Applications & Pathways
Hydrogen Production from Wave Power Farms to Refuel Hydrogen-Powered Ships in the Mediterranean Sea
Aug 2024
Publication
The maritime industry is a major source of greenhouse gas (GHG) emissions largely due to ships running on fossil fuels. Transitioning to hydrogen-powered marine transportation in the Mediterranean Sea requires the development of a network of hydrogen refueling stations across the region to ensure a steady supply of green hydrogen. This paper explores the technoeconomic viability of harnessing wave energy from the Mediterranean Sea to produce green hydrogen for hydrogenpowered ships. Four promising island locations—near Sardegna Galite Western Crete and Eastern Crete—were selected based on their favorable wave potential for green hydrogen production. A thorough analysis of the costs associated with wave power facilities and hydrogen production was conducted to accurately model economic viability. The techno-economic results suggest that with anticipated cost reductions in wave energy converters the levelized cost of hydrogen could decrease to as low as 3.6 €/kg 4.3 €/kg 5.5 €/kg and 3.9 €/kg for Sardegna Galite Western Crete and Eastern Crete respectively. Furthermore the study estimates that in order for the hydrogen-fueled ships to compete effectively with their oil-fueled counterparts the levelized cost of hydrogen must drop below 3.5 €/kg. Thus despite the competitive costs further measures are necessary to make hydrogen-fueled ships a viable alternative to conventional diesel-fueled ships.
Design of a Hydrogen Refueling Station with Hydrogen Production by Electrolysis, Storage and Dispensing for a Bus Fleet in the City of Valencia
Jul 2024
Publication
Hydrogen technologies are evolving to decarbonise the transport sector. The present work focuses on the technical design of a Hydrogen Refueling Station to supply hydrogen to five buses in the city of Valencia Spain. The study deals with the technical selection of the components from production to consumption setting an efficient standardisation method. Different calculation are used to size the storage systems for 70.8 kg of hydrogen produced by the elecrolyser daily. For the high-pressure storage system massive and cascade methods are proposed being the last one more efficient (1577.53 Nm3 non usable volume compared to 9948.95 Nm3 of the massive method).
Energy Consumption and Saved Emissions of a Hydrogen Power System for Ultralight Aviation: A Case Study
Jul 2024
Publication
The growing concern about climate change and the contemporary increase in mobility requirements call for faster cheaper safer and cleaner means of transportation. The retrofitting of fossil-fueled piston engine ultralight aerial vehicles to hydrogen power systems is an option recently proposed in this direction. The goal of this investigation is a comparative analysis of the environmental impact of conventional and hydrogen-based propulsive systems. As a case study a hybrid electric configuration consisting of a fuel cell with a nominal power of about 30 kW a 6 kWh LFP battery and a pressurized hydrogen vessel is proposed to replace a piston prop configuration for an ultralight aerial vehicle. Both power systems are modeled with a backward approach that allows the efficiency of the main components to be evaluated based on the load and altitude at every moment of the flight with a time step of 1 s. A typical 90 min flight mission is considered for the comparative analysis which is performed in terms of direct and indirect emissions of carbon dioxide water and pollutant substances. For the hydrogen-based configuration two possible strategies are adopted for the use of the battery: charge sustaining and charge depleting. Moreover the effect of the altitude on the parasitic power of the fuel cell compressor and consequently on the net efficiency of the fuel cell system is taken into account. The results showed that even if the use of hydrogen confines the direct environmental impact to the emission of water (in a similar quantity to the fossil fuel case) the indirect emissions associated with the production transportation and delivery of hydrogen and electricity compromise the desired achievement of pollutant-free propulsion in terms of equivalent emissions of CO2 and VOCs if hydrogen is obtained from natural gas reforming. However in the case of green hydrogen from electrolysis with wind energy the total (direct and indirect) emissions of CO2 can be reduced up to 1/5 of the fossil fuel case. The proposed configuration has the additional advantage of eliminating the problem of lead which is used as an additive in the AVGAS 100LL.
Mitigating Risks in Hydrogen-powered Transportation: A Comprehensive Risk Assessment for Hydrogen Refuelling Stations, Vehicles, and Garages
Oct 2024
Publication
Hydrogen is increasingly seen as a viable alternative to fossil fuels in transportation crucial to achieving net-zero energy goals. However the rapid expansion of hydrogen-powered transportation is outpacing safety standards posing significant risks due to limited operational experience involvement of new actors and lack of targeted guidelines. This study addresses the urgent need for a tailored comprehensive risk assessment framework. Using Structured What-If (SWIFT) and bowtie barrier analysis the research evaluates a hypothetical pilot project focusing on hydrogen refuelling stations vehicles and garages. The study identifies critical hazards and assesses the adequacy of current risk mitigation measures. Key findings reveal gaps in safety practices leading to 41 actionable steps and 5 key activities to help new actors manage hydrogen risks effectively. By introducing novel safety guidelines this research contributes to the development of safe hydrogen use and advances the understanding of hydrogen risks ensuring its sustainable integration into transportation systems.
Lifetime Design, Operation, and Cost Analysis for the Energy System of a Retrofitted Cargo Vessel with Fuel Cells and Batteries
Oct 2024
Publication
Fuel cell-battery electric drivetrains are attractive alternatives to reduce the shipping emissions. This research focuses on emission-free cargo vessels and provides insight on the design lifetime operation and costs of hydrogen-hybrid systems which require further research for increased utilization. A representative round trip is created by analysing one-year operational data based on load ramps and power frequency. A low-pass filter controller is employed for power distribution. For the lifetime cost analysis 14 scenarios with varying capital and operational expenses were considered. The Net Present Value of the retrofitted fuel cell-battery propulsion system can be up to $ 2.2 million lower or up to $ 18.8 million higher than the original diesel mechanical configuration highly dependent on the costs of green hydrogen and carbon taxes. The main propulsion system weights and volumes of the two versions are comparable but the hydrogen tank (68 tons 193 m3 ) poses significant design and safety challenges.
Assessment of a Coupled Electricity and Hydrogen Sector in the Texas Energy System in 2050
Oct 2024
Publication
Due to its ability to reduce emissions in the hard-to-abate sectors hydrogen is expected to play a significant role in future energy systems. This study modifies a sector-coupled dynamic modeling framework for electricity and hydrogen by including policy constraints carbon prices and possible hydrogen pathways and applies it to Texas in 2050. The impact of financial policies including the US clean hydrogen production tax credit on required infrastructure and costs are explored. Due to low natural gas prices financial levers are necessary to promote low-carbon hydrogen production as the optimized solution. The Levelized Costs of Hydrogen are found to be $1.50/kg in the base case (primarily via steam methane reformation production) and lie between $2.10 - 3.10/kg when production is via renewable electrolysis. The supporting infrastructure required to supply those volumes of renewable hydrogen is immense. The hydrogen tax credit was found to be enough to drive production via electrolysis.
A Perspective on Broad Deployment of Hydrogen-fueled Vehicles for Ground Freight Transportation with a Comparison to Electric Vehicles
Oct 2024
Publication
The pressing global challenge of climate change necessitates a concerted effort to limit greenhouse gas emissions particularly carbon dioxide. A critical pathway is to replace fossil fuel sources by electrification including transportation. While electrification of light-duty vehicles is rapidly expanding the heavy-duty vehicle sector is subject to challenges notably the logistical drawbacks of the size and weight of high-capacity batteries required for range as well as the time for battery charging. This Perspective highlights the potential of hydrogen fuel-cell vehicles as a viable alternative for heavy-duty road transportation. We evaluate the implications of hydrogen integration into the freight economy energy dynamics and CO2 mitigation and envision a roadmap for a holistic energy transition. Our critical opinion presented in this Perspective is that federal incentives to produce hydrogen could foster growth in the nascent hydrogen economy. The pathway that we propose is that initial focus on operators of large fleets that could control their own fueling infrastructure. This opinion was formed from private discussions with numerous stakeholders during the formation of one of the awarded hydrogen hubs if they focus on early adopters that could leverage the hydrogen supply chain.
Optimizing Green Hydrogen Production from Wind and Solar for Hard-to-abate Industrial Sectors Across Multiple Sites in Europe
Jul 2024
Publication
This article analyzes a power-to-hydrogen system designed to provide high-temperature heat to hard-to-abate industries. We leverage on a geospatial analysis for wind and solar availability and different industrial demand profiles with the aim to identify the ideal sizing of plant components and the resulting Levelized Cost of Hydrogen (LCOH). We assess the carbon intensity of the produced hydrogen especially when grid electricity is utilized. A methodology is developed to size and optimize the PV and wind energy capacity the electrolyzer unit and hybrid storage by combining compressed hydrogen storage with lithium-ion batteries. The hydrogen demand profile is generated synthetically thus allowing different industrial consumption profiles to be investigated. The LCOH in a baseline scenario ranges from 3.5 to 8.9 €/kg with the lowest values in wind-rich climates. Solar PV only plays a role in locations with high PV full-load hours. It was found that optimal hydrogen storage can cover the users’ demand for 2–3 days. Most of the considered scenarios comply with the emission intensity thresholds set by the EU. A sensitivity analysis reveals that a lower variability of the demand profile is associated with cost savings. An ideally constant demand profile results in a cost reduction of approximately 11 %.
Path Analysis of Using Hydrogen Energy to Reduce Greenhouse Gas Emissions in Global Aviation
Jul 2024
Publication
The rapid growth of global aviation emissions has significantly impacted the environment leading to an urgent need to use carbon reduction methods. This paper analyzes global aviation’s carbon dioxide (CO2) N2O and CH4 emission changes under different hydrogen energy application paths. The global warming potential over a 100-year period (GWP100) method is used to convert the emissions of N2O and CH4 into CO2-equivalent. Here we report the results: if the global aviation industry begins using hydrogen turbine engines by 2040 it could reduce cumulative CO2-equivalent emissions by 2.217E+10 tons by 2080 which is 2.12% higher than starting hydrogen fuel cell engines in 2045. However adopting hydrogen fuel cell engines 10 years earlier shows greater reduction capabilities than hydrogen turbine engines achieving an accumulated reduction of 3.006E+10 tons of CO2-equivalent emissions. Therefore the timing of adoption notably affects hydrogen fuel cell engines more than hydrogen turbine engines. Delaying adoption makes hydrogen fuel cell engines’ performance lag hydrogen turbine engines.
Hydrogen-fuelled Internal Combustion Engines: Direct Injection Versus Port-fuel Injection
Jul 2024
Publication
The road-transport is one of the major contributors to greenhouse global gas (GHG) emissions where hydrogen (H2) combustion engines can play a crucial role in the path towards the sector’s decarbonization goal. This study focuses on comparing the performance and emissions of port-fuel injection (PFI) and direct injection (DI) in a spark ignited combustion engine when is fuelled by hydrogen and other noteworthy fuels like methane and coke oven gas (COG). Computational fluid dynamic simulations are performed at optimal spark advance and air-fuel ratio (λ) for engine speeds between 2000 and 5000 rpm. Analysis reveals that brake power increases by 40% for DI attributed to 30.6% enhanced volumetric efficiency while the sNOx are reduced by 36% compared to PFI at optimal λ = 1.5 for hydrogen. Additionally H2 results in 71.8% and 67.2% reduction in fuel consumption compared to methane and COG respectively since the H2 lower heating value per unit of mass is higher.
A Multi-objective Planning Tool for the Optimal Supply of Green Hydrogen for an Inustrial Port Area Decarbonisation
Jul 2024
Publication
This study addresses the challenge of decarbonizing highly energy-intensive Industrial Port Areas (IPA) focusing on emissions from various sources like ship traffic warehouses buildings cargo handling equipment and hardto-abate industry typically hosted in port areas. The analysis and proposal of technological solutions and their optimal integration in the context of IPA is a topic of growing scientific interest with considerable social and economic implications. Representing the main novelties of the work this study introduces (i) the development of a novel IPA energy and green hydrogen hub located in a tropical region (Singapore); (ii) a multi-objective optimization approach to analyse synthesize and optimize the design and operation of the hydrogen and energy hub with the aim of supporting decision-making for decarbonization investments. A sensitivity analysis identifies key parameters affecting optimization results indicating that for large hydrogen demands imported ammonia economically outperforms other green hydrogen carriers. Conversely local hydrogen production via electrolysis becomes economically viable when the capital cost of alkaline electrolyser drops by at least 30 %. Carbon tax influences the choice of green hydrogen but its price variation mainly impacts system operation rather than design. Fuel cells and batteries are not considered economically feasible solutions in any scenario.
Predictive Maintenance and Reinspection Strategies for Hydrogen Refueling Station Pressure Vessels: A Case Study in South Korea
Jul 2024
Publication
Hydrogen refueling stations rely on pressure vessels capable of withstanding pressures up to 90 MPa while mitigating concerns related to hydrogen embrittlement. However a gap exists in understanding the long-term fatigue behavior of these vessels under real operational conditions. This study focuses on evaluating the safety of SA372 pressure vessels using operational data from a hydrogen refueling station in Pyeongtaek South Korea. A predictive reinspection methodology is proposed based on this evaluation. Parameters including hydrogen-induced stress intensity factor (KIH) initial crack size (a0 c0) and pressure vessel specifications are considered to assess critical crack depth (ac) critical usage cycles (Nc) and allowable usage cycles (Nallowed). Leveraging operational data collected between August and November 2023 fatigue analysis and Rainflow counting inform reinspection schedules. Results indicate a need for mid-bank vessel reinspection within the second year high-bank vessel reinspection every 20 years and low-bank vessel reinspection every 143 years in accordance with safety regulations. Additionally a revised refueling logic is proposed to optimize vehicle charging methods and pressure ranges enhancing operational safety. This study serves as a preliminary investigation highlighting the need for broader data collection and analysis to generalize findings across multiple stations.
Assessment of Energy Footprint of Pure Hydrogen-Supplied Vehicles in Real Conditions of Long-Term Operation
Jul 2024
Publication
The desire to maintain CO2 concentrations in the global atmosphere implies the need to introduce ’new’ energy carriers for transport applications. Therefore the operational consumption of each such potential medium in the ’natural’ exploitation of vehicles must be assessed. A useful assessment method may be the vehicle’s energy footprint resulting from the theory of cumulative fuel consumption presented in the article. Using a (very modest) database of long-term use of hydrogen-powered cars the usefulness of this method was demonstrated. Knowing the energy footprint of vehicles of a given brand and type and the statistical characteristics of the footprint elements it is also possible to assess vehicle fleets in terms of energy demand. The database on the use of energy carriers such as hydrogen in the long-term operation of passenger vehicles is still relatively modest; however as it has been shown valuable data can be obtained to assess the energy demand of vehicles of a given brand and type. Access to a larger operational database will allow for wider use of the presented method.
Component and System Levels Limitations in Power-Hydrogen Systems: Analytical Review
Jun 2024
Publication
This study identifies limitations and research and development (R&D) gaps at both the component and system levels for hydrogen energy systems (HESs) and specifies how these limitations impact HES adoption within the electric power system (EPS) decarbonization roadmap. To trace these limitations and potential solutions an analytical review is conducted in electrification and integration of HESs renewable energy sources (RESs) and multi-carrier energy systems (MCESs) in sequence. The study also innovatively categorizes HES integration challenges into component and system levels. At the component level technological aspects of hydrogen generation storage transportation and refueling are explored. At the system level HES coordination hydrogen market frameworks and adoption challenges are evaluated. Findings highlight R&D gaps including misalignment between HES operational targets and techno-economic development integration insufficiency model deficiencies and challenges in operational complexity. This study provides insights for sustainable energy integration by supporting the transition to a decarbonized energy system.
Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System
Jun 2024
Publication
Accelerating the transition to a cleaner global energy system is essential for tackling the climate crisis and green hydrogen energy systems hold significant promise for integrating renewable energy sources. This paper offers a thorough evaluation of green hydrogen’s potential as a groundbreaking alternative to achieve near-zero greenhouse gas (GHG) emissions within a renewable energy framework. The paper explores current technological options and assesses the industry’s present status alongside future challenges. It also includes an economic analysis to gauge the feasibility of integrating green hydrogen providing a critical review of the current and future expectations for the levelized cost of hydrogen (LCOH). Depending on the geographic location and the technology employed the LCOH for green hydrogen can range from as low as EUR 1.12/kg to as high as EUR 16.06/kg. Nonetheless the findings suggest that green hydrogen could play a crucial role in reducing GHG emissions particularly in hard-to-decarbonize sectors. A target LCOH of approximately EUR 1/kg by 2050 seems attainable in some geographies. However there are still significant hurdles to overcome before green hydrogen can become a cost-competitive alternative. Key challenges include the need for further technological advancements and the establishment of hydrogen policies to achieve cost reductions in electrolyzers which are vital for green hydrogen production.
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
Cost Modelling-based Route Applicablity Analysis of United Kingdom Pasenger Railway Decarbonization Options
Jun 2024
Publication
The UK government plans to phase out pure diesel trains by 2040 and fully decarbonize railways by 2050. Hydrogen fuel cell (HFC) trains electrified trains using pantographs (Electrified Trains) and battery electric multiple unit (BEMU) trains are considered the main solutions for decarbonizing railways. However the range of these decarbonization options’ line upgrade cost advantages is unclear. This paper analyzes the upgrade costs of three types of trains on different lines by constructing a cost model and using particle swarm optimization (PSO) including operating costs and fixed investment costs. For the case of decarbonization of the London St. Pancras to Leicester line the electrified train option is more cost-effective than the other two options under the condition that the service period is 30 years. Then the traffic density range in which three new energy trains have cost advantages on different line lengths is calculated. For route distances under 100 km and with a traffic density of less than 52 trips/day BEMU trains have the lowest average cost while electrified trains are the most costeffective in other ranges. For route distances over 100 km the average cost of HFC trains is lower than that of electrified trains at traffic densities below about 45 trips/day. In addition if hydrogen prices fall by 26 % the cost advantage range of HFC trains will increase to 70 trips per day. For route distances under 100 km BEMU trains still maintain their advantages in terms of lower traffic density.
Comparative Analysis of Solar Cells and Hydrogen Fuels: A Mini Review
Jul 2024
Publication
The aim of this mini-review is to compare the effectiveness and potential of solar cells and hydrogen fuel technologies in clean energy generation. Key aspects such as efficiency scalability environmental footprint and technological maturity are examined. Solar cells are analyzed for their ability to convert sunlight into electricity efficiently and their potential for widespread deployment with minimal environmental impact. Hydrogen fuel technologies are assessed based on their efficiency in hydrogen production scalability and overall environmental footprint from production to end use. The review identifies significant challenges including high costs infrastructure needs and policy requirements as well as opportunities for innovation and market growth. The findings provide insights to guide decision-making towards a sustainable energy future.
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
No more items...