Applications & Pathways
Renewables Readiness Assessment: The Hashemite Kingdom of Jordan
Feb 2021
Publication
Jordan's energy diversification strategy is centred around renewables which are expected will provide the low-cost reliable secure and environmentally sustainable energy required to power its new engines of economic growth – manufacturing transport construction and agriculture.
The National Energy Strategy 2020–2030 presents the evolution of the energy sector under its vision for stimulating demand achieving efficiency and improving electricity system flexibility.
This Renewables Readiness Assessment (RRA) highlights key actions for the short and medium-term that could create more conductive conditions for renewable energy development. It aims to help unlock Jordan's renewable energy potential and provide the means to meet the energy diversification goals of its national strategy.
The study was undertaken by the Ministry of Energy and Mineral Resources (MEMR) in collaboration with the International Renewable Energy Agency (IRENA).
Key recommendations:
The National Energy Strategy 2020–2030 presents the evolution of the energy sector under its vision for stimulating demand achieving efficiency and improving electricity system flexibility.
This Renewables Readiness Assessment (RRA) highlights key actions for the short and medium-term that could create more conductive conditions for renewable energy development. It aims to help unlock Jordan's renewable energy potential and provide the means to meet the energy diversification goals of its national strategy.
The study was undertaken by the Ministry of Energy and Mineral Resources (MEMR) in collaboration with the International Renewable Energy Agency (IRENA).
Key recommendations:
- Provide the necessary conditions for renewables growth in the power sector.
- Foster continued growth of renewable power generation.
- Plan the integration of higher shares of renewable power.
- Incentivise the use of renewables for heating and cooling.
- Support renewable transport and mobility options.
- Catalyse renewable energy investment. Strengthen local industries and create jobs in renewables.
Electrocatalysts Based on Metal@carbon Core@shell Nanocomposites: An Overview
Aug 2018
Publication
Developing low-cost high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions such as hydrogen evolution reaction oxygen evolution reaction oxygen reduction reaction and CO2 reduction reaction that are important in water splitting fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates and varies with the structures and morphologies of the metal core (elemental composition core size etc.) and carbon shell (doping layer thickness etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results and technical challenges for future research.
Optimal Development of Alternative Fuel Station Networks Considering Node Capacity Restrictions
Jan 2020
Publication
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is the use of alternative fuel vehicles (AFV). As global GHG emission standards have been in place for passenger cars for several years infrastructure modelling for new AFV is an established topic. However as the regulatory focus shifts towards heavy-duty vehicles (HDV) the market diffusion of AFV-HDV will increase as will planning the relevant AFV infrastructure for HDV. Existing modelling approaches need to be adapted because the energy demand per individual refill increases significantly for HDV and there are regulatory as well as technical limitations for alternative fuel station (AFS) capacities at the same time. While the current research takes capacity restrictions for single stations into account capacity limits for locations (i.e. nodes) – the places where refuelling stations are built such as highway entries exits or intersections – are not yet considered. We extend existing models in this respect and introduce an optimal development for AFS considering (station) location capacity restrictions. The proposed method is applied to a case study of a potential fuel cell heavy-duty vehicle AFS network. We find that the location capacity limit has a major impact on the number of stations required station utilization and station portfolio variety.
Innovation Insights Brief 2019: New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
Hydrogen and fuel cell technologies have experienced cycles of high expectations followed by impractical realities. This time around however falling renewable energy and fuel cell prices stringent climate change requirements and the discrete involvement of China are step changes. The combination of these factors is leading to realistic potential for hydrogen’s role in the Grand Transition.<br/>Having conducted exploratory interviews with leaders from all around the globe the World Energy Council is featuring eight use cases which illustrate hydrogen’s potential. These range from decarbonising hard-to-abate sectors such as heat industry and transport to supporting the integration of renewables and providing an energy storage solution.<br/>Dr Angela Wilkinson Secretary General and former Senior Director Scenarios and Business Insights: “Green and blue hydrogen can refresh those parts of the energy system transition that electrification cannot reach.”<br/>This Innovation Insights Brief is part of a series of publications by the World Energy Council focused on Innovation. In a fast-paced era of disruptive changes this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the other energy stakeholders and policy shapers.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
Inhibition of Hydrogen-yielding Dark Fermentation by Ascomycetous Yeasts
May 2018
Publication
Hydrogen-yielding fermentation conducted in bioreactors is an alternative method of hydrogen production. However unfavourable processes can seriously inhibit bio-hydrogen generation during the acidogenic step of anaerobic digestion. Here ascomycetous yeasts were identified as a major factor inhibiting the production of bio-hydrogen by fermentation. Changes in the performance of hydrogen-producing bioreactors including metabolic shift quantitative changes in the fermentation products decreased pH instability of the microbial community and consequently a dramatic drop in bio-hydrogen yield were observed following yeast infection. Ascomycetous yeasts from the genera Candida Kazachstania and Geotrichum were isolated from hydrogen-producing bioreactors. Yeast metabolites secreted into the growth medium showed antibacterial activity. Our studies indicate that yeast infection of hydrogen-producing microbial communities is one of the serious obstacles to use dark fermentation as an alternative method of bio-hydrogen production. It also explains why studies on hydrogen fermentation are still limited to the laboratory or pilot-scale systems.
An Energy Autonomous House Equipped with a Solar PV Hydrogen Conversion System
Dec 2015
Publication
The use of RES in buildings is difficult for their random nature; therefore the plants using photovoltaic solar collectors must be connected to a power supply or interconnected with Energy accumulators if the building is isolated. The conversion of electricity into hydrogen technology is best suited to solve the problem and allows you to transfer the solar energy captured from day to night from summer to winter. This paper presents the feasibility study for a house powered by PV cogeneration solar collectors that reverse the electricity on the control unit that you command by a PC to power the household using a heat pump an electrolytic cell for the production of hydrogen to accumulate; control units sorting to the utilities the electricity produced by the fuel cell. The following are presented: The Energy analysis of the building the plant design economic analysis.
Improvement of Low Temperature Activity and Stability of Ni Catalysts with Addition of Pt for Hydrogen Production Via Steam Reforming of Ethylene Glycol
Nov 2018
Publication
Hydrogen production by steam reforming of ethylene glycol (EG) at 300 °C was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C—C bond rupture and water gas shift reactions; and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.
A Personal Retrospect on Three Decades of High Temperature Fuel Cell Research; Ideas and Lessons Learned
Feb 2021
Publication
In 1986 the Dutch national fuel cell program started. Fuel cells were developed under the paradigm of replacing conventional technology. Coal-fired power plants were to be replaced by large-scale MCFC power plants fuelled by hydrogen in a full-scale future hydrogen economy. With today's knowledge we will reflect on these and other ideas with respect to high temperature fuel cell development including the choice for the type of high temperature fuel cell. It is explained that based on thermodynamics proton conducting fuel cells would have been a better choice and the direct carbon fuel cell even more so with electrochemical gasification of carbon as the ultimate step. The specific characteristics of fuel cells and multisource multiproduct systems were not considered whereas we understand now that these can provide huge driving forces for the implementation of fuel cells compared to just replacing conventional combined heat and power production technology.
Urban Buses: Alternative Powertrains for Europe: A Fact-based Analysis of the Role of Diesel Hybrid, Hydrogen Fuel Cell, Trolley and Battery Electric Powertrains
Dec 2012
Publication
A coalition of 40 industrial companies and government organizations financially supported by the FCH JU elaborated a technology neutral and fact-based comparative study on eight different powertrain technologies for urban buses in Europe from 2012 to 2030.<br/>According to the results of the study only fully electric powertrain buses (based on hydrogen batteries or trolley system) have the potential to achieve zero local emissions by drastically reducing well-to-wheel emissions.<br/>Following the positive comparative result for fuel cell hydrogen urban buses the FCH JU will launch a follow-up study that more specifically defines real uptake scenarios for market entry scheduled to starting before summer 2013.
Hydrogen-diesel Fuel Co-combustion Strategies in Light Duty and Heavy Duty CI Engines
Apr 2018
Publication
The co-combustion of diesel fuel with H2 presents a promising route to reduce the adverse effects of diesel engine exhaust pollutants on the environment and human health. This paper presents the results of H2-diesel co-combustion experiments carried out on two different research facilities a light duty and a heavy duty diesel engine. For both engines H2 was supplied to the engine intake manifold and aspirated with the intake air. H2 concentrations of up to 20% vol/vol and 8% vol/vol were tested in the light duty and heavy duty engines respectively. Exhaust gas circulation (EGR) was also utilised for some of the tests to control exhaust NOx emissions.<br/>The results showed NOx emissions increase with increasing H2 in the case of the light duty engine however in contrast for the heavy duty engine NOx emissions were stable/reduced slightly with H2 attributable to lower in-cylinder gas temperatures during diffusion-controlled combustion. CO and particulate emissions were observed to reduce as the intake H2 was increased. For the light duty H2 was observed to auto-ignite intermittently before diesel fuel injection had started when the intake H2 concentration was 20% vol/vol. A similar effect was observed in the heavy duty engine at just over 8% H2 concentration.
Strategic Research and Innovation Agenda
Jul 2020
Publication
The FCH1JU and FCH2JU have proven effective in developing hydrogen technologies to a high Technology Readiness Level (TRL) allowing for large-scale deployment. Yet there is still an important work to be performed in terms of Research and Innovation in order to develop the next generation of products as well as technologies that did not reach a sufficiently high TRL to envisage a large-scale deployment.<br/><br/>Within the framework of the preparation of the foreseen Clean Hydrogen for Europe (the third public-private partnership continuation of the FCH2JU) Hydrogen Europe and Hydrogen Europe Research have prepared their Strategic Research and Innovation Agenda (SRIA) which is made of a set of approximately 20 roadmaps. This SRIA represents the view of the private partner and will be used as a basis to develop the Multi Annual Work Plan (MAWP) of the Clean Hydrogen for Europe partnership. The current version (July 2020) is the final draft that has been submitted to the European Commission.
Soft-linking of a Behavioral Model for Transport with Energy System Cost optimization Applied to Hydrogen in EU
Sep 2019
Publication
Fuel cell electric vehicles (FCEV) currently have the challenge of high CAPEX mainly associated to the fuel cell. This study investigates strategies to promote FCEV deployment and overcome this initial high cost by combining a detailed simulation model of the passenger transport sector with an energy system model. The focus is on an energy system with 95% CO2 reduction by 2050. Soft-linking by taking the powertrain shares by country from the simulation model is preferred because it considers aspects such as car performance reliability and safety while keeping the cost optimization to evaluate the impact on the rest of the system. This caused a 14% increase in total cost of car ownership compared to the cost before soft-linking. Gas reforming combined with CO2 storage can provide a low-cost hydrogen source for FCEV in the first years of deployment. Once a lower CAPEX for FCEV is achieved a higher hydrogen cost from electrolysis can be afforded. The policy with the largest impact on FCEV was a purchase subsidy of 5 k€ per vehicle in the 2030–2034 period resulting in 24.3 million FCEV (on top of 67 million without policy) sold up to 2050 with total subsidies of 84 bln€. 5 bln€ of R&D incentives in the 2020–2024 period increased the cumulative sales up to 2050 by 10.5 million FCEV. Combining these two policies with infrastructure and fuel subsidies for 2030–2034 can result in 76 million FCEV on the road by 2050 representing more than 25% of the total car stock. Country specific incentives split of demand by distance or shift across modes of transport were not included in this study.
Experimental Research on Low Calorific Value Gas Blended with Hydrogen Engine
Mar 2019
Publication
Experimental research on performance and emissions of engine fuelled with low calorific value gas blended with hydrogen was carried out and indicated thermal efficiency engine torque indicator diagram pressure rise rate and emissions with different hydrogen ratios were also analyzed. Experimental results show that with the increase of hydrogen fraction and CNG fraction in mixtures the indicated thermal efficiency increased. The engine power output is influenced by both low calorific value and hydrogen fractions. With the increase of hydrogen fraction in mixtures HC emissions decrease CO and NOx emissions increase. An engine operating on lean-burn low calorific value gas blended with hydrogen is favourable for getting lower emissions.
Hydrogen-related Challenges for the Steelmaker: The Search for Proper Testing
Jun 2017
Publication
The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector including the automotive sector to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970) but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
Is Hydrogen the Fuel of the Future?
Jul 2019
Publication
Global warming and melting of the ice on both poles of the Earth is caused by the greenhouse effect which is the result of CO2 production. This gas is considered as the main gas causing the greenhouse effect although not the only one. To reduce the total amount of CO2 emitted to the atmosphere mankind looks for an alternative fuel with no carbon present in its molekules. Hydrogen is such a fuel although emissions are produced also during the fuel production process. To compare hydrogen fuel with fossil fuels more aspects have to be considered.
Optimized EMS and a Comparative Study of Hybrid Hydrogen Fuel Cell/Battery Vehicles
Jan 2022
Publication
This paper presents a new Fuel Cell Fuel Consumption Minimization Strategy (FCFCMS) for Hybrid Electric Vehicles (HEVs) powered by a fuel cell and an energy storage system in order to minimize as much as possible the consumption of hydrogen while maintaining the State Of Charge (SOC) of the battery. Compared to existing Energy Management Strategies (EMSs) (such as the well-known State Machine Strategy (SMC) Fuzzy Logic Control (FLC) Frequency Decoupling and FLC (FDFLC) and the Equivalent Consumption Minimization Strategy (ECMS)) the proposed strategy increases the overall vehicle energy efficiency and therefore minimizes the total hydrogen consumption while respecting the constraints of each energy and power element. A model of a hybrid vehicle has been built using the TruckMaker/MATLAB software. Using the Urban Dynamometer Driving Schedule (UDDS) which includes several stops and accelerations the performance of the proposed strategy has been compared with these different approaches (SMC FLC FDFLC and ECMS) through several simulations.
The Influence of the Hydrogen Supply Modes on a Hydrogen Refueling Station
Apr 2020
Publication
Setting up and operating a hydrogen refueling station is a critical part of current drive for fuel cell vehicles. In setting up a hydrogen refueling station (HRS) the investor concerns of the capacity of HRS the quality of hydrogen the capital requirement of the station and the modes of hydrogen supply; interestingly the supply modes of hydrogen further influences the safety of the station the cost of hydrogen the energy consumption of supply and the area of hydrogen supply section in a station. Hydrogen can be supplied to a HRS by the procurement of the merchant hydrogen from a central source with the central hydrogen supply mode (CHSM) or by an onsite production of hydrogen in the distributed hydrogen supply mode (DHSM). In this presentation the above factors are evaluated with respect to these two supply modes of hydrogen. It is concluded that the lower hydrogen cost and the smaller site area as well as the safer aspect of the public concern of safety can be realized with the choice of the distributed hydrogen supply mode by an onsite hydrogen production from methanol.
Mechanisms of Hydrogen Embrittlement in Steels: Discussion
Jun 2017
Publication
This discussion session interrogated the current understanding of hydrogen embrittlement mechanisms in steels. This article is a transcription of the recorded discussion of ‘Hydrogen in steels’ at the Royal Society Scientific Discussion Meeting ‘The challenges of hydrogen and metals’ 16–18 January 2017.
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen
Feb 2020
Publication
Production of iron and steel releases seven percent of the global greenhouse gas (GHG) emissions. Incremental changes in present primary steel production technologies would not be sufficient to meet the emission reduction targets. Replacing coke used in the blast furnaces as a reducing agent with hydrogen produced from water electrolysis has the potential to reduce emissions from iron and steel production substantially. Mass and energy flow model based on an open-source software (Python) has been developed in this work to explore the feasibility of using hydrogen direct reduction of iron ore (HDRI) coupled with electric arc furnace (EAF) for carbon-free steel production. Modeling results show that HDRI-EAF technology could reduce specific emissions from steel production in the EU by more than 35% at present grid emission levels (295 kgCO2/MWh). The energy consumption for 1 ton of liquid steel (tls) production through the HDRI-EAF route was found to be 3.72 MWh which is slightly more than the 3.48 MWh required for steel production through the blast furnace (BF) basic oxygen furnace route (BOF). Pellet making and steel finishing processes have not been considered. Sensitivity analysis revealed that electrolyzer efficiency is the most important factor affecting the system energy consumption while the grid emission factor is strongly correlated with the overall system emissions.
No more items...