's low-carbon plans and visions are partial because they focus more on some innovations (hydrogen-as-fuel CCS) than on other innovations (recycling bio-feedstocks synthetic feedstocks). Despite exploring alternatives firms also use political resistance strategies to hamper and delay deeper low-carbon reorientation
Synergistic Integration of Hydrogen Energy Economy with UK’s Sustainable Development Goals: A Holistic Approach to Enhancing Safety and Risk Mitigation
Oct 2023
Publication
Hydrogen is gaining prominence as a sustainable energy source in the UK aligning with the country’s commitment to advancing sustainable development across diverse sectors. However a rigorous examination of the interplay between the hydrogen economy and the Sustainable Development Goals (SDGs) is imperative. This study addresses this imperative by comprehensively assessing the risks associated with hydrogen production storage transportation and utilization. The overarching aim is to establish a robust framework that ensures the secure deployment and operation of hydrogen-based technologies within the UK’s sustainable development trajectory. Considering the unique characteristics of the UK’s energy landscape infrastructure and policy framework this paper presents practical and viable recommendations to facilitate the safe and effective integration of hydrogen energy into the UK’s SDGs. To facilitate sophisticated decision making it proposes using an advanced Decision-Making Trial and Evaluation Laboratory (DEMATEL) tool incorporating regret theory and a 2-tuple spherical linguistic environment. This tool enables a nuanced decision-making process yielding actionable insights. The analysis reveals that Incident Reporting and Learning Robust Regulatory Framework Safety Standards and Codes are pivotal safety factors. At the same time Clean Energy Access Climate Action and Industry Innovation and Infrastructure are identified as the most influential SDGs. This information provides valuable guidance for policymakers industry stakeholders and regulators. It empowers them to make well-informed strategic decisions and prioritize actions that bolster safety and sustainable development as the UK transitions towards a hydrogen-based energy system. Moreover the findings underscore the varying degrees of prominence among different SDGs. Notably SDG 13 (Climate Action) exhibits relatively lower overall distinction at 0.0066 and a Relation value of 0.0512 albeit with a substantial impact. In contrast SDG 7 (Clean Energy Access) and SDG 9 (Industry Innovation and Infrastructure) demonstrate moderate prominence levels (0.0559 and 0.0498 respectively) each with its unique influence emphasizing their critical roles in the UK’s pursuit of a sustainable hydrogen-based energy future.
The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading
May 2024
Publication
A key building block of the European Green Deal is the development of a hydrogen commodity market which requires a suitable hydrogen market design and the timely introduction of related policy measures. Using exploratory interviews with five expert groups we contribute to this novel research field by outlining the core market design criteria and proposing suitable regulations for the future European hydrogen market. We identify detailed recommendations along three core market design focus areas: Market development policy measures infrastructure regulations as well as hydrogen and certificate trading. Our findings provide an across-industry view of current policy-related key challenges in the hydrogen commodity market development and mitigation approaches. We therefore support policymakers within the EU in the ongoing detailing of their regulatory hydrogen and green energy packages. Further we promote hydrogen market development by assisting current and future industry players in finding a common understanding of the future hydrogen market design.
Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review
Sep 2023
Publication
Globally a green hydrogen economy rush is underway and many companies investors governments and environmentalists consider it as an energy source that could foster the global energy transition. The enormous potential for hydrogen production for domestic use and export places Africa in the spotlight in the green hydrogen economy discourse. This discourse remains unsettled regarding how natural resources such as land and water can be sustainably utilized for such a resource-intensive project and what implications this would have. This review argues that green hydrogen production (GHP) in Africa has consequences where land resources (and their associated natural resources) are concerned. It discusses the current trends in GHP in Africa and the possibilities for reducing any potential pressures it may put on land and other resource use on the continent. The approach of the review is interpretive and hinges on answering three questions concerning the what why and how of GHP and its land consequences in Africa. The review is based on 41 studies identified from Google Scholar and sources identified via snowballed recommendations from experts. The GHP implications identified relate to land and water use mining-related land stress and environmental ecological and land-related socioeconomic consequences. The paper concludes that GHP may not foster the global energy transition as is being opined by many renewable energy enthusiasts but rather could help foster this transition as part of a greener energy mix. It notes that African countries that have the potential for GHP require the institutionalization of or a change in their existing approaches to land-related energy governance systems in order to achieve success.
Macroeconomic Analysis of a New Green Hydrogen Industry using Input-output Analysis: The Case of Switzerland
Sep 2023
Publication
Hydrogen is receiving increasing attention to decarbonize hard-to-abate sectors such as carbon intensive industries and long-distance transport with the ultimate goal of reducing greenhouse gas (GHG) emissions to net-zero. However limited knowledge exists so far on the socio-economic and environmental impacts for countries moving towards green hydrogen. Here we analyse the macroeconomic impacts both direct and indirect in terms of GDP growth employment generation and GHG emissions of green hydrogen production in Switzerland. The results are first presented in gross terms for the construction and operation of a new green hydrogen industry considering that all the produced hydrogen is allocated to passenger cars (final demand). We find that for each kg of green hydrogen produced the operational phase creates 6.0 5.9 and 9.5 times more GDP employment and GHG emissions respectively compared to the construction phase (all values in gross terms). Additionally the net impacts are calculated by assuming replacement of diesel by green hydrogen as fuel for passenger cars. We find that green hydrogen contributes to a higher GDP and employment compared to diesel while reducing GHG emissions. For instance in all the three cases namely ‘Equal Cost’ ‘Equal Energy’ and ‘Equal Service’ we find that a green hydrogen industry generates around 106% 28% and 45% higher GDP respectively; 163% 43% and 65% more full-time equivalent jobs respectively; and finally 45% 18% and 29% lower GHG emissions respectively compared to diesel and other industries. Finally the methodology developed in this study can be extended to other countries using country-specific data.
Evaluating Partners for Renewable Energy Trading: A Multidimensional Framework and Tool
Apr 2024
Publication
The worsening climate crisis has increased the urgency of transitioning energy systems from fossil fuels to renewable sources. However many industrialized countries are struggling to meet their growing demand for renewable energy (RE) through domestic production alone and therefore seek to import additional RE using carriers such as hydrogen ammonia or metals. The pressing question for RE importers is therefore how to select trading partners i.e. RE exporting countries. Recent research has identified a plethora of different selection criteria reflecting the complexity of energy systems and international cooperation. However there is little guidance on how to reduce this complexity to more manageable levels as well as a lack of tools for effective partner evaluation. This article aims to fill these gaps. It proposes a new multidimensional framework for evaluating and comparing potential RE trading partners based on four dimensions: economy and technology environment and development regulation and governance and innovation and cooperation. Focusing on Germany as an RE importer an exploratory factor analysis is used to identify a consolidated set of composite selection criteria across these dimensions. The results suggest that Germany’s neighboring developed countries and current net energy exporters such as Canada and Australia are among the most attractive RE trading partners for Germany. A dashboard tool has been developed to provide the framework and composite criteria including adjustable weights to reflect the varying preferences of decision-makers and stakeholders. The framework and the dashboard can provide helpful guidance and transparency for partner selection processes facilitating the creation of RE trade networks that are essential for a successful energy transition.
Future Energy Scenarios 2018
Jul 2018
Publication
Welcome to our Future Energy Scenarios. These scenarios which stimulate debate and help inform the decisions that will shape our energy future have never been more important – especially when you consider the extent to which the energy landscape is being transformed.
Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective
Jul 2023
Publication
This current article discusses the technoeconomics (TE) of hydrogen generation transportation compression and storage in the Australian context. The TE analysis is important and a prerequisite for investment decisions. This study selected the Australian context due to its huge potential in green hydrogen but the modelling is applicable to other parts of the world adjusting the price of electricity and other utilities. The hydrogen generation using the most mature alkaline electrolysis (AEL) technique was selected in the current study. The results show that increasing temperature from 50 to 90 ◦C and decreasing pressure from 13 to 5 bar help improve electrolyser performance though pressure has a minor effect. The selected range for performance parameters was based on the fundamental behaviour of water electrolysers supported with literature. The levelised cost of hydrogen (LCH2 ) was calculated for generation compression transportation and storage. However the majority of the LCH2 was for generation which was calculated based on CAPEX OPEX capital recovery factor hydrogen production rate and capacity factor. The LCH2 in 2023 was calculated to be 9.6 USD/kgH2 using a base-case solar electricity price of 65–38 USD/MWh. This LCH2 is expected to decrease to 6.5 and 3.4 USD/kgH2 by 2030 and 2040 respectively. The current LCH2 using wind energy was calculated to be 1.9 USD/kgH2 lower than that of solar-based electricity. The LCH2 using standalone wind electricity was calculated to be USD 5.3 and USD 2.9 in 2030 and 2040 respectively. The LCH2 predicted using a solar and wind mix (SWM) was estimated to be USD 3.2 compared to USD 9.6 and USD 7.7 using standalone solar and wind. The LCH2 under the best case was predicted to be USD 3.9 and USD 2.1 compared to USD 6.5 and USD 3.4 under base-case solar PV in 2030 and 2040 respectively. The best case SWM offers 33% lower LCH2 in 2023 which leads to 37% 39% and 42% lower LCH2 in 2030 2040 and 2050 respectively. The current results are overpredicted especially compared with CSIRO Australia due to the higher assumption of the renewable electricity price. Currently over two-thirds of the cost for the LCH2 is due to the price of electricity (i.e. wind and solar). Modelling suggests an overall reduction in the capital cost of AEL plants by about 50% in the 2030s. Due to the lower capacity factor (effective energy generation over maximum output) of renewable energy especially for solar plants a combined wind- and solar-based electrolysis plant was recommended which can increase the capacity factor by at least 33%. Results also suggest that besides generation at least an additional 1.5 USD/kgH2 for compression transportation and storage is required.
Paving the Way: Analysing Energy Transition Pathways and Green Hydrogen Exports in Developing Countries - The Case of Algeria
Apr 2024
Publication
The measures needed to limit global warming pose a particular challenge to current fossil fuel exporters who must not only decarbonise their local energy systems but also compensate for the expected decline in fossil fuel revenues. One possibility is seen in the export of green hydrogen. Using Algeria as a case study this paper analyses how different levels of ambition in hydrogen exports energy efficiency and fuel switching affect the costoptimal expansion of the power sector for a given overall emissions reduction path. Despite falling costs for photovoltaics and wind turbines the results indicate that in countries with very low natural gas prices such as Algeria a fully renewable electricity system by 2050 is unlikely without appropriate policy measures. The expansion of renewable energy should therefore start early given the high annual growth rates required which will be reinforced by additional green hydrogen exports. In parallel energy efficiency is a key factor as it directly mitigates CO2 emissions from fossil fuels and reduces domestic electricity demand which could instead be used for hydrogen production. Integrating electrolysers into the power system could potentially help to reduce specific costs through load shifting. Overall it seems advisable to analyse hydrogen exports together with local decarbonisation in order to better understand their interactions and to reduce emissions as efficiently as possible. These results and the methodology could be transferred to other countries that want to become green hydrogen exporters in the future and are therefore a useful addition for researchers and policy makers.
Economic Complexity of Green Hydrogen Production Technologies - A Trade Data-based Analysis of Country-sepcific Industrial Preconditions
May 2023
Publication
Countries with high energy demand but limited renewable energy potential are planning to meet part of their future energy needs by importing green hydrogen. For potential exporting countries in addition to sufficient renewable resources industrial preconditions are also relevant for the successful implementation of green hydrogen production value chains. A list of 36 “Green H2 Products” needed for stand-alone hydrogen production plants was defined and their economic complexity was analyzed using international trade data from 1995 to 2019. These products were found to be comparatively complex to produce and represent an opportunity for countries to enter new areas of the product space through green diversification. Large differences were revealed between countries in terms of industrial preconditions and their evolution over time. A detailed analysis of nine MENA countries showed that Turkey and Tunisia already possess industrial know-how in various green hydrogen technology components and perform only slightly worse than potential European competitors while Algeria Libya and Saudi Arabia score the lowest in terms of calculated hydrogen-related green complexity. These findings are supported by statistical tests showing that countries with a higher share of natural resources rents in their gross domestic product score significantly lower on economic and green complexity. The results thus provide new perspectives for assessing the capabilities of potential hydrogen-producing countries which may prove useful for policymakers and investors. Simultaneously this paper contributes to the theory of economic complexity by applying its methods to a new subset of products and using a dataset with long-term coverage.
Pathways to the Hydrogen Economy: A Multidimensional Analysis of the Technological Innovation Systems of Germany and South Korea
Aug 2023
Publication
The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry politics and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea both recognized as global front-runners in advancing and implementing hydrogen-based solutions. By providing a multi-dimensional assessment of pathways to the hydrogen economy our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance and (ii) we emphasize the social perspective within the hydrogen TIS. To this end we conducted 24 semi-structured expert interviews applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However several barriers still hinder the further realization of a hydrogen economy. Based on our findings we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition.
Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future
Sep 2023
Publication
There is a growing interest in green hydrogen with researchers institutions and countries focusing on its development efficiency improvement and cost reduction. This paper explores the concept of green hydrogen and its production process using renewable energy sources in several leading countries including Australia the European Union India Canada China Russia the United States South Korea South Africa Japan and other nations in North Africa. These regions possess significant potential for “green” hydrogen production supporting the transition from fossil fuels to clean energy and promoting environmental sustainability through the electrolysis process a common method of production. The paper also examines the benefits of green hydrogen as a future alternative to fossil fuels highlighting its superior environmental properties with zero net greenhouse gas emissions. Moreover it explores the potential advantages of green hydrogen utilization across various industrial commercial and transportation sectors. The research suggests that green hydrogen can be the fuel of the future when applied correctly in suitable applications with improvements in production and storage techniques as well as enhanced efficiency across multiple domains. Optimization strategies can be employed to maximize efficiency minimize costs and reduce environmental impact in the design and operation of green hydrogen production systems. International cooperation and collaborative efforts are crucial for the development of this technology and the realization of its full benefits.
Life Cycle Assessments Use in Hydrogen-related Policies: The Case for a Harmonized Methodology Addressing Multifunctionality
May 2024
Publication
Legislation regulating the sustainability requirements for hydrogen technologies relies more and more on life cycle assessments (LCAs). Due to different scopes and development processes different pieces of EU legislation refer to different LCA methodologies with differences in the way multifunctional processes (i.e. co-productions recycling and energy recovery) are treated. These inconsistencies arise because incentive mechanisms are not standardized across sectors even though the end product hydrogen remains the same. The goal of this paper is to compare the life-cycle greenhouse gas (GHG) emissions of hydrogen from four production pathways depending on the multifunctional approach prescribed by the different EU policies (e.g. using substitution or allocation). The study reveals a large variation in the LCA results. For instance the life-cycle GHG emissions of hydrogen co-produced with methanol is found to vary from 1 kg CO2-equivalent/kg H2 (when mass allocation is considered) to 11 kg CO2-equivalent/kg H2 (when economic allocation is used). These inconsistencies could affect the market (e.g. hydrogen from a certain pathway could be considered sustainable or unsustainable depending on the approach) and the environment (e.g. pathways that do not lead to a global emission reduction could be promoted). To mitigate these potential negative effects we urge for harmonized and strict guidelines to assess the life-cycle GHG emissions of hydrogen technologies in an EU policy context. Harmonization should cover international policies too to avoid the same risks when hydrogen will be traded based on its GHG emissions. The appropriate methodological approach for each production pathway should be chosen by policymakers in collaboration with the LCA community and stakeholders from the industry based on the potential market and environmental consequences of such choice.
Hydrogen, A Less Disruptive Pathway for Domestic Heat? Exploratory Findings from Public Perception Research
Aug 2023
Publication
The disruption associated with heat decarbonisation has been identified as a key opportunity for hydrogen technologies in temperate countries and regions where established distribution infrastructure and familiarity with natural gas boilers predominate. A key element of such claims is the empirically untested belief that citizens will prefer to minimise disruption and perceive hydrogen to be less disruptive than the network upgrades and retrofit measures needed to support electric and other low carbon heating technologies. This article reports on exploratory deliberative research with residents of Cardiff Wales which examined public perceptions of heating disruptions. Our findings suggest that concerns over public responses to disruption may be overstated particularly as they relate to construction and road excavation for network upgrade. Disruptions arising from permanent changes to building fabric may be more problematic for heat pump retrofit however these may be greatly overshadowed by anxieties over the cost implications of moving to hydrogen fuel. Furthermore the biographical patterning of citizen preferences raises significant questions for hydrogen roll-out strategies relying on regionalised network conversion. We conclude by arguing that far from a non-disruptive alternative to electrification hydrogen risks being seen as posing substantial disruptions to precarious household finances and lifestyles.
Some Inconvenient Truths about Decarbonization, the Hydrogen Economy, and Power to X Technologies
May 2024
Publication
The decarbonization of the energy sector has been a subject of research and of political discussions for several decades gaining significant attention in the last years. It is commonly acknowledged that the most obvious way to achieve decarbonization is the use of renewable energy sources. Within the context of the energy sector decarbonization many mainly industrialized countries recently started developing national plans to establish a hydrogen-based economy in the very near future. The plans for green hydrogen initially try to (a) target sectors that are difficult to decarbonize and (b) address issues related to the storage and transportation of CO2-free energy. To achieve almost complete decarbonization electric power must be generated exclusively from renewable sources. In so-called Power-to-X (PtX) technologies green hydrogen is generated from electricity and subsequently converted to another energy carrier which can be further stored transported and used. In PtX X stands for example for liquid hydrogen methanol or ammonia. The challenges associated with decarbonization include those associated with (a) the expansion of renewable energies (e.g. high capital demand political and social issues) (b) the production transportation and storage of hydrogen and the energy carriers denoted by X in PtX (e.g. high cost and low overall efficiency) and (c) the expected significant increase in the demand for electrical energy. The paper discusses whether and under which conditions the current national and international hydrogen plans of many industrialized countries could lead to a maximization of decarbonization in the world. It concludes that in general as long as the conditions for generating large excess amounts of green electricity are not met the quick establishment of a hydrogen economy could not only be very expensive but also counterproductive to the worldwide decarbonization efforts.
Gauging Public Perceptions of Blue and Green Hydrogen Futures: Is the Twin-track Approach Compatible with Hydrogen Acceptance?
Jun 2023
Publication
National hydrogen strategies are emerging as a critical pillar of climate change policy. For homes connected to the gas grid hydrogen may offer an alternative decarbonisation pathway to electrification. Hydrogen production pathways in countries such as the UK will involve both the gas network and the electricity grid with related policy choices and investment decisions impacting the potential configuration of consumer acceptance for hydrogen homes. Despite the risk of public resistance be it on environmental economic or social grounds few studies have explored the emerging contours of domestic hydrogen acceptance. To date there is scarce evidence on public perceptions of national hydrogen policy and the extent to which attitudes may be rooted in prior knowledge and awareness or open to change following information provision and engagement. In response this study evaluates consumer preferences for a low-carbon energy future wherein parts of the UK housing stock may adopt low-carbon hydrogen boilers and hobs. Drawing on data from online focus groups we examine consumer perceptions of the government's twin-track approach which envisions important roles for both ‘blue’ and ‘green’ hydrogen to meet net zero ambitions. Through a mixed-methods multigroup analysis the underlying motivation is to explore whether the twin-track approach appears compatible with hydrogen acceptance. Moving forward hydrogen policy should ensure greater transparency concerning the benefits costs and risks of the transition with clearer communication about the justification for supporting respective hydrogen production pathways.
The Potential Role of a Hydrogen Network in Europe
Jul 2023
Publication
Europe’s electricity transmission expansion suffers many delays despite its significance for integrating renewable electricity. A hydrogen network reusing the existing gas network could not only help to supply the demand for low-emission fuels but could also balance variations in wind and solar energies across the continent and thus avoid power grid expansion. Our investigation varies the allowed expansion of electricity and hydrogen grids in net-zero CO2 scenarios for a sector-coupled European energy system capturing transmission bottlenecks renewable supply and demand variability and pipeline retrofitting and geological storage potentials. We find that a hydrogen network connecting regions with low-cost and abundant renewable potentials to demand centers electrofuel production and cavern storage sites reduces system costs by up to 26 bnV/a (3.4%). Although expanding both networks together can achieve the largest cost reductions by 9.9% the expansion of neither is essential for a net-zero system as long as higher costs can be accepted and flexibility options allow managing transmission bottlenecks.
Assessment of a Fully Renewable System for the Total Decarbonization of the Economy with Full Demand Coverage on Islands Connected to a Central Grid: The Balearic Case in 2040
Jul 2023
Publication
The transition to clean electricity generation is a crucial focus for achieving the current objectives of economy decarbonization. The Balearic Archipelago faces significant environmental economic and social challenges in shifting from a predominantly fossil fuel-based economy to one based on renewable sources. This study proposes implementing a renewable energy mix and decarbonizing the economy of the Balearic Islands by 2040. The proposed system involves an entirely renewable generation system with interconnections between the four Balearic islands and the Spanish mainland grid via a 650 MW submarine cable. This flexible electrical exchange can cover approximately 35% of the peak demand of 1900 MW. The scenario comprises a 6 GWp solar photovoltaic system a wind system of under 1.2 GWp and a 600 MW biomass system as generation sub-systems. A vanadium redox flow battery sub-system with a storage capacity of approximately 21 GWh and 2.5 GWp power is available to ensure system manageability. This system’s levelized electricity cost (LCOE) is around 13.75 cEUR/kWh. The design also incorporates hydrogen as an alternative for difficult-to-electrify uses achieving effective decarbonization of all final energy uses. A production of slightly over 5 × 104 tH2 per year is required with 1.7 GW of electrolyzer power using excess electricity and water resources. The system enables a significant level of economy decarbonization although it requires substantial investments in both generation sources and storage.
Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050
Aug 2023
Publication
This article presents the results of a comparative scenario analysis of the “green hydrogen” development pathways in Poland and the EU in the 2050 perspective. We prepared the scenarios by linking three models: two sectoral models for the power and transport sectors and a Computable General Equilibrium model (d-Place). The basic precondition for the large-scale use of hydrogen in both Poland and in European Union countries is the pursuit of ambitious greenhouse gas reduction targets. The EU plans indicate that the main source of hydrogen will be renewable energy (RES). “Green hydrogen” is seen as one of the main methods with which to balance energy supply from intermittent RES such as solar and wind. The questions that arise concern the amount of hydrogen required to meet the energy needs in Poland and Europe in decarbonized sectors of the economy and to what extent can demand be covered by internal production. In the article we estimated the potential of the production of “green hydrogen” derived from electrolysis for different scenarios of the development of the electricity sector in Poland and the EU. For 2050 it ranges from 76 to 206 PJ/y (Poland) and from 4449 to 5985 PJ/y (EU+). The role of hydrogen as an energy storage was also emphasized highlighting its use in the process of stabilizing the electric power system. Hydrogen usage in the energy sector is projected to range from 67 to 76 PJ/y for Poland and from 1066 to 1601 PJ/y for EU+ by 2050. Depending on the scenario this implies that between 25% and 35% of green hydrogen will be used in the power sector as a long-term energy storage.
Multi-option Analytical Modeling of Levelised Costs Across Various Hydrogen Supply Chain Nodes
May 2024
Publication
Hydrogen is envisioned to become a fundamental energy vector for the decarbonization of energy systems. Two key factors that will define the success of hydrogen are its sustainability and competitiveness with alternative solutions. One of the many challenges for the proliferation of hydrogen is the creation of a sustainable supply chain. In this study a methodology aimed at assessing the economic feasibility of holistic hydrogen supply chains is developed. Based on the designed methodology a tool which calculates the levelized cost of hydrogen for the different stages of its supply chain: production transmission & distribution storage and conversion is proposed. Each stage is evaluated individually combining relevant technical and economic notions such as learning curves and scaling factors. Subsequently the findings from each stage are combined to assess the entire supply chain as a whole. The tool is then applied to evaluate case studies of various supply chains including large-scale remote and small-scale distributed green hydrogen supply chains as well as conventional steam methane reforming coupled with carbon capture and storage technologies. The results show that both green hydrogen supply chains and conventional methods can achieve a competitive LCOH of around €4/kg in 2030. However the key contribution of this study is the development of the tool which provides a foundation for a comprehensive evaluation of hydrogen supply chains that can be continuously improved through the inputs of additional users and further research on one or more of the interconnected stages.
Monitored Data and Social Perceptions Analysis of Battery Electric and Hydrogen Fuelled Buses in Urban and Suburban Areas
Jul 2023
Publication
Electrification of the transportation sector is one of the main drivers in the decarbonization of energy and mobility systems and it is a way to ensure security of energy supply. Public bus fleets can assist in achieving fast reduction of CO2 emissions. This article provides an analysis of a unique real-world dataset to support decision makers in the decarbonization of public fleets and interlink it with the social acceptance of drivers. Data was collected from 21 fuel cell and electric buses. The tank-to-wheel efficiency results of fuel cell electric buses (FCEB) are much lower than that of battery electric buses (BEB) and there is a higher variation in consumption for BEBs compared to FCEBs. Both technologies permit a strong reduction in CO2 emissions compared to conventional buses. There is a high level of acceptance of drivers which are likely to support the transition towards zero-emission buses introduced by the management.
Comparative Life Cycle Assessment of Sustainable Energy Carriers Including Production, Storage, Overseas Transport and Utilization
Aug 2020
Publication
Countries are under increasing pressure to reduce greenhouse gas emissions as an act upon the Paris Agreement. The essential emission reductions can be achieved by environmentally friendly solutions in particular the introduction of low carbon or carbon-free fuels. This study presents a comparative life cycle assessment of various energy carriers namely; liquefied natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia that are produced from natural gas or renewables to investigate greenhouse gas emissions generated from the complete life cycle of energy carriers accounting for the leaks as well as boil-off gas occurring during storage and transportation. The entire fuel life cycle is considered consisting of production storage transportation via an ocean tanker to different distances and finally utilization in an internal combustion engine of a road vehicle. The results show that using natural gas as a feedstock total greenhouse gas emissions during production ocean transportation (over 20000 nmi) by a heavy fuel oil-fueled ocean tanker and utilization in an internal combustion engine are 73.96 95.73 93.76 50.83 and 100.54 g CO2 eq. MJ1 for liquified natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia respectively. Liquid hydrogen produced from solar electrolysis is the cleanest energy carrier (42.50 g CO2 eq. MJ1 fuel). Moreover when liquid ammonia is produced via photovoltaic-based electrolysis (60.76 g CO2 eq. MJ1 fuel) it becomes cleaner than liquified natural gas. Although producing methanol and dimethyl ether from biomass results in a large reduction in total greenhouse gas emissions compared to conventional methanol and dimethyl ether production with a value of 73.96 g CO2 eq. per MJ liquified natural gas still represents a cleaner option than methanol and dimethyl ether considering the full life cycle.
Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System
Mar 2022
Publication
In response to the objective of fully attaining carbon neutrality by 2060 people from all walks of life are pursuing low-carbon transformation. Due to the high water cut in the middle and late phases of development the oilfield’s energy consumption will be quite high and the rise in energy consumption will lead to an increase in carbon emission at the same time. As a result the traditional energy model is incapable of meeting the energy consumption requirement of high water cut oilfields in their middle and later phases of development. The present wind hydrogen coupling energy system was researched and coupled with the classic dispersed oilfield energy system to produce energy for the oilfields in this study. This study compares four future energy system models to existing ones computes the energy cost and net present value of an oilfield in Northwest China and proposes a set of economic evaluation tools for oilfield energy systems. The study’s findings indicate that scenario four provides the most economic and environmental benefits. This scenario effectively addresses the issue of high energy consumption associated with aging oilfields at this point significantly reduces carbon emissions absorbs renewable energy locally and reduces the burden on the power grid system. Finally sensitivity analysis is utilized to determine the effect of wind speed electricity cost and oilfield gas output on the system’s economic performance. The results indicate that the system developed in this study can be applied to other oilfields.
National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA and European Countries
Aug 2022
Publication
This study tracks the variety of nations dealing with the issue of energy transition. Through process tracing and a cross-national case study a comparison of energy policies research hotspots and technical aspects of three sustainable energy systems (solar cells recharge batteries and hydrogen production) was conducted. We provide an overview of the climate-change political process and identify three broad patterns in energy-related politics in the United States China and Europe (energy neo-liberalism authoritarian environmentalism and integrated-multinational negotiation). The core processes and optimization strategies to improve the efficiency of sustainable energy usage are analyzed. This study provides both empirical and theoretical contributions to research on energy transitions.
Economic Value of Flexible Hydrogen-based Polygeneration Energy Systems
Jan 2016
Publication
Polygeneration energy systems (PES) have the potential to provide a flexible high-efficiency and low-emissions alternative for power generation and chemical synthesis from fossil fuels. This study aims to assess the economic value of fossil-fuel PES which rely on hydrogen as an intermediate product. Our analysis focuses on a representative PES configuration that uses coal as the primary energy input and produces electricity and fertilizer as end-products. We derive a series of propositions that assess the cost competitiveness of the modeled PES under both static and flexible operation modes. The result is a set of metrics that quantify the levelized cost of hydrogen the unit profit-margin of PES and the real option values of ‘diversification’ and ‘flexibility’ embedded in PES. These metrics are subsequently applied to assess the economics of Hydrogen Energy California (HECA) a PES currently under development in California. Under our technical and economic assumptions HECA’s levelized cost of hydrogen is estimated at 1.373 $/kgh. The profitability of HECA as a static PES increases in the share of hydrogen converted to fertilizer rather than electricity. However when configured as a flexible PES HECA almost breaks even on a pre-tax basis. Diversification and flexibility are valuable for HECA when polygeneration is compared to static monogeneration of electricity but these two real options have no value when comparing polygeneration to static monogeneration of fertilizers.
Exergy as Criteria for Efficient energy Systems - Maximising Energy Efficiency from Resource to Energy Service, an Austrian Case Study
Sep 2021
Publication
The EU aims for complete decarbonisation. Therefore renewable generation must be massively expanded and the energy and exergy efficiency of the entire system must be significantly increased. To increase exergy efficiency a holistic consideration of the energy system is necessary. This work analyses the optimal technology mix to maximise exergy efficiency in a fully decarbonised energy system. An exergy-based optimisation model is presented and analysed. It considers both the energy supply system and the final energy application. The optimisation is using Austria as a case study with targeted renewable generation capacities of 2030. The results show that despite this massive expansion and the maximum exergy efficiency about half of the primary energy still be imported. Overall exergy efficiency can be raised from today's 34% (Sejkora et al. 2020) to 56%. The major increase in exergy efficiency is achieved in the areas of heat supply (via complete excess heat utilisation and heat pumps) and transport (via electric and fuel cell drives). The investigated exergy optimisation results in an increase of the final electrical energy demand by 44% compared to the current situation. This increase leads to mainly positive residual loads despite a significant expansion of renewable generation. Negative residual loads are used to provide heat and hydrogen.
Value of Power-to-gas as a Flexibility Option in Integrated Electricity and Hydrogen Markets
Oct 2021
Publication
This paper analyzes the economic potential of Power-to-Gas (PtG) as a source of flexibility in electricity markets with both high shares of renewables and high external demand for hydrogen. The contribution of this paper is that it develops and applies a short-term (hourly) partial equilibrium model of integrated electricity and hydrogen markets including markets for green certificates while using a welfare-economic framework to assess the market outcomes. We find that strongly increasing the share of renewable electricity makes electricity prices much more volatile while the presence of PtG reduces this price volatility. However a large demand for hydrogen from outside the electricity sector reduces the impact of PtG on the volatility of electricity prices. In a scenario with a high external hydrogen demand PtG can deliver positive benefits for some groups as it can provide hydrogen at lower costs than Steam Methane Reforming (SMR) during hours when electricity prices are low but these positive welfare effects are outweighed by the fixed costs of PtG assets plus the costs of replacing a less expensive energy carrier (natural gas) with a more expensive one (hydrogen). Investments in PtG are profitable from a social-welfare perspective when the induced reduction in carbon emissions is valued at 150–750 euro/ton. Hence at lower carbon prices PtG can only become a valuable provider of flexibility when installation costs are significantly reduced and conversion efficiencies of electrolysers increased.
A Decarbonization Roadmap for Singapore and Its Energy Policy Implications
Oct 2021
Publication
As a signatory to the Paris Agreement Singapore is committed to achieving net-zero carbon emissions in the second half of the century. In this paper we propose a decarbonization roadmap for Singapore based on an analysis of Singapore’s energy landscape and a technology mapping exercise. This roadmap consists of four major components. The first component which also underpins the other three components is using centralized post-combustion carbon capture technology to capture and compress CO2 emitted from multiple industrial sources in Jurong Island. The captured CO2 is then transported by ship or an existing natural gas pipeline to a neighboring country where it will be stored permanently in a subsurface reservoir. Important to the success of this first-of-a-kind cross-border carbon capture and storage (CCS) project is the establishment of a regional CCS corridor which makes use of economies of scale to reduce the cost of CO2 capture transport and injection. The second component of the roadmap is the production of hydrogen in a methane steam reforming plant which is integrated with the carbon capture plant. The third component is the modernizing of the refining sector by introducing biorefineries increasing output to petrochemical plants and employing post-combustion carbon capture. The fourth component is refueling the transport sector by introducing electric and hydrogen fuel cell vehicles using biofuels for aviation and hydrogen for marine vessels. The implications of this roadmap on Singapore’s energy policies are also discussed.
Road Map to a US Hydrogen Energy: Reducing Emissions and Driving Growth Across the Nation
Oct 2020
Publication
This US Hydrogen Road Map was created through the collaboration of executives and technical industry experts in hydrogen across a broad range of applications and sectors who are committed to improving the understanding of hydrogen and how to increase its adoption across many sectors of the economy. For the first time this coalition of industry leaders has convened to develop a targeted holistic approach for expanding the use of hydrogen as an energy carrier. Due to great variation among national and state policies infrastructure needs and community interests each state and region of the US will likely have its own specific policies and road maps for implementing hydrogen infrastructure. The West Coast for example has traditionally had progressive policies on reducing transportation emissions so it is likely that hydrogen will scale sooner for vehicles in this region especially California. Experts also acknowledge the role that hydrogen in combination with renewables can play in supplying microgrid-type power to communities with the highest risk of shut-offs during seasonal weather-related issues such as high temperatures or wildfire-related power interruptions. Some states have emphasized the need to decarbonize the gas grid so blending hydrogen in natural gas networks and using hydrogen as feedstock may advance more quickly in these regions. Other states are interested in hydrogen as a means to address power grid issues enable the deployment of renewables and support competitive nuclear power. The launch of hydrogen technologies in some states or regions will help to scale hydrogen in various applications across the country laying the foundation for energy security grid resiliency economic growth and the reduction of both greenhouse gas (GHG) emissions and air pollutants. This report outlines the benefits and impact of fuel cell technologies and hydrogen as a viable solution to the energy challenges facing the US through 2030 and beyond. As such it can serve as the latest comprehensive industry-driven national road map to accelerate and scale up hydrogen in the economy across North America
Everything About Hydrogen Podcast: Why Generate Capital is Excited About the Prospects of Hydrogen
Dec 2019
Publication
On this weeks episode the team are talking all things hydrogen with Jigar Shah the President of Generate Capital and Co-host of the Energy Gang podcast. Jigar Shah has a well earned reputation as one of the most influential voices in the US clean energy market having pioneered no-money down solar with SunEdison and led the not for profit climate group the Carbon War Room. Since its founding in 2014 Generate Capital the company has provided $130 million of funds to a leading fuel cell provide Plug Power meanwhile in October 2019 Jigar declared hydrogen to be the ultimate clean electricity enabler. On the show we ask Jigar why he thinks Hydrogen is becoming interesting for investors today what business models he feels are exciting and offer the most attractive niches for hydrogen technology businesses whilst getting his side of the story on that time he met Chris at a conference…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen News Roundup and Hydrogen Q&A
Jun 2020
Publication
This week on the show the team take a pause to review the current state of hydrogen and fuel cell affairs globally whilst taking time to go over all the excellent questions that our listeners have kindly shared with us over the last few months. We cover carbon capture the green new deal synthetic fuels hydrogenspiders green hydrogen in Australia and many more themes this week so don’t miss this episode!
The podcast can be found on their website
The podcast can be found on their website
Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea
Mar 2020
Publication
This paper compares the well-to-wheel (WTW) greenhouse gas (GHG) emissions of representative vehicle types–internal combustion engine vehicle (ICEV) hybrid electric vehicle (HEV) plug-in hybrid electric vehicle (PHEV) battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV)–in the future (2030) based on a WTW analysis for the present (2017) and an analysis of various energy policies that could affect future emissions. South Korea was selected as the target region because it has detailed energy policies related to alternative vehicles. The WTW analysis for the present was performed based on three sets of subordinate analyses: (1) life cycle analyses of eight base fuels; (2) life cycle analyses of electricity and hydrogen; and (3) analyses of the fuel economies of seven vehicle types. From the WTW analysis for the present the national average WTW GHG emissions of ICEV-gasoline ICEV-diesel ICEV-liquefied petroleum gas HEV PHEV BEV and FCEV were calculated as 225 233 201 159 133 109 and 55 g-CO2-eq./km respectively. For calculating the WTW GHG emissions in the future two policies regarding electricity production and three policies regarding hydrogen production were analysed. Three cases with varying the degrees of improvements in fuel economies were considered. Six future scenarios were constructed and each scenario represented the case in which each energy policy is enacted. In the reference scenario for compact car the WTW GHG emissions of ICEVs-gasoline HEV PHEV BEV-200 mile FCEV were analysed as 161 110 97 86 and 91 g-CO2-eq./km respectively. The differences between ICEV/HEV and BEV were predicted to decrease in the future mainly due to larger improvements of ICEV/HEV in fuel economies compared to that of BEV. The future life cycle GHG emissions of electricity and hydrogen were calculated according to energy policy. Both two policies regarding power generation were confirmed to increase the benefits of utilizing BEVs but current energy policy regarding hydrogen production were confirmed to decrease the benefits of utilizing FCEVs. Based on the comprehensive results of this study a framework was proposed to evaluate the impacts of an energy policy regarding electricity and hydrogen production on the benefits of using BEVs and FCEVs compared to using HEVs and ICEVs. This framework can also be utilized in other countries when they assess and establish their energy policies.
Optimal Hydrogen Production in a Wind-dominated Zero-emission Energy System
May 2021
Publication
The role of hydrogen in future energy systems is widely acknowledged: from fuel for difficult-to-decarbonize applications to feedstock for chemicals synthesis to energy storage for high penetration of undispatchable renewable electricity. While several literature studies investigate such energy systems the details of how electrolysers and renewable technologies optimally behave and interact remain an open question. With this work we study the interplay between (i) renewable electricity generation through wind and solar (ii) electricity storage in batteries (iii) electricity storage via Power-to-H2 and (iv) hydrogen commodity demand. We do so by designing a cost-optimal zero-emission energy system and use the Netherlands as a case study in a mixed integer linear model with hourly resolution for a time horizon of one year. To account for the significant role of wind we also provide an elaborate approach to model broad portfolios of wind turbines. The results show that if electrolyzers can operate flexibly batteries and power-to-H2-to-power are complementary with the latter using renewable power peaks and the former using lower renewable power outputs. If the operating modes of the power-to-H2-to-power system are limited - artificially or technically - the competitive advantage over batteries decreases. The preference of electrolyzers for power peaks also leads to an increase in renewable energy utilization for increased levels of operation flexibility highlighting the importance of capturing this feature both from a technical and a modeling perspective. When adding a commodity hydrogen demand the amount of hydrogen converted to electricity decreases hence decreasing its role as electricity storage medium.
Everything About Hydrogen Podcast: Financing the Hydrogen Revolution
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are catching up with Astrid Behaghel the Energy Transition expert on hydrogen for BNP Paribas. On the show the team discuss how BNP Paribas see the emerging role of hydrogen in the energy transition how the financing of hydrogen projects differs for newer hydrogen initiatives and why BNP Paribas joined the Hydrogen Council. We also dive into the question of what role can (or even should) Banks play in the evolution and development of the emerging hydrogen market and BNPs plans to expand its activities in this sector. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Scenario-Based Techno-Economic Analysis of Steam Methane Reforming Process for Hydrogen Production
Jun 2021
Publication
Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions including CO2 emission permits and CO2 capture and sale. Of the six scenarios the process configuration involving CO2 capture and sale is the most economical with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost the economic feasibility of the SMR-based H2 production process can be further improved.
Everything About Hydrogen Podcast: Venturing into Hydrogen
Apr 2021
Publication
Since 2014 when the firm was founded within Anglo-American AP Ventures has been at the forefront of investment in hydrogen sector technologies. At the time the firm started the concerns around climate change and investment in renewable energy tech was gearing up but interest in hydrogen as part of the path to a decarbonized future was limited. The founders of AP Ventures felt differently and saw significant potential for hydrogen to offer a means for cleaning up highly carbon intensive sectors such as heavy transport industrial manufacturing and mining operations. Today that vision for hydrogen appears rather prescient. We are delighted to have two members from the team at AP Ventures with us on the show today. The team is joined by Kevin Eggers - a founding partner at AP - and Michell Robson - associate on the firm's investment team.
The podcast can be found on their website
The podcast can be found on their website
Law and Policy Review on Green Hydrogen Potential in ECOWAS Countries
Mar 2022
Publication
This paper aims to review existing energy-sector and hydrogen-energy-related legal policy and strategy documents in the ECOWAS region. To achieve this aim current renewable-energyrelated laws acts of parliament executive orders presidential decrees administrative orders and memoranda were analyzed. The study shows that ECOWAS countries have strived to design consistent legal instruments regarding renewable energy in developing comprehensive legislation and bylaws to consolidate it and to encourage investments in renewable energy. Despite all these countries having a legislative basis for regulating renewable energy there are still weaknesses that revolve around the law and policy regarding its possible application in green hydrogen production and use. The central conclusion of this review paper is that ECOWAS member states presently have no official hydrogen policies nor bylaws in place. The hydrogen rise presents a challenge and opportunity for members to play an important role in the fast-growing global hydrogen market. Therefore these countries need to reform their regulatory frameworks and align their policies by introducing green hydrogen production in order to accomplish their green economy transition for the future and to boost the continent’s sustainable development.
Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects
Apr 2021
Publication
The aim of this study was to evaluate the motorization market of electric vehicles powered by hydrogen cells in Poland. European conditions of such technology were indicated as well as original proposals on amendments to the law to increase the development pace of electromobility based on hydrogen cells. There were also presented economic aspects of this economic phenomenon. Moreover survey research was conducted to examine the preferences of hydrogen and electric vehicle users in 5 primary Polish cities. In this way the level of social acceptance for the technological revolution based on hydrogen cells and taking place in the motorization sector was determined.
Towards a 100% Hydrogen Domestic Gas Network: Regulatory and Commercial Barriers to the First Demonstrator Project in the United Kingdom
May 2022
Publication
In the debate on the decarbonisation of heat renewable electricity tends to play a much more dominant role than green gases despite the potential advantages of gas in terms of utilising existing transportation networks and end-use appliances. Informed comparisons are hampered by information asymmetry; the renewable electricity has seen a huge grid level deployment whereas low-carbon hydrogen or bio-methane have been limited to some small stand-alone trials. This paper explores the regulatory and commercial challenges of implementing the first UK neighbourhood level 100% low-carbon hydrogen demonstration project. We draw on existing literature and action research to identify the key practical barriers currently hindering the ability of strategically important actors to accelerate the substitution of natural gas with low carbon hydrogen in local gas networks. This paper adds much needed contextual depth to existing generic and theoretical understandings of low-carbon hydrogen for heat transition feasibility. The learnings from pilot projects about the exclusion of hydrogen calorific value from the Local Distribution Zone calorific value calculation Special Purpose Vehicle companies holding of liability and future costs to consumers need to be quickly transferred into resilient operational practice or gas repurposing projects will continue to be less desirable than electrification using existing regulations and with more rapid delivery
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
Decarbonising Heat in Buildings: Putting Consumers First
Apr 2021
Publication
From an evaluation of the GB housing stock it is clear that a mosaic of low carbon heating technologies will be needed to reach net zero. While heat pumps are an important component of this mix our analysis shows that it is likely to be impractical to heat many GB homes with heat pumps only. A combination of lack of exterior space and/or the thermal properties of the building fabric mean that a heat pump is not capable of meeting the space heating requirement of 8 to 12m homes (or 37% to 54% of the 22.7m homes assessed in this report) or can do so only through the installation of highly disruptive and intrusive measures such as solid wall insulation. Hybrid heat pumps that are designed to optimise efficiency of the system do not have the same requirements of a heat pump and may be a suitable solution for some of these homes. This is likely to mean that decarbonised gas networks are therefore critical to delivery of net zero. 3 to 4m homes1 (or 14% to 18% of homes assessed in our analysis) could be made suitable for heat pump retrofit through energy efficiency measures such as cavity wall insulation. For 7 to 10m homes there are no limiting factors and they require minimal/no upgrade requirements to be made heat pump-ready. Nevertheless given firstly the levels of disruption to the floors and interiors of homes caused by the installation of heat pumps and secondly the cost and disruption associated with the requirement to significantly upgrade the electricity distribution networks to cope with large numbers of heat pumps operating at peak demand times - combined with the availability of a decarbonised gas network which requires a simple like-for-like boiler replacement - is likely to mean that many of these ‘swing’ properties will be better served through a gas based technology such as hydrogen (particularly when consumer choice is factored in) or a hybrid system. A recent trial run in winter 2018-19 by the Energy System Catapult revealed that all participants were reluctant to make expensive investments to improve the energy efficiency of their homes just to enhance the performance of their heat pump. They were more interested in less costly upgrades and tangible benefits such as lower bills or greater comfort. This means that renewable gases including hydrogen as heating fuels are a crucial component of the journey to net zero and the UK’s hydrogen ambitions should be reflective of this. The analysis presented in this paper focuses on the external fabric of the buildings further analysis should be undertaken to consider the internal system changes that would be required for heat pumps and hydrogen boilers for example BEIS Domestic Heat Distribution Systems: Gathering Report from February 2021 which considers the suitability of radiators for the low carbon transition.
Reducing the Cost of Low-carbon Hydrogen Production via Emerging Chemical Looping Process
Jan 2023
Publication
A thorough techno-economic analysis where inherent carbon capture is examined against state-of-the-art blue hydrogen production configurations for large (100000 Nm3 /h) and very large (333000 Nm3 /h) capacities. Advanced solvent-based technologies based on post-combustion capture and auto-thermal reformer combined with a gas heated reformer are simulated with process flowsheet software and compared with the emerging chemical looping process. A network of dynamically operated packed bed reactors has been designed and modelled using an in-house code and key parameters generating uncertainties in the results have been examined in a sensitivity analysis. The chemical looping reforming process presents a higher net reforming efficiency than the benchmark cases (8.2 % higher at large scale and 1.5 % higher at very large scale) ranged 75.4–75.7 % while the specific energy for CO2 avoidance is negative in the range of − 0.78 to − 0.85 MJ/kgCO2. In the carbon capture cases the chemical looping reforming in packed beds technology generated a levelised cost of hydrogen of 168.9 £/kNm3 H2 for the large scale and 159.1 £/kNm3 H2 for the very large scale with the values for the benchmark cases being higher at 196.4 and 166.6 £/kNm3 H2 respectively while the levelised cost of hydrogen values are 1 % higher in the benchmark cases where carbon emission price is accounted for. The carbon capture ratio is 99.9 % for the chemical looping reforming cases compared to 90–91 % for the benchmark ones thus providing a significant foreground for the scale-up and implementation of chemical looping reforming technologies for hydrogen production.
Hydrogen Production Possibilities in Slovak Republic
Mar 2022
Publication
Slovak Republic is a member of the European Union and is a part of the European energy market. Although Slovakia contributes only marginally to global emissions there is an effort to meet obligations from the Paris climate agreement to reduce greenhouse gases. As in many countries power industry emissions dominate Slovakia’s emissions output but are partly affected and lowered by the share of nuclear energy. The transition from fossil fuels to renewables is supported by the government and practical steps have been taken to promote the wide use of renewable resources such as biomass or solar energy. Another step in this transition process is the support of new technologies that use hydrogen as the primary energy source. The European Union widely supports this effort and is looking for possible sources for hydrogen generation. One of the main renewable resources is hydropower which is already used in the Slovak Republic. This article presents the current situation of the energy market in Slovakia and possible developments for future hydrogen generation.
Estimation of the Levelized Cost of Nuclear Hydrogen Production from Light Water Reactors in the United States
Aug 2022
Publication
In June 2021 the United States (US) Department of Energy (DOE) hosted the first-ever Hydrogen Shot Summit which lasted for two days. More than 3000 stockholders around the world were convened at the summit to discuss how low-cost clean hydrogen production would be a huge step towards solving climate change. Hydrogen is a dynamic fuel that can be used across all industrial sectors to lower the carbon intensity. By 2030 the summit hopes to have developed a means to reduce the current cost of clean hydrogen by 80%; i.e. to USD 1 per kilogram. Because of the importance of clean hydrogen towards carbon neutrality the overall DOE budget for Fiscal Year 2021 is USD 35.4 billion and the total budget for DOE hydrogen activities in Fiscal Year 2021 is USD 285 million representing 0.81% of the total DOE budget for 2021. The DOE hydrogen budget of 2021 is estimated to increase to USD 400 million in Fiscal Year 2022. The global hydrogen market is growing and the US is playing an active role in ensuring its growth. Depending on the electricity source used the electrolysis of hydrogen can have no greenhouse gas emissions. When assessing the advantages and economic viability of hydrogen production by electrolysis it is important to take into account the source of the necessary electricity as well as emissions resulting from electricity generation. In this study to evaluate the levelized cost of nuclear hydrogen production the International Atomic Energy Agency Hydrogen Economic Evaluation Program is used to model four types of LWRs: Exelon’s Nine Mile Point Nuclear Power Plant (NPP) in New York; Palo Verde NPP in Arizona; Davis-Besse NPP in Ohio; and Prairie Island NPP in Minnesota. Each of these LWRs has a different method of hydrogen production. The results show that the total cost of hydrogen production for Exelon’s Nine Mile Point NPP Palo Verde NPP Davis-Besse NPP and Prairie Island NPP was 4.85 ± 0.66 4.77 ± 1.36 3.09 ± 1.19 and 0.69 ± 0.03 USD/kg respectively. These findings show that among the nuclear reactors the cost of nuclear hydrogen production using Exelon’s Nine Mile Point NPP reactor is the highest whereas the cost of nuclear hydrogen production using the Prairie Island NPP reactor is the lowest.
Cost Assessment of Alternative Fuels for Maritime Transportation in Ireland
Aug 2022
Publication
In this study we investigated the cost-effectiveness of four alternatives: Liquified Natural Gas (LNG) methanol green hydrogen and green ammonia for the case of top 20 most frequently calling ships to Irish ports in 2019 through the Net Present Value (NPV) methodology incorporating the benefits incurred through saved external carbon tax and conventional fuel costs. LNG had the highest NPV (€6166 million) followed by methanol (€1705 million) and green hydrogen (€319 million). Green ammonia utilisation (as a hydrogen carrier) looks inviable due to higher operational costs resulting from its excessive consumption (i.e. losses) during the cracking and purifying processes and its lower net calorific value. Green hydrogen remains the best option to meet future decarbonisation targets although a further reduction in its current fuel price (by 60%) or a significant increment in the proposed carbon tax rate (by 275%) will be required to improve its cost-competitiveness over LNG and methanol.
The Economics and the Environmental Benignity of Different Colors of Hydrogen
Feb 2022
Publication
Due to the increasing greenhouse gas emissions as well as due to the rapidly increasing use of renewable energy sources in the electricity generation over the last years interest in hydrogen is rising again. Hydrogen can be used as a storage for renewable energy balancing the whole energy systems and contributing to the decarbonization of the energy system especially of the industry and the transport sector. The major objective of this paper is to discuss various ways of hydrogen production depending on the primary energy sources used. Moreover the economic and environmental performance of three major hydrogen colors as well as major barriers for faster deployment in fuel cell vehicles are analyzed. The major conclusion is that the full environmental benefits of hydrogen use are highly dependent on the hydrogen production methods and primary sources used. Only green hydrogen with electricity from wind PV and hydro has truly low emissions. All other sources like blue hydrogen with CCUS or electrolysis using the electricity grid have substantially higher emissions coming close to grey hydrogen production. Another conclusion is that it is important to introduce an international market for hydrogen to lower costs and to produce hydrogen where conditions are best. Finally the major open question remaining is whether e including all external costs of all energy carriers hydrogen of any color may become economically competitive in any sector of the energy system. The future success of hydrogen is very dependent on technological development and resulting cost reductions as well as on future priorities and the corresponding policy framework. The policy framework should support the shift from grey to green hydrogen.
A Review of Projected Power-to-Gas Deployment Scenarios
Jul 2018
Publication
Technical economic and environmental assessments of projected power-to-gas (PtG) deployment scenarios at distributed- to national-scale are reviewed as well as their extensions to nuclear-assisted renewable hydrogen. Their collective research trends outcomes challenges and limitations are highlighted leading to suggested future work areas. These studies have focused on the conversion of excess wind and solar photovoltaic electricity in European-based energy systems using low-temperature electrolysis technologies. Synthetic natural gas either solely or with hydrogen has been the most frequent PtG product. However the spectrum of possible deployment scenarios has been incompletely explored to date in terms of geographical/sectorial application environment electricity generation technology and PtG processes products and their end-uses to meet a given energy system demand portfolio. Suggested areas of focus include PtG deployment scenarios: (i) incorporating concentrated solar- and/or hybrid renewable generation technologies; (ii) for energy systems facing high cooling and/or water desalination/treatment demands; (iii) employing high-temperature and/or hybrid hydrogen production processes; and (iv) involving PtG material/energy integrations with other installations/sectors. In terms of PtG deployment simulation suggested areas include the use of dynamic and load/utilization factor-dependent performance characteristics dynamic commodity prices more systematic comparisons between power-to-what potential deployment options and between product end-uses more holistic performance criteria and formal optimizations.
Resource Assessment for Green Hydrogen Production in Kazakhstan
Jan 2023
Publication
Kazakhstan has long been regarded as a major exporter of fossil fuel energy. As the global energy sector is undergoing an unprecedented transition to low-carbon solutions new emerging energy technologies such as hydrogen production require more different resource bases than present energy technologies. Kazakhstan needs to consider whether it has enough resources to stay competitive in energy markets undergoing an energy transition. Green hydrogen can be made from water electrolysis powered by low-carbon electricity sources such as wind turbines and solar panels. We provided the first resource assessment for green hydrogen production in Kazakhstan by focusing on three essential resources: water renewable electricity and critical raw materials. Our estimations showed that with the current plan of Kazakhstan to keep its water budget constant in the future producing 2–10 Mt green hydrogen would require reducing the water use of industry in Kazakhstan by 0.6–3% or 0.036–0.18 km3/year. This could be implemented by increasing the share of renewables in electricity generation and phasing out some of the water- and carbon-intensive industries. Renewable electricity potential in South and West Kazakhstan is sufficient to run electrolyzers up to 5700 and 1600 h/year for wind turbines and solar panels respectively. In our base case scenario 5 Mt green hydrogen production would require 50 GW solar and 67 GW wind capacity considering Kazakhstan's wind and solar capacity factors. This could convert into 28652 tons of nickel 15832 tons of titanium and many other critical raw materials. Although our estimations for critical raw materials were based on limited geological data Kazakhstan has access to the most critical raw materials to support original equipment manufacturers of low-carbon technologies in Kazakhstan and other countries. As new geologic exploration kicks off in Kazakhstan it is expected that more deposits of critical raw materials will be discovered to respond to their potential future needs for green hydrogen production.
Impacts of Greenhouse Gas Neutrality Strategies on Gas Infrastructure and Costs: Implications from Case Studies Based on French and German GHG-neutral Scenarios
Sep 2022
Publication
The European Union’s target to reach greenhouse gas neutrality by 2050 calls for a sharp decrease in the consumption of natural gas. This study assesses impacts of greenhouse gas neutrality on the gas system taking France and Germany as two case studies which illustrate a wide range of potential developments within the European Union. Based on a review of French and German GHG-neutral scenarios it explores impacts on gas infrastructure and estimates the changes in end-user methane price considering a business-as-usual and an optimised infrastructure pathway. Our results show that gas supply and demand radically change by mid-century across various scenarios. Moreover the analysis suggests that deep transformations of the gas infrastructure are required and that according to the existing pricing mechanisms the end-user price of methane will increase driven by the switch to low-carbon gases and intensified by infrastructure costs.
Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis
Sep 2022
Publication
To provide an effective energy transition hydrogen is required to decarbonize the hard-toabate industries. As a case study this paper provides a holistic view of the hydrogen energy transition in the United Arab Emirates (UAE). By utilizing the directional distance function undesirable data envelopment analysis model the energy economic and environmental efficiency of UAE sectors are estimated from 2001 to 2020 to prioritize hydrogen sector coupling. Green hydrogen production efficiency is analyzed from 2020 to 2050. The UAE should prioritize the industry and transportation sectors with average efficiency scores of 0.7 and 0.74. The decomposition of efficiency into pure technical efficiency and scale efficiency suggests policies and strategies should target upscaling the UAE’s low-carbon hydrogen production capacity to expedite short-term and overall production efficiency. The findings of this study can guide strategies and policies for the UAE’s low-carbon hydrogen transition. A framework is developed based on the findings of the study.
Review and Perspectives of Key Decarbonization Drivers to 2030
Jan 2023
Publication
Global climate policy commitments are encouraging the development of EU energy policies aimed at paving the way for cleaner energy systems. This article reviews key decarbonization drivers for Italy considering higher environmental targets from recent European Union climate policies. Energy efficiency the electrification of final consumption the development of green fuels increasing the share of renewable energy sources in the electric system and carbon capture and storage are reviewed. A 2030 scenario is designed to forecast the role of decarbonization drivers in future energy systems and to compare their implementation with that in the current situation. Energy efficiency measures will reduce final energy consumption by 15.6% as primary energy consumption will decrease by 19.8%. The electrification of final consumption is expected to increase by 6.08%. The use of green fuels is estimated to triple as innovative fuels may go to market at scale to uphold the ambitious decarbonization targets set in the transportation sector. The growing trajectory of renewable sources in the energy mix is confirmed as while power generation is projected to increase by 10% the share of renewables in that generation is expected to increase from 39.08% to 78.16%. Capture and storage technologies are also expected to play an increasingly important role. This article has policy implications and serves as a regulatory reference in the promotion of decarbonization investments.
A Geospatial Method for Estimating the Levelised Cost of Hydrogen Production from Offshore Wind
Jan 2023
Publication
This paper describes the development of a general-purpose geospatial model for assessing the economic viability of hydrogen production from offshore wind power. A key feature of the model is that it uses the offshore project's location characteristics (distance to port water depth distance to gas grid injection point). Learning rates are used to predict the cost of the wind farm's components and electrolyser stack replacement. The notional wind farm used in the paper has a capacity of 510 MW. The model is implemented in a geographic information system which is used to create maps of levelised cost of hydrogen from offshore wind in Irish waters. LCOH values in 2030 spatially vary by over 50% depending on location. The geographically distributed LCOH results are summarised in a multivariate production function which is a simple and rapid tool for generating preliminary LCOH estimates based on simple site input variables.
“Bigger than Government”: Exploring the Social Construction and Contestation of Net-zero Industrial Megaprojects in England
Jan 2023
Publication
Industry is frequently framed as hard-to-decarbonize given its diversity of requirements technologies and supply chains many of which are unique to particular sectors. Net zero commitments since 2019 have begun to challenge the carbon intensity of these various industries but progress has been slow globally. Against this backdrop the United Kingdom has emerged as a leader in industrial decarbonization efforts. Their approach is based on industrial clusters which cut across engineering spatial and socio-political dimensions. Two of the largest of these clusters in England in terms of industrial emissions are the Humber and Merseyside. In this paper drawn from a rich mixed methods original dataset involving expert interviews (N = 46 respondents) site visits (N = 20) a review of project documents and the academic literature we explore ongoing efforts to decarbonize both the Humber and Merseyside through the lens of spatially expansive and technically complex megaprojects. Both have aggressive implementation plans in place for the deployment of net-zero infrastructure with Zero Carbon Humber seeking billions in investment to build the country’s first large-scale bioenergy with carbon capture and storage (BECCS) plant alongside a carbon transport network and hydrogen production infrastructure and HyNet seeking billions in investment to build green and blue hydrogen facilities along with a carbon storage network near Manchester and Liverpool. We draw from the social construction of technology (SCOT) literature to examine the relevant social groups interpretive flexibility and patterns of closure associated with Zero Carbon Humber and HyNet. We connect our findings to eight interpretive frames surrounding the collective projects and make connections to problems contestation and closure.
Green-hydrogen Research: What Have We Achieved, and Where Are We Going? Bibliometrics Analysis
Jul 2022
Publication
In response to the global challenge of climate change 136 countries accounting for 90% of global GDP and 85% of the population have now set net-zero targets. A transition to net-zero will require the decarbonization of all sectors of the economy. Green-hydrogen produced from renewable energy sources poses little to no threat to the environment and increasing its production will support net-zero targets Our study examined the evolution of green-hydrogen research themes since the UN Sustainable Development Goals were adopted in 2015 by utilizing bibliographic couplings keyword co-occurrence and keyphrase analysis of 642 articles from 2016 to 2021 in the Scopus database. We studied bibliometrics indicators and temporal evolution of publications and citations patterns of open access the effect of author collaboration influential publications and top contributing countries. We also consider new indicators like publication views keyphrases topics with prominence and field weighted citation impact and Altmetrics to understand the research direction further. We find four major thematic distributions of green-hydrogen research based on keyword co-occurrence networks: hydrogen storage hydrogen production electrolysis and the hydrogen economy. We also find networks of four research clusters that provide new information on the journal’s contributions to green-hydrogen research. These are materials chemistry hydrogen energy and cleaner production applied energy and fuel cells. Most green-hydrogen research aligns with Affordable and Clean Energy (SDG 7) and Climate Action (SDG 13). The outcomes of policy decisions in the United States Europe India and China will profoundly impact green-hydrogen production and storage over the next five years. If these policies are implemented these countries will account for two-thirds of this growth. Asia will account for the most significant part and become the second-largest producer globally.
Policy and Pricing Barriers to Steel Industry Decarbonisation: A UK Case Study
Aug 2022
Publication
Global climate targets have highlighted the need for a whole-systems approach to decarbonisation one that includes targeted national policy and industry specific change. Situated within this context this research examines policy and pricing barriers to decarbonisation of the UK steel industry. Here the techno-economic modelling of UK green steelmaking provides a technical contribution to analysis of pricing barriers and policy solutions to these barriers in the UK specifically but also to the broader industrial decarbonisation literature. Estimated costs and associated emissions projections reveal relevant opportunities for UK steel in contributing to national climate and emissions targets. Modelling demonstrates that green steelmaking options have been put at price disadvantages compared to emissions-intensive incumbents and that fossil-free hydrogen-based steel-making has lower emissions and lower levelised costs than carbon capture and storage options including top gas recycling blast furnace (TGR-BF) with CCS and HIsarna smelter with CCS. Two primary policy recommendations are made: the removal of carbon pricing discrepancies and reductions in industrial electricity prices that would level the playing field for green steel producers in the UK. The research also provides relevant policy considerations for the international community in other industrial decarbonisation efforts and the policies that must accompany these decarbonisation choices.
Hydrogen Research: Technology First, Society Second?
Jul 2021
Publication
Hydrogen futures are in the making right in front of our eyes and will determine socio-ecological path dependencies for decades to come. However expertise on the societal effects of the hydrogen transition is in its infancy. Future energy research needs to include the social sciences humanities and interdisciplinary studies: energy cultures have to be examined as well as power relations and anticipation processes since the need for (green) hydrogen is likely to require a massive expansion of renewable energy plants.
The Role of Hydrogen in a Greenhouse Gas-neutral Energy Supply System in Germany
Sep 2022
Publication
Hydrogen is widely considered to play a pivotal role in successfully transforming the German energy system but the German government’s current “National Hydrogen Strategy” does not specify how hydrogen utilization production storage or distribution will be implemented. Addressing key uncertainties for the German energy system’s path to greenhouse gas-neutrality this paper examines hydrogen in different scenarios. This analysis aims to support the concretization of the German hydrogen strategy. Applying a European energy supply model with strong interactions between the conversion sector and the hydrogen system the analysis focuses on the requirements for geological hydrogen storages and their utilization over the course of a year the positioning of electrolyzers within Germany and the contributions of hydrogen transport networks to balancing supply and demand. Regarding seasonal hydrogen storages the results show that hydrogen storage facilities in the range of 42 TWhH2 to 104 TWhH2 are beneficial to shift high electricity generation volumes from onshore wind in spring and fall to winter periods with lower renewable supply and increased electricity and heat demands. In 2050 the scenario results show electrolyzer capacities between 41 GWel and 75 GWel in Germany. Electrolyzer sites were found to follow the low-cost renewable energy potential and are concentrated on the North Sea and Baltic Sea coasts with their high wind yields. With respect to a hydrogen transport infrastructure there were two robust findings: One a domestic German hydrogen transport network connecting electrolytic hydrogen production sites in northern Germany with hydrogen demand hubs in western and southern Germany is economically efficient. Two connecting Germany to a European hydrogen transport network with interconnection capacities between 18 GWH2 and 58 GWH2 is cost-efficient to meet Germany’s substantial hydrogen demand.
The New Model of Energy Cluster Management and Functioning
Sep 2022
Publication
This article was aimed to answer the question of whether local energy communities have a sufficient energy surplus for storage purposes including hydrogen production. The article presents an innovative approach to current research and a discussion of the concepts of the collective prosumer and virtual prosumer that have been implemented in the legal order and further amended in the law. From this perspective it was of utmost importance to analyze the model of functioning of an energy cluster consisting of energy consumers energy producers and hydrogen storage whose goal is to maximize the obtained benefits assuming the co-operative nature of the relationship. The announced and clear perspective of the planned benefits will provide the cluster members a measurable basis for participation in such an energy community. However the catalogue of benefits will be conditioned by the fulfillment of several requirements related to both the scale of covering energy demand from own sources and the need to store surplus energy. As part of the article the results of analyses together with a functional model based on real data of the local energy community are presented.
Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea
Sep 2022
Publication
South Korea has a plan to realize a hydrogen economy and it is essential to establish a main hydrogen pipeline for hydrogen transport. This study develops a cost estimation model applicable to the construction of hydrogen pipelines and conducts an economic analysis to evaluate various scenarios for hydrogen pipeline construction. As a result the cost of modifying an existing natural gas to a hydrogen pipeline is the lowest however there are issues with the safety of the modified hydrogen pipes from natural gas and the necessity of the existing natural gas pipelines. In the case of a short-distance hydrogen pipeline the cost is about 1.8 times that of the existing natural gas pipeline modification but it is considered a transitional scenario before the construction of the main hydrogen pipeline nationwide. Lastly in the case of long-distance main hydrogen pipeline construction it takes about 3.7 times as much cost as natural gas pipeline modification however it has the advantage of being the ultimate hydrogen pipeline network. In this study various hydrogen pipeline establishment scenarios ware compared. These results are expected to be utilized to establish plans for building hydrogen pipelines and to evaluate their economic feasibility.
Development of a Hydrogen Valley for Exploitation of Green Hydrogen in Central Italy
Oct 2022
Publication
Green hydrogen exploitation plays a crucial role in achieving carbon neutrality by 2050. Hydrogen in fact provides a number of key benefits for the energy system due to its integrability with other clean technologies for energy production and consumption. This paper is aimed at presenting the project of recovery of an abandoned industrial area located in central Italy by developing a site for the production of green hydrogen. To this aim the analysis of the territorial and industrial context of the area allowed us to design the project phases and to define the sizing criteria of the hydrogen production plant. The results of a preliminary cost–benefit analysis show that a huge initial investment is required and that in the short term the project is sustainable only with a very large public grant. On the other hand in the long term the project is sustainable and the benefits significantly overcome the costs.
Potential for Hydrogen and Power-to-Liquid in a Low-carbon EU Energy System Using Cost Optimization
Oct 2018
Publication
Hydrogen represents a versatile energy carrier with net zero end use emissions. Power-to-Liquid (PtL) includes the combination of hydrogen with CO2 to produce liquid fuels and satisfy mostly transport demand. This study assesses the role of these pathways across scenarios that achieve 80–95% CO2 reduction by 2050 (vs. 1990) using the JRC-EU-TIMES model. The gaps in the literature covered in this study include a broader spatial coverage (EU28+) and hydrogen use in all sectors (beyond transport). The large uncertainty in the possible evolution of the energy system has been tackled with an extensive sensitivity analysis. 15 parameters were varied to produce more than 50 scenarios. Results indicate that parameters with the largest influence are the CO2 target the availability of CO2 underground storage and the biomass potential.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
Hydrogen demand increases from 7 mtpa today to 20–120 mtpa (2.4–14.4 EJ/yr) mainly used for PtL (up to 70 mtpa) transport (up to 40 mtpa) and industry (25 mtpa). Only when CO2 storage was not possible due to a political ban or social acceptance issues was electrolysis the main hydrogen production route (90% share) and CO2 use for PtL became attractive. Otherwise hydrogen was produced through gas reforming with CO2 capture and the preferred CO2 sink was underground. Hydrogen and PtL contribute to energy security and independence allowing to reduce energy related import cost from 420 bln€/yr today to 350 or 50 bln€/yr for 95% CO2 reduction with and without CO2 storage. Development of electrolyzers fuel cells and fuel synthesis should continue to ensure these technologies are ready when needed. Results from this study should be complemented with studies with higher spatial and temporal resolution. Scenarios with global trading of hydrogen and potential import to the EU were not included.
A Global Review of the Hydrogen Energy Eco-System
Feb 2023
Publication
Climate change primarily caused by the greenhouse gases emitted as a result of the consumption of carbon-based fossil fuels is considered one of the biggest challenges that humanity has ever faced. Moreover the Ukrainian crisis in 2022 has complicated the global energy and food status quo more than ever. The permanency of this multifaceted fragility implies the need for increased efforts to have energy independence and requires long-term solutions without fossil fuels through the use of clean zero-carbon renewables energies. Hydrogen technologies have a strong potential to emerge as an energy eco-system in its production-storage-distribution-utilization stages with its synergistic integration with solar-wind-hydraulic-nuclear and other zero-carbon clean renewable energy resources and with the existing energy infrastructure. In this paper we provide a global review of hydrogen energy need related policies practices and state of the art for hydrogen production transportation storage and utilization.
The Role of Clean Hydrogen Value Chain in a Successful Energy Transition of Japan
Aug 2022
Publication
The clean hydrogen in the prioritized value chain platform could provide energy incentives and reduce environmental impacts. In the current study strengths weaknesses opportunities and threats (SWOT) analysis has been successfully applied to the clean hydrogen value chain in different sectors to determine Japan’s clean hydrogen value chain’s strengths weaknesses opportunities and threats as a case study. Japan was chosen as a case study since we believe that it is the only pioneer country in that chain with a national strategy investments and current projects which make it unique in this way. The analyses include evaluations of clean energy development power supply chains regional energy planning and renewable energy development including the internal and external elements that may influence the growth of the hydrogen economy in Japan. The ability of Japan to produce and use large quantities of clean hydrogen at a price that is competitive with fossil fuels is critical to the country’s future success. The implementation of an efficient carbon tax and carbon pricing is also necessary for cost parity. There will be an increasing demand for global policy coordination and inter-industry cooperation. The results obtained from this research will be a suitable model for other countries to be aware of the strengths weaknesses opportunities and threats in this field in order to make proper decisions according to their infrastructures potentials economies and socio-political states in that field.
Future Hydrogen Markets for Transportation and Industry: The Impact of CO2 Taxes
Dec 2019
Publication
The technological lock-in of the transportation and industrial sector can be largely attributed to the limited availability of alternative fuel infrastructures. Herein a countrywide supply chain analysis of Germany spanning until 2050 is applied to investigate promising infrastructure development pathways and associated hydrogen distribution costs for each analyzed hydrogen market. Analyzed supply chain pathways include seasonal storage to balance fluctuating renewable power generation with necessary purification as well as trailer- and pipeline-based hydrogen delivery. The analysis encompasses green hydrogen feedstock in the chemical industry and fuel cell-based mobility applications such as local buses non-electrified regional trains material handling vehicles and trucks as well as passenger cars. Our results indicate that the utilization of low-cost long-term storage and improved refueling station utilization have the highest impact during the market introduction phase. We find that public transport and captive fleets offer a cost-efficient countrywide renewable hydrogen supply roll-out option. Furthermore we show that at comparable effective carbon tax resulting from the current energy tax rates in Germany hydrogen is cost-competitive in the transportation sector by the year 2025. Moreover we show that sector-specific CO2 taxes are required to provide a cost-competitive green hydrogen supply in both the transportation and industrial sectors.
Hydrogen: Enabling A Zero-Emission Society
Nov 2021
Publication
Discover the colours of hydrogen debunk the myths around hydrogen and learn the facts and key moments in history for hydrogen as well as innovative technologies ground-breaking projects state-of-the-art research development and cooperation by members of Hydrogen Europe
Modelling a Highly Decarbonised North Sea Energy System in 2050: a Multinational Approach
Dec 2021
Publication
The North Sea region located in the Northwest of Europe is expected to be a frontrunner in the European energy transition. This paper aims to analyse different optimal system configurations in order to meet net-zero emission targets in 2050. Overall the paper presents two main contributions: first we develop and introduce the IESA-NS model. The IESA-NS model is an optimization integrated energy system model written as a linear problem. The IESA-NS model optimizes the long-term investment planning and short-term operation of seven North Sea region countries (Belgium Denmark Germany the Netherlands Norway Sweden and the United Kingdom). The model can optimize multiple years simultaneously accounts for all the national GHG emissions and includes a thorough representation of all the sectors of the energy system. Second we run several decarbonisation scenarios with net-zero emission targets in 2050. Relevant parameters varied to produce the scenarios include biomass availability VRE potentials low social acceptance of onshore VRE ban of CCUS or mitigation targets in international transport and industry feedstock. Results show a large use of hydrogen when international transport emissions are considered in the targets (5.6 EJ to 7.3 EJ). Electrolysis is the preferred pathway for hydrogen production (up to 6.4 EJ) far ahead of natural gas reforming (up to 2.2 EJ). Allowing offshore interconnectors (e.g. meshed offshore grid between the Netherlands Germany and the United Kingdom) permits to integrate larger amounts of offshore wind (122 GW to 191 GW of additional capacity compared to reference scenarios) while substantially increasing the cross-border interconnection capacities (up to 120 GW). All the biomass available is used in the scenarios across multiple end uses including biofuel production (up to 3.5 EJ) high temperature heat (up to 2.5 EJ) feedstock for industry (up to 2 EJ) residential heat (up to 600 PJ) and power generation (up to 900 PJ). In general most of the results justify the development of multinational energy system models in which the spatial coverage lays between national and continental models.
Everything About Hydrogen Podcast: Costs, Cost, Costs!
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are celebrating the show's one year anniversary with Randy MacEwen the CEO of Ballard Power Systems. On the show the team ask Randy to explain the stunning rise of hydrogen over the last 12-24 months how the use cases for hydrogen are evolving and how the growing capitalisation of listed businesses like Ballard is driving a change in the investor base across the hydrogen & fuel cell sector. We also dive into the future for Ballard where the challenges and focuses for the business lie while the team reflect on what has been a very intense year for the show and the hydrogen industry. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Geopolitical Factors in Hydrogen Markets
Mar 2022
Publication
The EAH Team takes a break from standard format on this special episode of Everything About Hydrogen to discuss some of the geopolitical factors and considerations driving the evolution of global hydrogen markets.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen Technology: The Engineer's Perspective
Sep 2020
Publication
The team are joined by Dr. Jenifer Baxter of the Institution for Mechanical Engineers (IMECHE). Dr. Baxter is based in the UK and is the Chief Engineer at IMECHE. We often focus heavily on the business cases and development models at the heart of the hydrogen economy here at EAH. On this episode we bring the technical discussion to the forefront and speak with Dr. Baxter about the technical advantages and the challenges that hydrogen presents as an essential part of the path to decarbonizing the future. The team's conversation is a can't miss exploration of a wide range of potential applications for hydrogen technologies that brings a new and essential perspective to the podcast. Don't miss out on EAH's newest episode where we get the engineer's perspective on the future of hydrogen!
The podcast can be found on their website
The podcast can be found on their website
Is a 100% Renewable European Power System Feasible by 2050?
Nov 2018
Publication
In this study we model seven scenarios for the European power system in 2050 based on 100% renewable energy sources assuming different levels of future demand and technology availability and compare them with a scenario which includes low-carbon non-renewable technologies. We find that a 100% renewable European power system could operate with the same level of system adequacy as today when relying on European resources alone even in the most challenging weather year observed in the period from 1979 to 2015. However based on our scenario results realising such a system by 2050 would require: (i) a 90% increase in generation capacity to at least 1.9 TW (compared with 1 TW installed today) (ii) reliable cross-border transmission capacity at least 140GW higher than current levels (60 GW) (iii) the well-managed integration of heat pumps and electric vehicles into the power system to reduce demand peaks and biogas requirements (iv) the implementation of energy efficiency measures to avoid even larger increases in required biomass demand generation and transmission capacity (v) wind deployment levels of 7.5GWy−1 (currently 10.6GWy−1) to be maintained while solar photovoltaic deployment to increase to at least 15GWy−1 (currently 10.5GWy−1) (vi) large-scale mobilisation of Europe’s biomass resources with power sector biomass consumption reaching at least 8.5 EJ in the most challenging year (compared with 1.9 EJ today) and (vii) increasing solid biomass and biogas capacity deployment to at least 4GWy−1 and 6 GWy−1 respectively. We find that even when wind and solar photovoltaic capacity is installed in optimum locations the total cost of a 100% renewable power system (∼530 €bn y−1) would be approximately 30% higher than a power system which includes other low-carbon technologies such as nuclear or carbon capture and storage (∼410 €bn y−1). Furthermore a 100% renewable system may not deliver the level of emission reductions necessary to achieve Europe’s climate goals by 2050 as negative emissions from biomass with carbon capture and storage may still be required to offset an increase in indirect emissions or to realise more ambitious decarbonisation pathways.
Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen
Nov 2021
Publication
The aim of this paper is to analyze the factors affecting hydrogen and Carbon Capture and Storage Technologies (“CCS”) policies taking into consideration Fossil Fuel Consumption Oil Reserves the Debt/GDP Ratio the Trilemma Index and other variables with respect to OECD countries. STATA 17 was used for the analysis. The results confirm the hypothesis that countries with high fossil fuel consumption and oil reserves are investing in blue hydrogen and CCS towards a “zero-carbon-emission” perspective. Moreover countries with a good Debt/GDP ratio act most favorably to green policies by raising their Public Debt because Foreign Direct Investments are negatively correlated with those kinds of policies. Future research should exploit Green Finance policy decision criteria on green and blue hydrogen.
Shipping Australian Sunshine: Liquid Renewable Green Fuel Export
Dec 2022
Publication
Renewable green fuels (RGF) such as hydrogen are the global energy future. Air pollution is compounded with climate change as the emissions driving both development problems come largely from the same source of fossil fuel burning. As an energy exporter Australian energy export dominates the total energy production and the RGF has become central to the current proposal of Australian government to reach net zero emission. The hydrogen production from solar panels only on 3% of Australia's land area could compensate 10 times of Germany's non-electricity energy consumption. In the unique geographic position Australia's RGF export attracts significant costs for long distance onboard storage and shipping. While the cost reduction of RGF production relies on technological advancement which needs a long time the storage and shipping costs must be minimised for Australia to remain competitive in the global energy market. The present review concentrates on Australian export pathways of lifecycles of liquid renewable green fuels including renewable liquified hydrogen (LH2) liquified methane (LCH4) ammonia (NH3) and methanol (CH3OH) as liquid RGF have the advantages of adopting the existing infrastructure. This review compares the advantages and disadvantages of discussed renewable energy carriers. It is found that the cost of LH2 pathway can be acceptable for shipping distance of up to 7000 km (Asian countries such as Japan) but ammonia (NH3) or methanol (CH3OH) pathways may be more cost effective for shipping distance above 7000 km for European counties such as Germany. These observations suggest the proper fuel forms to fulfill the requirements to different customers and hence will highlight Australia's position as one of major exporters of renewable energy in the future. Detailed techno-economic analysis is worth to be done for supplying more quantitative results.
The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective
Dec 2020
Publication
Hydrogen is currently enjoying a renewed and widespread momentum in many national and international climate strategies. This review paper is focused on analysing the challenges and opportunities that are related to green and blue hydrogen which are at the basis of different perspectives of a potential hydrogen society. While many governments and private companies are putting significant resources on the development of hydrogen technologies there still remains a high number of unsolved issues including technical challenges economic and geopolitical implications. The hydrogen supply chain includes a large number of steps resulting in additional energy losses and while much focus is put on hydrogen generation costs its transport and storage should not be neglected. A low-carbon hydrogen economy offers promising opportunities not only to fight climate change but also to enhance energy security and develop local industries in many countries. However to face the huge challenges of a transition towards a zero-carbon energy system all available technologies should be allowed to contribute based on measurable indicators which require a strong international consensus based on transparent standards and targets.
Everything About Hydrogen Podcast: Show Me the Money!
Jul 2020
Publication
This week on the show the team catch up with Alena Fargere Principal at SWEN Capital Partners and a former special advisor to the World Energy Council on Hydrogen projects. As one of the few current project finance funds in Europe with a green gas mandate and a dedicated allocation for investing in hydrogen project finance SWEN Capital Partners provide an invaluable perspective on the challenges and opportunities for hydrogen project investment in Europe and the synergies that exist from Green Gas funds that support biogas and hydrogen opportunities. On the show our hosts discuss the rationale for this fund the profile of projects SWEN are considering and Alena’s broader perspective on the hydrogen market. All this and many more themes this week so don’t miss this episode!
The podcast can be found on their website
The podcast can be found on their website
Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen
Oct 2021
Publication
In December 2019 the European Commission unveiled an ambitious project the European Green Deal which aims to lead the European Union to climate neutrality by 2050. This is a significant challenge for all EU countries and especially for Poland. The role of hydrogen in the processes of decarbonization of the economy and transport is being discussed in many countries around the world to find rational solutions to this difficult and complex problem. There is an ongoing discussion about the hydrogen economy which covers the production of hydrogen its storage transport and conversion to the desired forms of energy primarily electricity mechanical energy and new fuels. The development of the hydrogen economy can significantly support the achievement of climate neutrality. The belief that hydrogen plays an important role in the transformation of the energy sector is widespread. There are many technical and economic challenges as well as legal and logistical barriers to deal with in the transition process. The development of hydrogen technologies and a global sustainable energy system that uses hydrogen offers a real opportunity to solve the challenges facing the global energy industry: meeting the need for clean fuels increasing the efficiency of fuel and energy production and significantly reducing greenhouse gas emissions. The paper provides an in-depth analysis of the Polish Hydrogen Strategy a document that sets out the directions for the development of hydrogen use (competences and technologies) in the energy transport and industrial sectors. This analysis is presented against the background of the European Commission’s document ‘A Hydrogen Strategy for a Climate-Neutral Europe’. The draft project presented is a good basis for further discussion on the directions of development of the Polish economy. The Polish Hydrogen Strategy although it was created later than the EU document does not fully follow its guidelines. The directions for further work on the hydrogen strategy are indicated so that its final version can become a driving force for the development of the country’s economy.
Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System
Jan 2021
Publication
Pathways leading to a carbon neutral future for the German energy system have to deal with the expected phase-out of coal-fired power generation in addition to the shutdown of nuclear power plants and the rapid ramp-up of photovoltaics and wind power generation. An analysis of the expected impact on electricity market security of supply and system stability must consider the European context because of the strong coupling—both from an economic and a system operation point of view—through the cross-border power exchange of Germany with its neighbors. This analysis complemented by options to improve the existing development plans is the purpose of this paper. We propose a multilevel energy system modeling including electricity market network congestion management and system stability to identify challenges for the years 2023 and 2035. Out of the results we would like to highlight the positive role of innovative combined heat and power (CHP) solutions securing power and heat supply the importance of a network congestion management utilizing flexibility from sector coupling and the essential network extension plans. Network congestion and reduced security margins will become the new normal. We conclude that future energy systems require expanded flexibilities in combination with forward planning of operation.
No more items...