Optimal Hybrid Renewable Energy System: A Comparative Study of Wind/Hydrogen/Fuel-Cell and Wind/Battery Storage
Abstract
This paper performs a technoeconomic comparison of two hybrid renewable energy supplies (HRES) for a specific location in Ghana and suggests the optimal solution in terms of cost, energy generation capacity, and emissions. (e two HRES considered in this paper were wind/hydrogen/fuel-cell and wind/battery storage, respectively. (e necessity of this study was derived from the rise and expansion of hybrid renewable energy supply in a decentralised network. (e readiness to embrace these new technologies is apparently high, but the best combination for a selected location that brings optimum benefits is not obvious and demands serious technical knowledge of their technical and economic models. In the methodology, an analytical model of energy generation by the various RE sources was first established, and data were collected about a rural-urban community in Doderkope, Ghana, to test the models. HOMER software was used to design the two hybrid systems based on the same load profiles, and results were compared. It turns out that the HRES 1 (wind/hydrogen/fuel-cell) had the lowest net present cost (NPC) and levelized cost of electricity (COE) over the project life span of 25 years. (e energy reserve with the HRES 2 (wind/battery storage) was huge compared to that with the HRES 1, about 270% bigger. Furthermore, with respect to the emissions, the HRES 2 was environmentally friendlier than the HRES 1. Even though the battery storage seems to be more cost-effective than the hydrogen fuel cell technology, the latter presents some merits regarding system capacity and emission that deserve greater attention as the world looks into more sustainable energy storage systems.