Applications & Pathways
Transport Energy Air Pollution Model
May 2019
Publication
The transport sector remains at the centre of any debates around energy conservation exaggerated by the stubborn and overwhelming reliance on fossil fuels by its motorised forms whether passenger and freight road rail sea and air.<br/>The very slow transition to alternative fuel sources to date has resulted in this sector being increasingly and convincingly held responsible for the likely failure of individual countries including the UK to meet their obligations under consecutive international climate change agreements.<br/>Electrification of transport is largely expected to take us down the path to a ‘zero carbon future’ (CCC 2019; DfT 2018). But there are serious concerns about future technology performance availability costs and uptake by consumers and businesses. There are also concerns about the increasing gap between lab and ‘real world’ performance of energy use carbon and air pollution emissions. Recently the role of consumer ‘lifestyles’ has increased in prominence (e.g. IPCC 2018) but as yet has not been taken seriously by the DfT BEIS or even the CCC (2019).
Exploring Possible Transition Pathways for Hydrogen Energy: A Hybrid Approach Using Socio-technical Scenarios and Energy System Modelling
Jul 2014
Publication
Hydrogen remains an important option for long-term decarbonisation of energy and transport systems. However studying the possible transition paths and development prospects for a hydrogen energy system is challenging. The long-term nature of technological transitions inevitably means profound uncertainties diverging perspectives and contested priorities. Both modelling approaches and narrative storyline scenarios are widely used to explore the possible future of hydrogen energy but each approach has shortcomings.<br/>This paper presents a hybrid approach to assessing hydrogen transitions in the UK by confronting qualitative socio-technical scenarios with quantitative energy systems modelling through a process of ‘dialogue’ between scenario and model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points. Conclusions are drawn for both the future of hydrogen and on the value of an approach that brings quantitative formal models and narrative scenario techniques into dialogue.
City Blood: A Visionary Infrastructure Solution for Household Energy Provision through Water Distribution Networks
May 2013
Publication
This paper aims to expand current thinking about the future of energy and water utility provision by presenting a radical idea: it proposes a combined delivery system for household energy and water utilities which is inspired by an analogy with the human body. It envisions a multi-functional infrastructure for cities of the future modelled on the human circulatory system. Red blood cells play a crucial role as energy carriers in biological energy distribution; they are suspended in the blood and distributed around the body to fuel the living cells. So why not use an analogous system e an urban circulatory system or “city blood” e to deliver energy and water simultaneously via one dedicated pipeline system? This paper focuses on analysing the scientific technological and economic feasibilities and hurdles which would need to be overcome in order to achieve this idea.<br/>We present a rationale for the requirement of an improved household utility delivery infrastructure and discuss the inspirational analogy; the technological components required to realise the vignette are also discussed. We identify the most significant advance requirement for the proposal to succeed: the utilisation of solid or liquid substrate materials delivered through water pipelines; their benefits and risks are discussed.
Design and Dynamics Simulations of Small Scale Solid Oxide Fuel Cell Trigeneration System
Dec 2018
Publication
This paper presents the design of a solid oxide fuel cell (SOFC) tri-generation system that consists of an SOFC-combined heat and power subsystem an adsorption refrigeration subsystem and coupling devices between the two subsystems. Whereas typical extant designs use absorption techniques the proposed design employs adsorption refrigeration. In this paper the dynamics of adsorption refrigeration are reported in detail to evaluate the feasibility of the tri-generation system design. The design of the coupling devices and instrumentation strategies of the overall system are discussed in detail. Simulation results indicate that the proposed SOFC trigeneration system can output 4.35 kW of electrical power 2.448 kW of exhaust heat power and 1.348 kW of cooling power. The energy efficiency is 64.9% and the coefficient of performance of the refrigeration is 0.32. Varying the electrical output power results in the variation of exhaust heat power but not the cooling power; varying the cooling power affects the exhaust heat power but not the electrical power. These favorable features can be attributed to the proposed heat exchange sequence and active temperature controls of the system.
Anionic Structural Effect in Liquid–liquid Separation of Phenol from Model Oil by Choline Carboxylate Ionic Liquid
Feb 2019
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favorable bubble detachment behavior. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
Continuous Synthesis of Few-layer MoS2 with Highly Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
As one of the most promising alternative fuels hydrogen is expected with high hopes. The electrolysis of water is regarded as the cleanest and most efficient method of hydrogen production. Molybdenum disulfide (MoS2) is deemed as one of the most promising alternatives HER catalysts owing to its high catalytic activity and low cost. Its continuous production and efficient preparation become the key problems in future industrial production. In this work we first developed a continuous micro-reaction approach with high heat and mass transfer rates to synthesize few-layer MoS2 nanoplates with abundant active sites. The defective MoS2 ultrathin nanoplates exhibit excellent HER performance with an overpotential of 260 mV at a current density of 10 mA cm-2 small Tafel slope (53.6 mV dec-1) and prominent durability which are comparable to most reported MoS2 based catalysts. Considering the existence of continuous devices it’s suitable for the synthesis of MoS2 as high-performance electrocatalysts for the industrial water electrolysis. The novel preparation method may open up a new way to synthesize all two-dimension materials toward HER.
Hy4Heat Conversion of Industrial Heating Equipment to Hydrogen - Work Package 6
Jan 2020
Publication
The study focuses on converting current industrial natural gas heating technologies to use 100% hydrogen considering the evidence which must be available before a decision on the UK’s decarbonisation pathway for heating could be made. The aim of the study is to assess the technical requirements and challenges associated with industrial hydrogen conversion and estimate the associated costs and timeframes.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the Hy4Heat website here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources
Jun 2020
Publication
Currently most of the vehicles make use of fossil fuels for operations resulting in one of the largest sources of carbon dioxide emissions. The need to cut our dependency on these fossil fuels has led to an increased use of renewable energy sources (RESs) for mobility purposes. A technical and economic analysis of a one-stop charging station for battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV) is investigated in this paper. The hybrid optimization model for electric renewables (HOMER) software and the heavy-duty refueling station analysis model (HDRSAM) are used to conduct the case study for a one-stop charging station at Technical University of Denmark (DTU)-Risø campus. Using HOMER a total of 42 charging station scenarios are analyzed by considering two systems (a grid-connected system and an off-grid connected system). For each system three different charging station designs (design A-hydrogen load; design B-an electrical load and design C-an integrated system consisting of both hydrogen and electrical load) are set up for analysis. Furthermore seven potential wind turbines with different capacity are selected from HOMER database for each system. Using HDRSAM a total 18 scenarios are analyzed with variation in hydrogen delivery option production volume hydrogen dispensing option and hydrogen dispensing option. The optimal solution from HOMER for a lifespan of twenty-five years is integrated into design C with the grid-connected system whose cost was $986065. For HDRSAM the optimal solution design consists of tube trailer as hydrogen delivery with cascade dispensing option at 350 bar together with high production volume and the cost of the system was $452148. The results from the two simulation tools are integrated and the overall cost of the one-stop charging station is achieved which was $2833465. The analysis demonstrated that the one-stop charging station with a grid connection is able to fulfil the charging demand cost-effectively and environmentally friendly for an integrated energy system with RESs in the investigated locations.
Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting
Dec 2021
Publication
As an energy-intensive industry sector the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate that the proposed system can reduce specific carbon dioxide emissions by up to 60 % while increasing specific energy demand by a maximum of 25 %. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C) temperature efficiency (∆ξ = −0.003) and heat capacity flow ratio (∆zHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study high CO2 abatement costs of 295 €/t CO2-eq. were determined.. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future.
Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies
Jan 2021
Publication
With the development of technologies in recent decades and the imposition of international standards to reduce greenhouse gas emissions car manufacturers have turned their attention to new technologies related to electric/hybrid vehicles and electric fuel cell vehicles. This paper focuses on electric fuel cell vehicles which optimally combine the fuel cell system with hybrid energy storage systems represented by batteries and ultracapacitors to meet the dynamic power demand required by the electric motor and auxiliary systems. This paper compares the latest proposed topologies for fuel cell electric vehicles and reveals the new technologies and DC/DC converters involved to generate up-to-date information for researchers and developers interested in this specialized field. From a software point of view the latest energy management strategies are analyzed and compared with the reference strategies taking into account performance indicators such as energy efficiency hydrogen consumption and degradation of the subsystems involved which is the main challenge for car developers. The advantages and disadvantages of three types of strategies (rule-based strategies optimization-based strategies and learning-based strategies) are discussed. Thus future software developers can focus on new control algorithms in the area of artificial intelligence developed to meet the challenges posed by new technologies for autonomous vehicles.
A Comprehensive Comparison of State-of-the-art Manufacturing Methods for Fuel Cell Bipolar Plates Including Anticipated Future Industry Trends
Nov 2020
Publication
This article explains and evaluates contemporary methods for manufacturing bipolar plates (BPPs) for lowtemperature polymer electrolyte membrane fuel cells (LT-PEMFC) and highlights the potential of new improved approaches. BPPs are an essential component of fuel cells responsible for distributing reaction gases to facilitate efficient conversion of gaseous electrochemical energy to electricity. BPPs must balance technical properties such as electrical and thermal conductivities structural strength and corrosion resistance. Graphitic and metallic materials can meet the required specifications with each material offering distinct advantages and disadvantages. Each materials’ performance is complimented by a comparison of its manufacturability including: the material costs production rates and required capital investment. These results are contextualised with respect to the target applications to identify the challenges and advantages of manufacturing methods of choice for BPPs. This analysis shows that the optimal choice of BPP manufacturing method depends entirely on the needs of the target application in particular the relative importance of manufacturing rate cost and the expected operational life of the bipolar plate to the fuel cell designer.
Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
Dec 2022
Publication
Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage transmission and distribution and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day which will use an 8 MW offshore turbine system off the coast of Nova Scotia Canada as the main power source. The P2A system consists of a reverse osmosis system a proton exchange membrane (PEM) electrolyser a hydrogen storage tank a nitrogen generator a set of compressors and heat exchangers an autothermal Haber-Bosch reactor and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios which is larger than the traditional fossil-fuel based ammonia production when using the grid in provinces like Nova Scotia even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne−1 for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system reducing the reliance on the electricity grid increasing service life and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.
Hydrogen Scooter Testing and Verification Program
Nov 2012
Publication
Taiwan stands out globally in the manufacture of scooters. If fuel cell technology could be applied to the scooter Taiwan could gain an advantage in the trend for commercial applications for fct. In 2011 The Bureau of Standards Metrology and Inspection proposed this project “the Demonstration of Hydrogen Fuel Cell Scooters.” Thirty rental fuel cell scooters are to run a long distance. Evaluation during everyday use of the cells performance will be made and reported by the riders. All the evaluations will be put into consideration of future adjustments. The project is to map out a practice route in Taipei and set up a control center to follow progress. The data gathered from the practice project will help examine the performance of fuel cell scooters contributing to the creation of legal drafts and future standards. The Taiwan fuel cell industry chain is complete and the industry possesses the ability to produce key components. Thus it is a potential market in Taiwan. A review of fuel cell development conditions in Taiwan shows that the fuel cell scooters is a niche industry owing to the strength of this technology.
Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic
Sep 2015
Publication
Several alternative fuel–vehicle combinations are being considered for replacement of the internal combustion engine (ICE) vehicles to reduce greenhouse gas (GHG) emissions and the dependence on fossil fuels. The International Energy Agency has proposed the inclusion of low carbon alternatives such as electricity hydrogen and biofuels in the transport sector for reducing the GHG emissions and providing a sustainable future. This paper compares the use of these alternative fuels viz. electricity hydrogen and bio-ethanol in combination with battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV) technologies on the basis of their overall efficiency and GHG emissions involved in the conversion of the primary energy source to the actual energy required at wheels through a well-to-wheel analysis. The source of energy for electricity production plays a major role in determining the overall efficiency and the GHG emissions of a BEV. Hence electricity production mix of Germany (60% fossil fuel energy) France (76% nuclear energy) Sweden and Austria (60 and 76% renewable energy respectively) the European Union mix (48% fossil fuel energy) and the United States of America (68% fossil fuel energy) are considered for the BEV analysis. In addition to the standard hydrogen based FCEVs CNG and bio-ethanol based FCEVs are analysed. The influence of a direct ethanol fuel cell (DEFC) on GHG emissions and overall chain efficiency is discussed. In addition to the standard sources of bio-ethanol (like sugarcane corn etc.) sources like wood waste and wheat straw are included in the analysis. The results of this study suggest that a BEV powered by an electricity production mix dominated by renewable energy and bio-ethanol based DEFC electric vehicles offer the best solution in terms of GHG emissions efficiency and fossil fuel dependency. Bio-ethanol as a fuel has the additional advantage to be implemented readily in ICE vehicles followed by advancements through reformer based FCEVs and DEFC electric vehicles. Although important this analysis does not include the health effects of the alternative vehicles. Bio-ethanol used in an ICE may lead to increased emission of acetaldehydes which however might not be the case if it is used in fuel cells.
Supporting Hydrogen Development in Australia Short Film
Jan 2021
Publication
This short film promotes Geoscience Australia's online and publicly accessible hydrogen data products. The film steps through the functionality of GA's Australian Hydrogen Opportunities Tool (AusH2) and describes the upcoming Hydrogen Economic Fairways Tool which has been created through a collaborative effort with Monash University.
Hydrogen for a Net Zero GB An Integrated Energy Market Perspective
Jul 2020
Publication
Our new independent report finds that hydrogen can play an important role in UK’s ambitious decarbonisation plan and boost its global industrial competitiveness.
Key insights from this new analysis include:
Key insights from this new analysis include:
- New independent report from Aurora Energy Research shows that hydrogen can meet up to half of Great Britain’s (GB) final energy demand by 2050 providing an important pathway to reaching UK’s ambitious Net Zero targets.
- The report concludes that both blue hydrogen (produced from natural gas after reforming to remove carbon content) and green hydrogen (produced by using power to electrolyse water) are expected to play an important role providing up to 480TWh of hydrogen or c.45% of GB’s final energy demand by 2050.
- All Net Zero scenarios require substantial growth in low-carbon generation such as renewables and nuclear. Large-scale hydrogen adoption could help to integrate renewables into the power system by reducing the power sector requirement for flexibility during peak winter months and boosting revenues for clean power generators by c. £3bn per year by 2050.
- The rollout of hydrogen could accelerate green growth and enable the development of globally competitive low-carbon industrial clusters while utilising UK’s competitive advantage on carbon capture.
- In facilitating the identification of a cost-effective hydrogen pathway there are some low-regret options for Government to explore including the stimulation of hydrogen demand in key sectors the deployment of CCS in strategic locations and the standardisation of networks. These initiatives could form an important part of the UK Government’s post-COVID stimulus plan.
A Novel Integration of a Green Power-to-ammonia to Power System: Reversible Solid Oxide Fuel Cell for Hydrogen and Power Production Coupled with an Ammonia Synthesis Unit
Mar 2021
Publication
Renewable energy is a key solution in maintaining global warming below 2 °C. However its intermittency necessitates the need for energy conversion technologies to meet demand when there are insufficient renewable energy resources. This study aims to tackle these challenges by thermo-electrochemical modelling and simulation of a reversible solid oxide fuel cell (RSOFC) and integration with the Haber Bosch process. The novelty of the proposed system is usage of nitrogen-rich fuel electrode exhaust gas for ammonia synthesis during fuel cell mode which is usually combusted to prevent release of highly flammable hydrogen into the environment. RSOFC round-trip efficiencies of 41–53% have been attained when producing excess ammonia (144 kg NH3/hr) for the market and in-house consumption respectively. The designed system has the lowest reported ammonia electricity consumption of 6.4–8.21 kWh/kg NH3 power-to-hydrogen power-to-ammonia and power-generation efficiencies of 80% 55–71% and 64–66%.
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145 respectively. Besides the storage capacity at 30 MPa of a solid-state system they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.
Lessons Learned from Australian Infrastructure Upgrades
Feb 2020
Publication
This report fulfils Deliverable Five for Research Project 2.1-01 of the Future Fuels CRC. The aims of this project Crystallising lessons learned from major infrastructure upgrades are to provide a report on lessons learned from earlier infrastructure upgrades and fuel transitions and identify tools that can be used to develop consistent messaging around the proposed transition to hydrogen and/or other low-carbon fuels. In both the report and the toolkit there are recommendations on how to apply lessons learned and shape messaging throughout the value chain based on prior infrastructure upgrades.
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
Mapping Australia's Hydrogen Future and release of the Hydrogen Economic Fairways Tool
Apr 2021
Publication
Hydrogen can be used for a variety of domestic and industrial purposes such as heating and cooking (as a replacement for natural gas) transportation (replacing petrol and diesel) and energy storage (by converting intermittent renewable energy into hydrogen). The key benefit of using hydrogen is that it is a clean fuel that emits only water vapour and heat when combusted.
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
The Social Dimensions of Moving Away From Gas Cookers and Hobs- Challenges and Opportunities in Transition to Low Carbon Cooking
May 2020
Publication
Heat is one of the UK’s largest energy-consuming and carbon-emitting sectors and potentially the most difficult to decarbonise. The UK’s Clean Growth Strategy identifies that heat decarbonisation in buildings and industry will likely involve shifting away from natural gas to alternative energy vectors like electricity and hydrogen. This will mean transition of existing cooking appliances away from natural gas resulting in social implications that require detailed analysis for optimal transition.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
This report investigates the social dimensions of heat decarbonisation in cooking appliances specifically moving away from gas cookers and hobs. It presents a first step in tackling the following questions.
- How are current carbon-intensive cooking technologies part of existing cooking practices and broader social and material structures?
- What are the challenges and opportunities for cooking heat decarbonisation in terms of consumer acceptance carbon and energy reductions and business/market opportunities?
- What interventions are needed to realise policy objectives of heat de-carbonisation?
- The report builds on interviews with BEIS’s long-term heat strategy experts and key external stakeholders together with a review of secondary data on trends in cooking and appliance use in the UK. Further it presents an annotated bibliography of literature on the social implications of heat decarbonisation and sustainable food transitions more broadly. The multidisciplinary review of the literature is structured around Southerton et al.’s (2011) ISM (Individual- Social- and Material-context) framework for a systemic review of the various change-agents required for transition. Finally a comparative review of the social challenges and opportunities identified in the ISM contexts is presented along with the potential policy interventions in each. The report concludes with a list of recommendations in terms of evidence and data gathering; research; policy; and a set of general recommendations for heat decarbonisation policy.
Comparison of Conventional vs. Modular Hydrogen Refuelling Stations and On-Site Production vs. Delivery
Mar 2017
Publication
To meet the needs of public and private stakeholders involved in the development construction and operation of hydrogen fuelling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles this work presents publicly available station templates and analyses. These ‘Reference Stations’ help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design enable quick assessment of potential sites for a hydrogen station identify contributors to poor economics and suggest areas of research. This work presents layouts bills of materials piping and instrumentation diagrams and detailed analyses of five new station designs. In the near term delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.
Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator
Nov 2020
Publication
In this article the solution based on hydrogen generation to increase the flexibility of energy storage systems is proposed. Operating characteristics of a hydrogen generator with integrated electrical energy storage and a photovoltaic installation were determined. The key role of the electricity storage in the proposed system was to maintain the highest operating efficiency related to the nominal parameters of the hydrogen generator. The hydrogen generators achieved the highest energy efficiency for the nominal operating point at the highest power output. Lead-acid batteries were used to ensure the optimal operating conditions for the hydrogen generator supplied with renewable energy throughout the day. The proposed system reduces significantly the hydrogen generator nominal power and devices in system operate in such a way to improve their efficiency and durability. The relations between individual components and their constraints were determined. The proposed solution is fully in-line with previously investigated technologies for improving grid stability and can help incorporate renewable energy sources to increase the sustainability of the energy sector and green hydrogen production.
The Role of Hydrogen in Achieving Net Zero: Parliamentary Inquiry
Mar 2021
Publication
A key component of the Government's recently announced ‘Ten Point Plan for a Green Industrial Revolution’ is 'Driving the Growth of Low Carbon Hydrogen'. The plan outlined a range of measures to support the development and adoption of hydrogen including a £240 million 'Net Zero Hydrogen Fund'. Noting this and the further £81 million allocated for hydrogen heating trials in the 2020 Spending Review the House of Commons Science and Technology Committee is today launching a new inquiry into the role of hydrogen in achieving Net Zero.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Sustainability Implications of Using Hydrogen as an Automotive Fuel in Western Australia
Jul 2020
Publication
Hydrogen is regarded as a potential solution to address future energy demands and environmental protection challenges. This study assesses the triple bottom line (TBL) sustainability performance of hydrogen as an automotive fuel for Western Australia (WA) using a life cycle approach. Hydrogen is considered to be produced through water electrolysis. Two scenarios current grid electricity and future renewable-based hydrogen were compared with gasoline as a base case. The results show that locally produced grid electricity-based hydrogen is good for local jobs but exhibits higher environmental impacts and negative economic benefits for consumers when compared to gasoline. After incorporating wind-generated electricity reductions of around 69% and 65% in global warming potential (GWP) and fossil fuel depletion (FFD) respectively were achieved compared to the base case gasoline. The land utilization for the production of hydrogen is not a problem as Western Australia has plenty of land to accommodate renewable energy projects. Water for hydrogen feedstock could be sourced through seawater desalination or from wastewater treatment plants in WA. Hydrogen also performed better than gasoline in terms of human health and conservation of fossil fuel indicators under the renewable energy scenario. Local job creation potential of hydrogen was estimated to be 1.29E-03 man-hours/VKT. It has also been found that the cost of hydrogen fuel cell vehicles (HFCV) needs to be similar to that of gasoline vehicles (GV) in order to be comparable with the gasoline life cycle cost per vehicle kilometre travel (VKT).
A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application
Apr 2022
Publication
The paper presents a sustainable electric powertrain for a transit city bus featuring an electrochemical battery-free power unit consisting of a hydrogen fuel cell stack and a kinetic energy storage system based on high-speed flywheels. A rare-earth free high-efficiency motor technology is adopted to pursue a more sustainable vehicle architecture by limiting the use of critical raw materials. A suitable dynamic energetic model of the full vehicle powertrain has been developed to investigate the feasibility of the traction system and the related energy management control strategy. The model includes losses characterisation as a function of the load of the main components of the powertrain by using experimental tests and literature data. The performance of the proposed solution is evaluated by simulating a vehicle mission on an urban path in real traffic conditions. Considerations about the effectiveness of the traction system are discussed.
Industrial Robots Fuel Cell Based Hybrid Power-Trains: A Comparison between Different Configurations
Jun 2021
Publication
Electric vehicles are becoming more and more popular. One of the most promising possible solutions is one where a hybrid powertrain made up of a FC (Fuel Cell) and a battery is used. This type of vehicle offers great autonomy and high recharging speed which makes them ideal for many industrial applications. In this work three ways to build a hybrid power-train are presented and compared. To illustrate this the case of an industrial robot designed to move loads within a fully automated factory is used. The analysis and comparison are carried out through different objective criteria that indicate the power-train performance in different battery charge levels. The hybrid configurations are tested using real power profiles of the industrial robot. Finally simulation results show the performance of each hybrid configuration in terms of hydrogen consumption battery and FC degradation and dc bus voltage and current regulation.
Roadmap to Decarbonising European Shipping
Nov 2018
Publication
Shipping is one of the largest greenhouse gas (GHG) emitting sectors of the global economy responsible for around 1 Gt of CO2eq every year. If shipping were a country it would be the 6th biggest GHG emitter. EU related shipping is responsible for about 1/5 of global ship GHG emissions emitting on average 200 Mt/year. This report assesses potential technology pathways for decarbonising EU related shipping through a shift to zero carbon technologies and the impact such a move could have on renewable electricity demand in Europe. It also identifies key policy and sustainability issues that should be considered when analysing and supporting different technology options to decarbonise the maritime sector. The basis of the study is outbound journeys under the geographical scope of the EU ship MRV Regulation.
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
Dec 2011
Publication
This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development North America (MBRDNA) Chrysler Daimler Mercedes Benz USA (MBUSA) BP DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure transportation as well as assess technology and commercial readiness for the market. The Mercedes Team together with its partners tested the technology by operating and fuelling hydrogen fuel cell vehicles under real world conditions in varying climate terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2000-hour fuel cell durability. Finally to prepare the public for a hydrogen economy outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation storage and dispensing. DTE established a hydrogen station in Southfield Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank California and provided a full-time hydrogen trailer at San Francisco California and a hydrogen station located at Los Angeles International Airportmore.
Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option Towards an Environmentally Friendly Energy Transition
Nov 2020
Publication
The latest pre-production vehicles on the market show that the major technical challenges posed by integrating a fuel cell system (FCS) within a vehicle—compactness safety autonomy reliability cold starting—have been met. Regarding the ongoing maturity of fuel cell systems dedicated to road transport the present article examines the advances still needed to move from a functional but niche product to a mainstream consumer product. It seeks to address difficulties not covered by more traditional innovation approaches. At least in long-distance heavy-duty vehicles fuel cell vehicles (FCVs) are going to play a key role in the path to zero-emissions in one or two decades. Hence the present study also addresses the structuring elements of the complete chain: the latter includes the production storage and distribution of hydrogen. Green hydrogen appears to be one of the potential uses of renewable energies. The greener the electricity is the greater the advantage for hydrogen since it permits to economically store large energy quantities on seasonal rhythms. Moreover natural hydrogen might also become an economic reality pushing the fuel cell vehicle to be a competitive and environmentally friendly alternative to the battery electric vehicle. Based on its own functional benefits for on board systems hydrogen in combination with the fuel cell will achieve a large-scale use of hydrogen in road transport as soon as renewable energies become more widespread. Its market will expand from large driving range and heavy load vehicles
The Future Role of Gas in Transport
Mar 2021
Publication
This is a Network Innovation Allowance funded project overseen by a steering group comprising the UK and Ireland gas network operators (Cadent Gas Networks Ireland National Grid Northern Gas Networks SGN Wales and West). The project follows on from previous studies that modelled the role of green gases in decarbonising the GB economy. The role of this study is to understand the transition from the GB economy today to a decarbonised economy in 2050 focusing on how the transition is achieved and the competing and complementary nature of different low and zero emission fuels and technologies over time.
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
- Analyse the complete supply chain production distribution and use of electricity biomethane bio-SNG and hydrogen to understand the role of each fuel and the timeline for scaling up of their use.
- Develop a narrative based on these findings to show how the use of these fuels scales up over time and how they compete and complement one another.
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
Building an Optimal Hydrogen Transportation System for Mobility, Focus on Minimizing the Cost of Transportation via Truck
Jan 2018
Publication
The approach developed aims to identify the methodology that will be used to deliver the minimum cost for hydrogen infrastructure deployment using a mono-objective linear optimisation. It focuses on minimizing both capital and operation costs of the hydrogen transportation based on transportation via truck which represents the main focus of this paper and a cost-minimal pipeline system in the case of France and Germany. The paper explains the mathematical model describing the link between the hydrogen production via electrolysers and the distribution for mobility needs. The main parameters and the assumed scenario framework are explained. Subsequently the transportation of hydrogen via truck using different states of aggregation is analysed as well as the transformation and storage of hydrogen. This is used finally to build a linear programming aiming to minimize the sum of costs of hydrogen transportation between the different nodes and transformation/storage within the nodes.
Modelling and Cost Estimation for Conversion of Green Methanol to Renewable Liquid Transport Fuels via Olefin Oligomerisation
Jun 2021
Publication
The ambitious CO2 emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline kerosene and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV) corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol which is largely dictated by the cost of electrolytic hydrogen and renewable electricity was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states.
Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model
May 2022
Publication
The need to significantly reduce emissions from the steelmaking sector requires effective and ready-to-use technical solutions. With this aim different decarbonization strategies have been investigated by both researchers and practitioners. To this concern the most promising pathway is represented by the replacement of natural gas with pure hydrogen in the direct reduced iron (DRI) production process to feed an electric arc furnace (EAF). This solution allows to significantly reduce direct emissions of carbon dioxide from the DRI process but requires a significant amount of electricity to power electrolyzers adopted to produce hydrogen. The adoption of renewable electricity sources (green hydrogen) would reduce emissions by 95–100% compared to the blast furnace–basic oxygen furnace (BF–BOF) route. In this work an analytical model for the identification of the minimum emission configuration of a green energy–steel system consisting of a secondary route supported by a DRI production process and a renewable energy conversion system is proposed. In the model both technological features of the hydrogen steel plant and renewable energy production potential of the site where it is to be located are considered. Compared to previous studies the novelty of this work consists of the joint modeling of a renewable energy system and a steel plant. This allows to optimize the overall system from an environmental point of view considering the availability of green hydrogen as an inherent part of the model. Numerical experiments proved the effectiveness of the model proposed in evaluating the suitability of using green hydrogen in the steelmaking process. Depending on the characteristics of the site and the renewable energy conversion system adopted decreases in emissions ranging from 60% to 91% compared to the BF–BOF route were observed for the green energy–steel system considered It was found that the environmental benefit of using hydrogen in the secondary route is strictly related to the national energy mix and to the electrolyzers’ technology. Depending on the reference context it was found that there exists a maximum value of the emission factor from the national electricity grid below which is environmentally convenient to produce DRI by using only hydrogen. It was moreover found that the lower the electricity consumption of the electrolyzer the higher the value assumed by the emission factor from the electricity grid which makes the use of hydrogen convenient.
Effect of Hydrogen Addition on the Energetic and Ecologic Parameters of an SI Engine Fueled by Biogas
Jan 2021
Publication
The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines but the engine electronic control unit (ECU) needs to be modified. In this research a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0 14 24 33 and 43%). In all experiments two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2 ) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR) temperature and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.
Hydrogen Refuelling Reference Station Lot Size Analysis for Urban Sites
Mar 2020
Publication
Hydrogen Fuelling Infrastructure Research and Station Technology (H2FIRST) is a project initiated by the DOE in 2015 and executed by Sandia National Laboratories and the National Renewable Energy Laboratory to address R&D barriers to the deployment of hydrogen fuelling infrastructure. One key barrier to the deployment of fuelling stations is the land area they require (i.e. ""footprint""). Space is particularly a constraint in dense urban areas where hydrogen demand is high but space for fuelling stations is limited. This work presents current fire code requirements that inform station footprint then identifies and quantifies opportunities to reduce footprint without altering the safety profile of fuelling stations. Opportunities analyzed include potential new methods of hydrogen delivery as well as alternative placements of station technologies (i.e. rooftop/underground fuel storage). As interest in heavy-duty fuelling stations and other markets for hydrogen grows this study can inform techniques to reduce the footprint of heavy-duty stations as well.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas
May 2020
Publication
The hydrogen economy refers to an economic and industrial structure that uses hydrogen as its main energy source replacing traditional fossil-fuel-based energy systems. In particular the widespread adoption of hydrogen fuel cell vehicles (HFCVs) is one of the key factors enabling a hydrogen economy and aggressive investment in hydrogen refuelling infrastructure is essential to make large-scale adoption of HFCVs possible. In this study we address the problem of effectively designing a hydrogen supply network for refuelling HFCVs in urban areas relatively far from a large hydrogen production site such as a petrochemical complex. In these urban areas where mass supply of hydrogen is not possible hydrogen can be supplied by reforming city gas. In this case building distributed hydrogen production bases that extract large amounts of hydrogen from liquefied petroleum gas (LPG) or compressed natural gas (CNG) and then supply hydrogen to nearby hydrogen stations may be a cost-effective option for establishing a hydrogen refuelling infrastructure in the early stage of the hydrogen economy. Therefore an optimization model is proposed for effectively deciding when and where to build hydrogen production bases and hydrogen refuelling stations in an urban area. Then a case study of the southeastern area of Seoul known as a commercial and residential center is discussed. A variety of scenarios for the design parameters of the hydrogen supply network are analyzed based on the target of the adoption of HFCVs in Seoul by 2030. The proposed optimization model can be effectively used for determining the time and sites for building hydrogen production bases and hydrogen refuelling stations.
The Renewable Hydrogen–Methane (RHYME) Transportation Fuel: A Practical First Step in the Realization of the Hydrogen Economy
Feb 2022
Publication
The permanent introduction of green hydrogen into the energy economy would require that a discriminating selection be made of its use in the sectors where its value is optimal in terms of relative cost and life cycle reduction in carbon dioxide emissions. Consequently hydrogen can be used as an energy storage medium when intermittent wind and solar power exceed certain penetration in the grid likely above 40% and in road transportation right away to begin displacing gasoline and diesel fuels. To this end the proposed approach is to utilize current technologies represented by PHEV in light-duty and HEV in heavy-duty vehicles where a high-performance internal combustion engine is used with a fuel comprised of 15–20% green hydrogen and 85–89% green methane depending on vehicle type. This fuel designated as RHYME takes advantage of the best attributes of hydrogen and methane results in lower life cycle carbon dioxide emissions than BEVs or FCEVs and offers a cost-effective and pragmatic approach both locally as well as globally in establishing hydrogen as part of the energy economy over the next ten to thirty years.
Hydrogen for Transport Prospective Australian Use Cases
Oct 2019
Publication
The Australian transport sector is under increasing pressure to reduce carbon emissions whilst also managing a fuel supply chain that relies heavily on foreign import partners.
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
Scaling Factors for Channel Width Variations in Tree-like Flow Field Patterns for Polymer Electrolyte Membrane Fuel Cells - An Experimental Study
Apr 2021
Publication
To have a uniform distribution of reactants is an advantage to a fuel cell. We report results for such a distributor with tree-like flow field plates (FFP). Numerical simulations have shown that the width scaling parameters of tree-like patterns in FFPs used in polymer electrolyte membrane fuel cells (PEMFC) reduces the viscous dissipation in the channels. In this study experimental investigations were conducted on a 2-layer FF plate possessing a tree-like FF pattern which was CNC milled on high-quality graphite. Three FF designs of different width scaling parameters were employed. I–V curves power curves and impedance spectra were generated at 70% 60% and 50% relative humidity (25 cm2 active area) and compared to those obtained from a conventional 1-channel serpentine FF. It was found that the FF design with a width scaling factor of 0.917 in the inlet and 0.925 in the outlet pattern exhibited the best peak power out of the three designs (only 11% - 0.08 W/cm2 lower than reference serpentine FF). Results showed that a reduction of the viscous dissipation in the flow pattern was not directly linked to a PEMFC performance increase. It was found that water accumulation together with a slight increase in single PEMFC resistance were the main reasons for the reduced power density. As further improvements a reduction of the number of branching generation levels and width scaling factor were recommended.
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
Contrasting European Hydrogen Pathways: An Analysis of Differing Approaches in Key Markets
Mar 2021
Publication
European countries approach the market ramp-up of hydrogen very differently. In some cases the economic and political starting points differ significantly. While the probability is high that some countries such as Germany or Italy will import hydrogen in the long term other countries such as United Kingdom France or Spain could become hydrogen exporters. The reasons for this are the higher potential for renewable energies but also a technology-neutral approach on the supply side.
The Fuel Cell Industry Review 2020
Jan 2020
Publication
The Fuel Cell Industry Review 2020 offers data analysis and commentary on key events in the industry in 2020. Now in its seventh year the Review has been compiled by a team led by E4tech - a specialist energy strategy consultancy with deep expertise in the hydrogen and fuel cell sector (see www.e4tech.com).
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Development of a Tangential Neutron Radiography System for Monitoring the Fatigue Cracks in Hydrogen Fuel Tanks
Jun 2016
Publication
Purpose- To present an overview of the research and development carried out in a European funded framework 7 (FP7) project called SafeHPower for the implementation of neutron radiography to inspect fatigue cracks in vehicle and storage hydrogen fuel tanks. Project background– Hydrogen (H2) is the most promising replacement fuel for road transport due to its abundance efficiency low carbon footprint and the absence of harmful emissions. For the mass market of hydrogen to take off the safety issue surrounding the vehicle and storage hydrogen tanks needs to be addressed. The problem is the residual and additional stresses experienced by the tanks during the continuous cyclic loading between ambient and storage pressure which can result in the development of fatigue cracks. Steel tanks used as storage containers at service stations and depots and/or the composite tanks lined with steel are known to suffer from hydrogen embrittlement (HE). Another issue is the explosive nature of hydrogen (when it is present in the 18-59% range) where it is mixed with oxygen which can lead to catastrophic consequences including loss of life. Monitoring systems that currently exist in the market impose visual examination tests pressure tests and hydrostatic tests after the tank installation [1] [2]. Three inspection systems have been developed under this project to provide continuous monitoring solutions. Approach and scope- One of the inspection systems based on the neutron radiography (NR) technology that was developed in different phases with the application of varied strategies has been presented here. Monte Carlo (MCNP) simulation results to design and develop a bespoke collimator have been presented. A limitation of using an inertial electrostatic Deuterium-Tritium (D-T) pulsed neutron generator for fast neutron radiography has been discussed. Radiographs from the hydrogen tank samples obtained using thermal neutrons from a spallation neutron source at ISIS Rutherford laboratory UK have been presented. Furthermore radiograph obtained using thermal neutrons from a portable D-T neutron generator has been presented. In conclusion a proof in principle has been made to show that the defects in the hydrogen fuel tank can be detected using thermal neutron radiography.
Hydrogen to Support Electricity Systems
Jan 2020
Publication
The Department of Environment Land Water and Planning (DELWP) engaged GHD Advisory and ACIL Allen to assess the roles opportunities and challenges that hydrogen might play in the future to support Australia’s power systems and to determine whether the relevant electricity system regulatory frameworks are compatible with both enabling an industrial-scale1 hydrogen production capability and the use of hydrogen for power generation.
You can read the full report on the website of the Australian Government at this link
You can read the full report on the website of the Australian Government at this link
Critical Materials for Water Electrolysers at the Example of the Energy Transition in Germany
Feb 2021
Publication
The present work aims to identify critical materials in water electrolysers with potential future supply constraints. The expected rise in demand for green hydrogen as well as the respective implications on material availability are assessed by conducting a case study for Germany. Furthermore the recycling of end‐of‐life (EoL) electrolysers is evaluated concerning its potential in ensuring the sustainable supply of the considered materials. As critical materials bear the risk of raising production costs of electrolysers substantially this article examines the readiness of this technology for industrialisation from a material perspective. Except for titanium the indicators for each assessed material are scored with a moderate to high (platinum) or mostly high (iridium scandium and yttrium) supply risk. Hence the availability of these materials bears the risk of hampering the scale‐up of electrolysis capacity. Although conventional recycling pathways for platinum iridium and titanium already exist secondary material from EoL electrolysers will not reduce the dependence on primary resources significantly within the period under consideration—from 2020 until 2050. Notably the materials identified as critical are used in PEM and high temperature electrolysis whereas materials in alkaline electrolysis are not exposed to significant supply risks.
Production of Advanced Fuels Through Integration of Biological, Thermo-Chemical and Power to Gas Technologies in a Circular Cascading Bio-Based System
Sep 2020
Publication
In the transition to a climate neutral future the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies together with power to gas (P2G) systems can generate green renewable gas which is essential to reduce the GHG footprint of industry. However each technology faces challenges with respect to sustainability and conversion efficiency. Here this study identifies an optimal pathway leading to a sustainable bioenergy system where the carbon released in the fuel is offset by the GHG savings of the circular bio-based system. It provides a state-of-the-art review of individual technologies and proposes a bespoke circular cascading bio-based system with anaerobic digestion as the key platform integrating electro-fuels via P2G systems and value-added pyrochar via pyrolysis of solid digestate. The mass and energy analysis suggests that a reduction of 11% in digestate mass flow with the production of pyrochar bio-oil and syngas and an increase of 70% in biomethane production with the utilization of curtailed or constrained electricity can be achieved in the proposed bio-based system enabling a 70% increase in net energy output as compared with a conventional biomethane system. However the carbon footprint of the electricity from which the hydrogen is sourced is shown to be a critical parameter in assessing the GHG balance of the bespoke system.
A Review of Heavy-Duty Vehicle Powertrain Technologies Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles
Jun 2021
Publication
Greenhouse gas emissions from the freight transportation sector are a significant contributor to climate change pollution and negative health impacts because of the common use of heavy-duty diesel vehicles (HDVs). Governments around the world are working to transition away from diesel HDVs and to electric HDVs to reduce emissions. Battery electric HDVs and hydrogen fuel cell HDVs are two available alternatives to diesel engines. Each diesel engine HDV battery-electric HDV and hydrogen fuel cell HDV powertrain has its own advantages and disadvantages. This work provides a comprehensive review to examine the working mechanism performance metrics and recent developments of the aforementioned HDV powertrain technologies. A detailed comparison between the three powertrain technologies highlighting the advantages and disadvantages of each is also presented along with future perspectives of the HDV sector. Overall diesel engine in HDVs will remain an important technology in the short-term future due to the existing infrastructure and lower costs despite their high emissions while battery-electric HDV technology and hydrogen fuel cell HDV technology will be slowly developed to eliminate their barriers including costs infrastructure and performance limitations to penetrate the HDV market.
A Modelling Study for the Integration of a PEMFC Micro-CHP in Domestic Building Services Design
May 2018
Publication
Fuel cell based micro-combined heat and power (CHP) units used for domestic applications can provide significant cost and environmental benefits for end users and contribute to the UK’s 2050 emissions target by reducing primary energy consumption in dwellings. Lately there has been increased interest in the development of systematic methods for the design of such systems and their smoother integration with domestic building services. Several models in the literature whether they use a simulation or an optimisation approach ignore the dwelling side of the system and optimise the efficiency or delivered power of the unit. However the design of the building services is linked to the choice of heating plant and its characteristics. Adding the dwelling’s energy demand and temperature constraints in a model can produce more general results that can optimise the whole system not only the micro-CHP unit. The fuel cell has various heat streams that can be harvested to satisfy heat demand in a dwelling and the design can vary depending on the proportion of heat needed from each heat stream to serve the energy demand. A mixed integer non-linear programming model (MINLP) that can handle multiple heat sources and demands is presented in this paper. The methodology utilises a process systems engineering approach. The model can provide a design that integrates the temperature and water flow constraints of a dwelling’s heating system with the heat streams within the fuel cell processes while optimising total CO2 emissions. The model is demonstrated through different case studies that attempt to capture the variability of the housing stock. The predicted CO2 emissions reduction compared to a conventionally designed building vary from 27% to 30% and the optimum capacity of the fuel cell ranges between 1.9 kW and 3.6 kW. This research represents a significant step towards an integrated fuel cell micro-CHP and dwelling design.
Living Carbon Free – Exploring What a Net-zero Target Means for Households
Jun 2019
Publication
The Energy Systems Catapult (ESC) explored the role of households in a net-zero emissions society to accompany the CCC’s Net Zero report looking at opportunities and challenges for households to reduce emissions from today’s levels and to support the stretch from an 80% emissions reduction to a net-zero greenhouse gas target. As well as describing a net-zero emissions world for households of different types the ESC looked at average household emissions under different decarbonisation scenarios and the options households can take to contribute to the decarbonisation effort.
This supported the Net Zero Technical report.
This supported the Net Zero Technical report.
No more items...