Applications & Pathways
Industrial Energy Use and Carbon Emissions Reduction in the Chemicals Sector: A UK Perspective
Aug 2017
Publication
The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2 ) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK) although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials cleaning fluids composites dyes paints pharmaceuticals plastics and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions has been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further short-term energy and CO2 emissions savings in chemicals processing but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g. carbon capture and storage (CCS) energy efficiency techniques and bioenergy] alongside a decarbonisation of the electricity supply.
Solar Power and Energy Storage for Decarbonization of Land Transport in India
Dec 2021
Publication
By considering the weight penalty of batteries on payload and total vehicle weight this paper shows that almost all forms of land-based transport may be served by battery electric vehicles (BEV) with acceptable cost and driving range. Only long-distance road freight is unsuitable for battery electrification. The paper models the future Indian electricity grid supplied entirely by low-carbon forms of generation to quantify the additional solar PV power required to supply energy for transport. Hydrogen produced by water electrolysis for use as a fuel for road freight provides an inter-seasonal energy store that accommodates variations in renewable energy supply. The advantages and disadvantages are considered of midday electric vehicle charging vs. overnight charging considering the temporal variations in supply of renewable energy and demand for transport services. There appears to be little to choose between these two options in terms of total system costs. The result is an energy scenario for decarbonized surface transport in India based on renewable energy that is possible realistically achievable and affordable in a time frame of year 2050.
Everything About Hydrogen Podcast: Digging into the Mining Industry
Jan 2021
Publication
On this episode of Everything About Hydrogen Jan Klawitter Head of International Policy for Anglo American speaks with Andrew Chris and Patrick about Anglo American's strategy for decarbonizing its mining operations and how they plan to use hydrogen and fuel cell technologies as a key part of their approach.
The podcast can be found on their website
The podcast can be found on their website
Application and Limitations of Batteries and Hydrogen in Heavy Haul Rail using Australian Case Studies
Oct 2022
Publication
Decarbonisation of heavy haul rail is an essential contributor to a zero-emissions future. However the transition from diesel to battery locomotives is not always practical given the unique characteristics of each haul. This paper demonstrates the limitations of state-of-the-art batteries using real-world data from multiple locomotives operating in Australian rail freight. An energy model was developed to assess each route’s required energy and potential regenerated energy. The tractive and regenerative battery energy mass and cost were determined using data from the energy model coupled with battery specifications. The feasibility of implementing lithium iron phosphate (LFP) nickel manganese cobalt (NMC) and lithium titanium oxide (LTO) chemistries was explored based on cost energy density cycle lifespan and locomotive data. LFP was identified as the most suitable current battery solution based on current chemistries. Further examination of the energy demands and associated mass/volume constraints concluded that three platforms are required for heavy haul rail decarbonisation i) a battery electric locomotive for low-energy demands which can be coupled with either ii) a battery electric tender for medium energy demands or iii) a hydrogen fuel cell electric tender for higher energy demands. A future-looking techno-economic assessment of battery and hydrogen fuel cell platforms concludes that the lowest cost solution for low-energy hauls is a battery-only system and for high-energy hauls a battery-hydrogen system.
Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios
Oct 2022
Publication
The steel industry is focused on reducing its environmental impact. Using the life cycle assessment (LCA) methodology the impacts of the primary steel production via the blast furnace route and the scrap-based secondary steel production via the EAF route are assessed. In order to achieve environmentally friendly steel production breakthrough technologies have to be implemented. With a shift from primary to secondary steel production the increasing steel demand is not met due to insufficient scrap availability. In this paper special focus is given on recycling methodologies for metals and steel. The decarbonization of the steel industry requires a shift from a coal-based metallurgy towards a hydrogen and electricity-based metallurgy. Interim scenarios like the injection of hydrogen and the use of pre-reduced iron ores in a blast furnace can already reduce the greenhouse gas (GHG) emissions up to 200 kg CO2/t hot metal. Direct reduction plants combined with electrical melting units/furnaces offer the opportunity to minimize GHG emissions. The results presented give guidance to the steel industry and policy makers on how much renewable electric energy is required for the decarbonization of the steel industry
Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends
Jan 2020
Publication
Ammonia a chemical that contains high hydrogen quantities has been presented as a candidate for the production of clean power generation and aerospace propulsion. Although ammonia can deliver more hydrogen per unit volume than liquid hydrogen itself the use of ammonia in combustion systems comes with the detrimental production of nitrogen oxides which are emissions that have up to 300 times the greenhouse potential of carbon dioxide. This factor combined with the lower energy density of ammonia makes new studies crucial to enable the use of the molecule through methods that reduce emissions whilst ensuring that enough power is produced to support high-energy intensive applications. Thus this paper presents a numerical study based on the use of novel reaction models employed to characterize ammonia combustion systems. The models are used to obtain Reynolds Averaged Navier-Stokes (RANS) simulations via Star-CCM+ with complex chemistry of a 70%–30% (mol) ammonia–hydrogen blend that is currently under investigations elsewhere. A fixed equivalence ratio (1.2) medium swirl (0.8) and confined conditions are employed to determine the flame and species propagation at various operating atmospheres and temperature inlet values. The study is then expanded to high inlet temperatures high pressures and high flowrates at different confinement boundary conditions. The results denote how the production of NOx emissions remains stable and under 400 ppm whilst higher concentrations of both hydrogen and unreacted ammonia are found in the flue gases under high power conditions. The reduction of heat losses (thus higher temperature boundary conditions) has a crucial impact on further destruction of ammonia post-flame with a raise in hydrogen water and nitrogen through the system thus presenting an opportunity of combustion efficiency improvement of this blend by reducing heat losses. Final discussions are presented as a method to raise power whilst employing ammonia for gas turbine systems.
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g. fuel cells for propulsion) have already been implemented on board ships in the last 20 years mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward a review of the implementation of liquid hydrogen (LH2 ) in the transportation sector including aerospace and aviation industries automotive and railways is provided. Then the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study from LH2 bunkering onboard utilization regulations codes and standards and safety. Finally this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
Numerical Redesign of 100kw MGT Combustor for 100% H2 Fueling
Jan 2014
Publication
The use of hydrogen as energy carrier in a low emission microturbine could be an interesting option for renewable energy storage distributed generation and combined heat & power. However the hydrogen using in gas turbine is limited by the NOx emissions and the difficulty to operate safely. CFD simulations represent a powerful and mature tool to perform detailed 3-D investigation for the development of a prototype before carrying out an experimental analysis. This paper describes the CFD supported redesign of the Turbec T100 microturbine combustion chamber natural gas-fired to allow the operation on 100% hydrogen.
Methanol Synthesis Using Captured CO2 as Raw Material: Techno-economic and Environmental Assessment
Aug 2015
Publication
The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H2 and captured CO2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO2 emissions and (ii) the cost of production in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However raw materials prices i.e. H2 and captured CO2 do not allow such a project to be financially viable. In order to make the CCU plant financially attractive the price of MeOH should increase in a factor of almost 2 or H2 costs should decrease almost 2.5 times or CO2 should have a value of around 222 €/t under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO2 emissions of a pulverised coal (PC) power plant that produces 550MWnet of electricity. The net CO2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional MeOH synthesis process). The results demonstrate that there is a net but small potential for CO2 emissions reduction; assuming that such CCU plants are constructed in Europe to meet the MeOH demand growth and the quantities that are currently imported the net CO2 emissions reduction could be of 2.71 MtCO2/yr.
Industrial Decarbonization Pathways: The Example of the German Glass Industry
Nov 2022
Publication
Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately +200%. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching the complete phase-out from natural gas to renewable energy carriers. Furthermore the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target.
A Study on Green Hydrogen-based Isolated Microgrid
Oct 2022
Publication
This paper assesses the techno-economic feasibility of a green hydrogen-based microgrid for a remote Australian island. Hydrogen can be used to provide clean energy in areas where large-scale renewable energy sources are not feasible owing to geography government regulations or regulatory difficulties. This study not only identifies the appropriate component size for a hydrogen-based microgrid but also provides an economic perspective of decarbonising Thursday Island in Torres Straits Queensland Australia. Due to geographical constraints the green hydrogen production system needs to be distinct from the electrical network. This research shows how to produce green hydrogen transport it and generate power at a low cost. The study was performed utilising the HOMER simulation platform to find the least cost solution. The simulation results demonstrate an AU$0.01 reduction in Levelised Cost of Energy compared to the present electricity generation cost which is AU$0.56. The inclusion of a green hydrogen system will potentially minimise CO2 emissions by 99.6% while ensuring almost 100% renewable penetration. The results of this study will also serve as a guide for the placement of hydrogen-based microgrids in similar remote locations around the world where numerous remote energy systems are located close to each other.
Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus
Nov 2020
Publication
In this paper the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus the fuel economy strategies based on the control of the air regulator and the fuel regulator respectively on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63% 4.36% and 13.72% respectively under dynamic load but without renewable power. With renewable power the needed fuel cell power on the DC bus is lower so the fuel cell system operates more efficiently. These percentages are increased to 7.28% 4.94% and 14.97%.
Heat Integration of Liquid Hydrogen-Fueled Hybrid Electric Ship Propulsion System
Nov 2023
Publication
This study introduced the methodology for integrating ethylene glycol/water mixture (GW) systems which supply heat energy to the liquid hydrogen (LH2 ) fuel gas supply system (FGSS) and manage the temperature conditions of the battery system. All systems were designed and simulated based on the power demand of a 2 MW class platform supply vessel assumed as the target ship. The LH2 FGSS model is based on Aspen HYSYS V14 and the cell model that makes up the battery system is implemented based on a Thevenin model with four parameters. Through three different simulation cases the integrated GW system significantly reduced electric power consumption for the GW heater during ship operations achieving reductions of 1.38% (Case 1) 16.29% (Case 2) and 27.52% (Case 3). The energy-saving ratio showed decreases of 1.86% (Case 1) 21.01% (Case 2) and 33.80% (Case 3) in overall energy usage within the GW system. Furthermore an examination of the battery system’s thermal management in the integrated GW system demonstrated stable cell temperature control within ±3 K of the target temperature making this integration a viable solution for maintaining normal operating temperatures despite relatively higher fluctuations compared to an independent GW system.
Hydrogen Station Prognostics and Health Monitoring Model
Aug 2023
Publication
Hydrogen fuel has shown promise as a clean alternative fuel aiding in the reduction of fossil fuel dependence within the transportation sector. However hydrogen refueling stations and infrastructure remains a barrier and are a prerequisite for consumer adoption of low-cost and low-emission fuel cell electric vehicles (FCEVs). The costs for FCEV fueling include both station capital costs and operation and maintenance (O&M) costs. Contributing to these O&M costs unscheduled maintenance is presently more costly and more frequent than for similar gasoline fueling infrastructure and is asserted to be a limiting factor in achieving FCEV customer acceptance and cost parity. Unscheduled maintenance leads to longer station downtime therefore causing an increase in missed fueling opportunities which forces customers to seek refueling at other operable stations that may be significantly farther away. This research proposes a framework for a hydrogen station prognostics health monitoring (H2S PHM) model that can minimize unexpected downtime by predicting the remaining useful life for primary hydrogen station components within the major station subsystems. The H2S PHM model is a data-driven statistical model based on O&M data collected from 34 retail hydrogen stations located in the U.S. The primary subcomponents studied are the dispenser compressor and chiller. The remaining useful life calculations are used to decide whether or not maintenance should be completed based on the prediction and expected future station use. This paper presents the background method and results for the H2S PHM model as for a means for improving station availability and customer confidence in FCEVs and hydrogen infrastructure
Two-stage Optimization of Hydrogen and Storage Coordination for a Multi-region Flexible Intermodal Multi-energy Port System
Jan 2024
Publication
To address the issue of imbalanced electricity and hydrogen supply and demand in the flexible multi-energy port area system a multi-regional operational optimization and energy storage capacity allocation strategy considering the working status of flexible multi-status switches is proposed. Firstly based on the characteristics of the port area system models for system operating costs generation equipment energy storage devices flexible multi-status switches and others are established. Secondly the system is subjected to a first-stage optimization where different regions are optimized individually. The working periods of flexible multi-status switches are determined based on the results of this first-stage optimization targeting the minimization of the overall daily operating costs while ensuring 100% integration of renewable energy in periods with electricity supply-demand imbalances. Subsequently additional constraints are imposed based on the results of the first-stage optimization to optimize the entire system obtaining power allocation during system operation as well as power and capacity requirements for energy storage devices and flexible multi-status switches. Finally the proposed approach is validated through simulation examples demonstrating its advantages in terms of economic efficiency reduced power and capacity requirements for energy storage devices and carbon reduction.
Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response
Jan 2024
Publication
A regional integrated energy system (RIES) synergizing multiple energy forms is pivotal for enhancing renewable energy use and mitigating the greenhouse effect. Considering that the equipment of the current regional comprehensive energy system is relatively simple there is a coupling relationship linking power generation refrigeration and heating in the cogeneration system which is complex and cannot directly meet various load demands. This article proposes a RIES optimization model for bottom-source heat pumps and hydrogen storage systems in the context of comprehensive demand response. First P2G electric hydrogen production technology was introduced into RIES to give full play to the high efficiency advantages of hydrogen energy storage system and the adjustable thermoelectric ratio of the HFC was considered. The HFC could adjust its own thermoelectric ratio according to the system load and unit output. Second through the groundsource heat pump’s cleaning efficiency function further separation and cooling could be achieved. The heat and electrical output of RIES improved the operating efficiency of the system. Thirdly a comprehensive demand response model for heating cooling and electricity was established to enable users to reasonably adjust their own energy use strategies to promote the rational distribution of energy in the system. The model integrates power-to-gas (P2G) technology leveraging the tunable thermoelectric ratio of a hydrogen fuel cell (HFC) to optimize the generation of electricity and heat while maximizing the efficiency of the hydrogen storage system. Empirical analysis substantiated the proposed RIES model’s effectiveness and economic benefits when integrating ground-source HP and electric hydrogen production with IDR. Compared with the original model the daily operating cost of the proposed model was reduced by RMB 1884.16.
Review of the Planning and Distribution Methodologies to Locate Hydrogen Infrastructure in the Territory
Jan 2024
Publication
The member countries of the European Union (EU) have prioritized the incorporation of hydrogen as a key component of their energy objectives. As the world moves towards reducing its dependence on fossil fuels alternative sources of energy have gained prominence. With the growing development of Fuel Cell Electric Vehicles (FCEVs) the establishment of an infrastructure for hydrogen production and the creation of a network of service stations have become essential. This article’s purpose is to conduct a methodical review of literature regarding the use of green hydrogen for transportation and the planning of imperative infrastructure in the territory of the EU specifically Hydrogen Refueling Stations (HRS). In order to increase the acceptance of fuel cell vehicles a comprehensive network of hydrogen refueling stations (HRS) must be built that enable drivers to refuel their vehicles quickly and easily similar to gasoline or diesel vehicles. The literature review on this topic was conducted using the Web of Science database (WOS) with a variety of search terms proposed to cover all the key components of green hydrogen production and refueling infrastructure. The implementation of HRS powered by renewable energy sources is an important step in the adoption of fuel cell vehicles and overcoming the obstacles that come with their implementation will require cooperation and innovation from governments private businesses and other stakeholders.
Hazard Footprint of Alternative Fuel Storage Concepts for Hydrogen-powered Urban Buses
Nov 2023
Publication
Hydrogen mobility is a powerful strategy to fight climate change promoting the decarbonization of the transportation sector. However the higher flammability of hydrogen in comparison with traditional fuels raises issues concerning the safety of hydrogen-powered vehicles in particular when urban mobility in crowded areas is concerned. In the present study a comparative analysis of alternative hydrogen storage concepts for buses is carried out. A specific inherent safety assessment methodology providing a hazard footprint of alternative hydrogen storage technologies was developed. The approach provides a set of ex-ante safety performance indicators and integrates a sensitivity analysis performed by a Monte Carlo method. Integral models for consequence analysis and a set of baseline frequencies are used to provide a preliminary identification of the worstcase credible fire and explosion scenarios and to rank the inherent safety of alternative concepts. Cryocompressed storage in the supercritical phase resulted as the more hazardous storage concept while cryogenic storage in the liquid phase at ambient pressure scored the highest safety performance. The results obtained support risk-informed decision-making in the shift towards the promotion of sustainable mobility in urban areas.
Green Hydrogen as a Clean Energy Resource and Its Applications as an Engine Fuel
Jan 2024
Publication
The world’s economy heavily depends on the energy resources used by various countries. India is one of the promising developing nations with very low crude reserves actively looking for new renewable energy resources to power its economy. Higher energy consumption and environmental pollution are two big global challenges for our sustainable development. The world is currently facing a dual problem of an energy crisis as well as environmental degradation. So there is a strong need to reduce our dependency on fossil fuels and greenhouse gas emissions. This can be achieved to a great extent by universally adopting clean fuels for all daily life uses like ethanol or liquified natural gas (LNG) as these burn very clean and do not emit many pollutants. Nowadays green hydrogen has emerged as a new clean energy source which is abundantly available and does not pollute much. This article explores the various benefits of green hydrogen with respect to fossil fuels various techniques of producing it and its possible use in different sectors such as industry transport and aviation as well as in day-to-day life. Finally it explores the use of green hydrogen as fuel in automobile engines its blending with CNG gas and its benefits in reducing emissions compared to fossil fuels. On combustion green hydrogen produces only water vapours and is thus a highly clean fuel. Thus it can potentially help humanity preserve the environment due to its ultra-low emissions and can be a consistent and reliable source of energy for generations to come thereby ending the clean energy security debate forever.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Navigating Turbulence: Hydrogen's Role in the Decarbonization of the Aviation Sector
Jan 2024
Publication
This paper offers a comprehensive analysis of the historical evolution and the current state of the aviation industry with a particular emphasis on the critical need for this sector to decarbonize. It delves into emerging propulsion technologies such as battery electric and hydrogen-based systems assessing their potential impact on sustainability within the aviation sector. Special attention is devoted to the global regulatory framework notably carbon offsetting and emission reduction scheme for international aviation which encapsulates initiatives such as lower carbon aviation fuels and sustainable aviation fuels. Examining the environmental challenges facing aviation the paper underscores the necessity for a balanced and comprehensive strategy that integrates various approaches to achieve sustainable solutions. By addressing both the historical context and contemporary advances the paper aims to provide a nuanced understanding of the complexities surrounding aviation's decarbonization journey acknowledging the industry's strides while recognizing the ongoing challenges in the pursuit of sustainability.
Sustainable E-Fuels: Green Hydrogen, Methanol and Ammonia for Carbon-Neutral Transportation
Dec 2023
Publication
Increasingly stringent sustainability and decarbonization objectives drive investments in adopting environmentally friendly low and zero-carbon fuels. This study presents a comparative framework of green hydrogen green ammonia and green methanol production and application in a clear context. By harnessing publicly available data sources including from the literature this research delves into the evaluation of green fuels. Building on these insights this study outlines the production process application and strategic pathways to transition into a greener economy by 2050. This envisioned transformation unfolds in three progressive steps: the utilization of green hydrogen green ammonia and green methanol as a sustainable fuel source for transport applications; the integration of these green fuels in industries; and the establishment of mechanisms for achieving the net zero. However this research also reveals the formidable challenges of producing green hydrogen green ammonia and green methanol. These challenges encompass technological intricacies economic barriers societal considerations and far-reaching policy implications necessitating collaborative efforts and innovative solutions to successfully develop and deploy green hydrogen green ammonia and green methanol. The findings unequivocally demonstrate that renewable energy sources play a pivotal role in enabling the production of these green fuels positioning the global transition in the landscape of sustainable energy.
Hydrogen-Powered Vehicles: Comparing the Powertrain Efficiency and Sustainability of Fuel Cell versus Internal Combustion Engine Cars
Feb 2024
Publication
Due to the large quantities of carbon emissions generated by the transportation sector cleaner automotive technologies are needed aiming at a green energy transition. In this scenario hydrogen is pointed out as a promising fuel that can be employed as the fuel of either a fuel cell or an internal combustion engine vehicle. Therefore in this work we propose the design and modeling of a fuel cell versus an internal combustion engine passenger car for a driving cycle. The simulation was carried out using the quasistatic simulation toolbox tool in Simulink considering the main powertrain components for each vehicle. Furthermore a brief analysis of the carbon emissions associated with the hydrogen production method is addressed to assess the clean potential of hydrogen-powered vehicles compared to conventional fossil fuel-fueled cars. The resulting analysis has shown that the hydrogen fuel cell vehicle is almost twice as efficient compared to internal combustion engines resulting in a lower fuel consumption of 1.05 kg-H2/100 km in the WLTP driving cycle for the fuel cell vehicle while the combustion vehicle consumed about 1.79 kg-H2/100 km. Regarding using different hydrogen colors to fuel the vehicle hydrogen-powered vehicles fueled with blue and grey hydrogen presented higher carbon emissions compared to petrol-powered vehicles reaching up to 2–3 times higher in the case of grey hydrogen. Thus green hydrogen is needed as fuel to keep carbon emissions lower than conventional petrol-powered vehicles.
Techno-economic Feasibility of Distributed Waste-to-hydrogen Systems to Support Green Transport in Glasgow
Mar 2022
Publication
Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock hydrogen production reactors and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included inter alia direct cost data on construction maintenance operations infrastructure and storage along with indirect cost data comprising environmental impacts and externalities cost of pollution carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development.
Assessment of Selected Alternative Fuels for Spanish Navy Ships According to Multi-Criteria Decision Analysis
Dec 2023
Publication
Climate change and environmental degradation are growing concerns in today’s society which has led to greater awareness and responsibility regarding the need to adopt sustainable practices. The European Union has established the goal of achieving climate neutrality by 2050 which implies a significant reduction in greenhouse gas emissions in all sectors. To achieve this goal renewable energies the circular economy and energy efficiency are being promoted. A major source of emissions is the use of fossil fuels in different types of ships (from transport ships to those used by national navies). Among these it highlights the growing interest of the defense sector in trying to reduce these emissions. The Spanish Ministry of Defense is also involved in this effort and is taking steps to reduce the carbon footprint in military operations and improve sustainability in equipment acquisition and maintenance. The objective of this study is to identify the most promising alternative fuel among those under development for possible implementation on Spanish Navy ships in order to reduce greenhouse gas emissions and improve its capabilities. To achieve this a multi-criteria decision-making method will be used to determine the most viable fuel option. The data provided by the officers of the Spanish Navy is of great importance thanks to their long careers in front of the ships. The analysis revealed that hydrogen was the most suitable fuel with the highest priority ahead of LNG and scored the highest in most of the sections of the officials’ ratings. These fuels are less polluting and would allow a significant reduction in emissions during the navigation of ships. However a further study would also have to be carried out on the costs of adapting to their use and the safety of their use.
Analysis of a Distributed Green Hydrogen Infrastructure Designed to Support the Sustainable Mobility of a Heavy-duty Fleet
Aug 2023
Publication
Clean hydrogen is a key pillar for the net zero economy which can be deployed by consistent utilization on heavy-duty transport. This study investigates a distributed green hydrogen infrastructure (DHI) for heavy-duty transportation consisting of on-site hydrogen production storage compression and refueling systems in Italy. Two options for energy supply are analyzed: grid connection using green energy via Power Purchasing Agreements (PPAs) and direct connection to the photovoltaic field respectively. Radiation data are representative of the three main Italian areas namely South (Catania) Center (Roma) and North (Milano). The sensitivity analysis varies the PPA value between 50 V/MWh and 200 V/MWh and the water electrolysis capacity factor between 20% and 100%. The study finds that the LCOH ranges from 7.4 V/kgH2 to 67.8 V/kgH2 for the first option and 5.5 V/kgH2 to 27.5 V/kgH2 for the second option with Southern Italy having the lowest LCOH due to higher solar irradiation. The research shows that a DHI can offer economic and technical benefits for heavy-duty mobility. However the performance is highly influenced by external conditions such as hydrogen demand and electricity prices. This study provides valuable insights into designing and operating a DHI for heavy-duty mobility promoting a carbon-free society.
Hydrogen Consumption and Durability Assessment of Fuel Cell Vehicles in Realistic Driving
Jan 2024
Publication
This study proposes a predictive equivalent consumption minimization strategy (P-ECMS) that utilizes velocity prediction and considers various dynamic constraints to mitigate fuel cell degradation assessed using a dedicated sub-model. The objective is to reduce fuel consumption in real-world conditions without prior knowledge of the driving mission. The P-ECMS incorporates a velocity prediction layer into the Energy Management System. Comparative evaluations with a conventional adaptive-ECMS (A-ECMS) a standard ECMS with a well-tuned constant equivalence factor and a rule-based strategy (RBS) are conducted across two driving cycles and three fuel cell dynamic restrictions (|∕| ≤ 0.1 0.01 and 0.001 A∕cm2 ). The proposed strategy achieves H2 consumption reductions ranging from 1.4% to 3.0% compared to A-ECMS and fuel consumption reductions of up to 6.1% when compared to RBS. Increasing dynamic limitations lead to increased H2 consumption and durability by up to 200% for all tested strategies.
Development of Electric Power Generator by Using Hydrogen
Nov 2023
Publication
In this research we developed a hydrogen (H2 ) electric generator in an H2 generation system based on chemical reactions. In the experiment we tested the performance of the H2 electric generator and measured the amount of H2 generated. The maximum output was 700 W and the thermal efficiency was 18.2%. The theoretical value and measured value were almost the same and the maximum error was 4%.
A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues
Jan 2024
Publication
The complexity of Fuel Cell (FC) systems demands a profound and sustained understanding of the various phenomena occurring inside of it. Thus far FCs especially Proton Exchange Membrane Fuel Cells (PEMFCs) have been recognized as being among the most promising technologies for reducing Green House Gas (GHG) emissions because they can convert the chemical energy bonded to hydrogen and oxygen into electricity and heat. However their efficiency remains limited. To enhance their efficiency two distinct factors are suggested. First the quality of materials plays a significant role in the development of more robust and efficient FCs. Second the ability to identify mitigate and reduce the occurrence of faults through the use of robust control algorithms is crucial. Therefore more focused on the second point this paper compiles distinguishes and analyzes several publications from the past 25 years related to faults and their diagnostic techniques in FCs. Furthermore the paper presents various schemes outlining different symptoms their causes and corresponding fault algorithms.
The Use of Hydrogen as Alternative Fuel for Ship Propulsion: A Case Study of Full and Partial Retrofitting of Roll-on/Roll-off Vessels for Short Distance Routes
Oct 2023
Publication
Roll-on/Roll-Off (Ro-Ro) vessels including those without and with passenger accommodation Roll-on/roll-off passenger (Ro-Pax) can be totally or partially retrofitted to reduce the greenhouse gas (GHG) emissions in maritime transport not only during hoteling operation at the dock but also during service. This study is based on data of the vessel routes connecting the Port of Piombino to the Elba Island in Italy. Three retrofitting scenarios have been considered: replacement of the main and auxiliary engines with fuel cells (FC) (full retrofitting) replacement of the auxiliary engines with FCs (partial retrofitting) and replacement of the auxiliary engines with FCs and hoteling only with auxiliary engines for one specific vessel. The amount of hydrogen the filling time and the energy needed for production compression and pre-cooling of hydrogen have been calculated for the different scenarios.
Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage
Feb 2024
Publication
A novel multi-objective robust optimization model of an integrated energy system with hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon economy operation of the integrated energy system of a park. Firstly the lowest total system cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto front solution set of the objective function is applied by compromise planning and the optimal solution among them is obtained by the maximum–minimum fuzzy method. Furthermore the robust optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally it is demonstrated that the illustrated HIES can significantly reduce the total system cost carbon emissions and abandoned wind and solar power. Meanwhile the effectiveness of the proposed model and solution method is verified by analyzing the influence of multi-objective solutions and a robust coefficient on the Chongli Demonstration Project in Hebei Province.
Techno-economic Analysis of Direct Air Carbon Capture and Hydrogen Production Integrated with a Small Modular Reactor
Dec 2023
Publication
This study aims to explore the techno-economic potential of harnessing waste heat from a Small Modular Reactor (SMR) to fuel Direct Air Carbon Capture (DACC) and High Temperature Steam Electrolysis (HTSE) technologies. The proposed system’s material flows and energy demands are modelled via the ASPEN Plus v12.1 where results are utilised to provide estimates of the Levelised Cost of DACC (LCOD) and Levelised Cost of Hydrogen (LCOH). The majority of thermal energy and electrical utilities are assumed to be supplied directly by the SMR. A sensitivity analysis is then performed to investigate the effects of core operational parameters of the system. Key results indicate levelised costs of 4.66 $/kgH2 at energy demands of 34.37 kWh/kgH2 and 0.02 kWh/kgH2 thermal for HTSE hydrogen production and 124.15 $/tCO2 at energy demands of 31.67 kWh/tCO2 and 126.33 kWh/tCO2 thermal for carbon capture; parameters with most impact on levelised costs are air intake and steam feed for LCOD and LCOH respectively. Both levelised costs i.e. LCOD and LCOH would decrease with the production scale. The study implies that an integrated system of DACC and HTSE provided the best cost-benefit results however the cost-benefit analysis is heavily subjective to geography politics and grid demand.
Carbon-Free Heat Production for High-Temperature Heating Systems
Oct 2023
Publication
The article presents a new carbon-free heat production technology for district heating which consists of a combined heat and power generation fuel cell (FC CHP) with CO2 capture and a two-stage cascade high-temperature heat pump (TCHHP). The FC generates heat and electricity the latter being used to drive the compressors of the TCHHP. During the winter period the water temperature achieved can occasionally be too low so it would be heated up with hydrogen gas boilers. The hydrogen would be produced by reforming natural gas synthetic methane or biogas. The results are presented with natural gas utilization—the ratio between the obtained heat flow transferred directly to the water for district heating and the input heat flow of natural gas. In the case of a return water temperature of 60 ◦C and district heating temperature of 85 ◦C the TCHHP whose heat source is groundwater achieves plant efficiency of 270.04% in relation to the higher heating value (HHV) and 241.74% in relation to the lower heating value (LHV) of natural gas. A case with a TCHHP whose heat source is low-temperature geothermal water achieves a plant efficiency of 361.36% in relation to the HHV and 323.49% in relation to the LHV
Management of Hybrid Wind and Photovoltaic System Electrolyzer for Green Hydrogen Production and Storage in the Presence of a Small Fleet of Hydrogen Vehicles— An Economic Assessment
Dec 2023
Publication
Nowadays with the need for clean and sustainable energy at its historical peak new equipment strategies and methods have to be developed to reduce environmental pollution. Drastic steps and measures have already been taken on a global scale. Renewable energy sources (RESs) are being installed with a growing rhythm in the power grids. Such installations and operations in power systems must also be economically viable over time to attract more investors thus creating a cycle where green energy e.g. green hydrogen production will be both environmentally friendly and economically beneficial. This work presents a management method for assessing wind–solar– hydrogen (H2 ) energy systems. To optimize component sizing and calculate the cost of the produced H2 the basic procedure of the whole management method includes chronological simulations and economic calculations. The proposed system consists of a wind turbine (WT) a photovoltaic (PV) unit an electrolyzer a compressor a storage tank a fuel cell (FC) and various power converters. The paper presents a case study of green hydrogen production on Sifnos Island in Greece through RES together with a scenario where hydrogen vehicle consumption and RES production are higher during the summer months. Hydrogen stations represent H2 demand. The proposed system is connected to the main power grid of the island to cover the load demand if the RES cannot do this. This study also includes a cost analysis due to the high investment costs. The levelized cost of energy (LCOE) and the cost of the produced H2 are calculated and some future simulations correlated with the main costs of the components of the proposed system are pointed out. The MATLAB language is used for all simulations.
A Review of the Research Progress and Application of Key Components in the Hydrogen Fuel Cell System
Jan 2024
Publication
The hydrogen cycle system one of the main systems used for hydrogen fuel cells has many advantages. It can improve the efficiency the water capacity and the management of thermal fuel cells. It can also enhance the safety of the system. Therefore it is widely used in hydrogen fuel cell vehicles. We introduce the structure and principles of hydrogen cycle pumps ejectors and steam separators and analyze and summarize the advantages of the components as well as reviewing the latest research progress and industrialization status of hydrogen cycle pumps and ejectors. The technical challenges in hydrogen circulation systems and the development direction of key technologies in the future are discussed. This paper aims to provide a reference for research concerning hydrogen energy storage application technology in hydrogen fuel cell systems.
Numerical Simulation of the Transport and the Thermodynamic Properties of Imported Natural Gas Inected with Hydrogen in the Manifold
Nov 2023
Publication
Blending hydrogen with natural gas (NG) is an efficient method for transporting hydrogen on a large scale at a low cost. The manifold at the NG initial station is an important piece of equipment that enables the blending of hydrogen with NG. However there are differences in the components and component contents of imported NG from different countries. The components of hydrogen-blended NG can affect the safety and efficiency of transportation through pipeline systems. Therefore numerical simulations were performed to investigate the blending process and changes in the thermodynamic properties of four imported NGs and hydrogen in the manifold. The higher the heavy hydrocarbon content in the imported NG the longer the distance required for the gas to mix uniformly with hydrogen in the pipeline. Hydrogen blending reduces the temperature and density of NG. The gas composition is the main factor affecting the molar calorific value of a gas mixture and hydrogen blending reduces the molar calorific value of NG. The larger the content of high-molar calorific components in the imported NG the higher the molar calorific value of the gas after hydrogen blending. Increasing both the temperature and hydrogen mixing ratio reduces the Joule-Thomson coefficient of the hydrogen-blended NG. The results of this study provide technical references for the transport of hydrogen-blended NG.
Quantitative Risk Assessment of Hydrogen Refueling Station in Cheonan City of South Korea
Oct 2023
Publication
The average temperature of the Earth has risen due to the accumulation of greenhouse gases emitted from the usage of fossil fuels. The consequential climate changes have caused various problems fueling the growing demand for environmentally friendly energy sources that can replace fossil fuels. Batteries and hydrogen have thus been utilized as substitute energy sources for automobiles to reduce fossil fuel consumption. Consequently the number of hydrogen refueling stations is increasing due to an increase in the number of hydrogen-powered vehicles. However several incidents have been reported in the United States of America and Japan where hydrogen refueling stations have been operating for a long time. A risk assessment of hydrogen refueling stations operating in urban areas was performed in this study by calculating the risk effect range using a process hazard analysis tool (PHAST) v8.7 from DNV-GL and a hydrogen risk assessment model (HyRAM) from Sandia National Laboratories (SNL). The societal risk was assessed through a probit model based on the calculation results. The assessment results showed that the risk caused by jet fire and overpressure in an incident is lower than the ‘as low as reasonably practicable’ (ALARP) level.
Optimal Expansion of a Multi-domain Virtual Power Plant for Green Hydrogen Production to Decarbonise Seaborne Passenger Transportation
Nov 2023
Publication
Many industrialised nations recently concentrated their focus on hydrogen as a viable option for the decarbonisation of fossil-intensive sectors including maritime transportation. A sustainable alternative to the conventional production of hydrogen based on fossil hydrocarbons is water electrolysis powered by renewable energy sources. This paper presents a detailed techno-economic optimisation model for sizing an electrolyser and a hydrogen storage embedded in a multi-domain virtual power plant to produce green hydrogen for seaborne passenger transportation. We base our numerical analysis on three years of historical data from a renewable-dominated 60/10 kV substation on the Danish island of Bornholm and on data for ferries to the mainland of Sweden. Our analysis shows that an electrolyser system serves as a valuable flexibility asset on the electrical demand side while supporting the thermal management of the district heating system and contributing to meeting the ferries hydrogen demand. With a sized electrolyser of 9.63 MW and a hydrogen storage of 1.45 t the hydrogen assets are able to take up a large share of the local excess electricity generation. The waste heat of the electrolyser delivers a significant share of 21.4% of the annual district heating demand. Moreover the substation can supply 26% of the hydrogen demand of the ferries from local resources. We further examine the sensitivity of the asset sizing towards investment costs electrolyser efficiency and hydrogen market prices.
Profitability of Hydrogen-Based Microgrids: A Novel Economic Analysis in Terms of Electricity Price and Equipment Costs
Oct 2023
Publication
The current need to reduce carbon emissions makes hydrogen use essential for selfconsumption in microgrids. To make a profitability analysis of a microgrid the influence of equipment costs and the electricity price must be known. This paper studies the cost-effective electricity price (EUR/kWh) for a microgrid located at ‘’La Rábida Campus” (University of Huelva south of Spain) for two different energy-management systems (EMSs): hydrogen-priority strategy and batterypriority strategy. The profitability analysis is based on one hand on the hydrogen-systems’ cost reduction (%) and on the other hand considering renewable energy sources (RESs) and energy storage systems (ESSs) on cost reduction (%). Due to technological advances microgrid-element costs are expected to decrease over time; therefore future profitable electricity prices will be even lower. Results show a cost-effective electricity price ranging from 0.61 EUR/kWh to 0.16 EUR/kWh for hydrogen-priority EMSs and from 0.4 EUR/kWh to 0.17 EUR/kWh for battery-priority EMSs (0 and 100% hydrogen-system cost reduction respectively). These figures still decrease sharply if RES and ESS cost reductions are considered. In the current scenario of uncertainty in electricity prices the microgrid studied may become economically competitive in the near future
Hydrogen Storage as a Key Energy Vector for Car Transportation: A Tutorial Review
Oct 2023
Publication
Hydrogen storage is a key enabling technology for the extensive use of hydrogen as energy carrier. This is particularly true in the widespread introduction of hydrogen in car transportation. Indeed one of the greatest technological barriers for such development is an efficient and safe storage method. So in this tutorial review the existing hydrogen storage technologies are described with a special emphasis on hydrogen storage in hydrogen cars: the current and the ongoing solutions. A particular focus is given on solid storage and some of the recent advances on plasma hydrogen ion implantation which should allow not only the preparation of metal hydrides but also the imagination of a new refluing circuit. From hydrogen discovery to its use as an energy vector in cars this review wants to be as exhaustive as possible introducing the basics of hydrogen storage and discussing the experimental practicalities of car hydrogen fuel. It wants to serve as a guide for anyone wanting to undertake such a technology and to equip the reader with an advanced knowledge on hydrogen storage and hydrogen storage in hydrogen cars to stimulate further researches and yet more innovative applications for this highly interesting field.
Fuelling the Future: An In-depth Review of Recent Trends, Challenges and Opportunities of Hydrogen Fuel Cell for a Sustainable Hydrogen Economy
Sep 2023
Publication
Hydrogen has gained tremendous momentum worldwide as an energy carrier to transit to a net zero emission energy sector. It has been widely adopted as a promising large-scale renewable energy (RE) storage solution to overcome RE resources’ variability and intermittency nature. The fuel cell (FC) technology became in focus within the hydrogen energy landscape as a cost-effective pathway to utilize hydrogen for power generation. Therefore FC technologies’ research and development (R&D) expanded into many pathways such as cost reduction efficiency improvement fixed and mobile applications lifetime safety and regulations etc. Many publications and industrial reports about FC technologies and applications are available. This raised the necessity for a holistic review study to summarize the state-of-the-art range of FC stacks such as manufacturing the balance of plant types technologies applications and R&D opportunities. At the beginning the principal technologies to compare the well known types followed by the FC operating parameters are presented. Then the FC balance of the plant i.e. building components and materials with its functionality and purpose types and applications are critically reviewed with their limitations and improvement opportunities. Subsequently the electrical properties of FCs with their key features including advantages and disadvantages were investigated. Applications of FCs in different sectors are elaborated with their key characteristics current status and future R&D opportunities. Economic attributes of fuel cells with a pathway towards low cost are also presented. Finally this study identifies the research gaps and future avenues to guide researchers and the hydrogen industry.
Grid Ancillary Services using Electrolyzer-based Power-to-Gas Systems with Increasing Renewable Penetration
Nov 2023
Publication
Increasing penetrations of renewable-based generation have led to a decrease in the bulk power system inertia and an increase in intermittency and uncertainty in generation. Energy storage is considered to be an important factor to help manage renewable energy generation at greater penetrations. Hydrogen is a viable long-term storage alternative. This paper analyzes and presents use cases for leveraging electrolyzer-based power-to-gas systems for electric grid support. The paper also discusses some grid services that may favor the use of hydrogenbased storage over other forms such as battery energy storage. Real-time controls are developed implemented and demonstrated using a power-hardware-in-the-loop(PHIL) setup with a 225-kW proton-exchange-membrane electrolyzer stack. These controls demonstrate frequency and voltage support for the grid for different levels of renewable penetration (0% 25% and 50%). A comparison of the results shows the changes in respective frequencies and voltages as seen as different buses as a result of support from the electrolyzers and notes the impact on hydrogen production as a result of grid support. Finally the paper discusses the practical nuances of implementing the tests with physical hardware such as inverter/electrolyzer efficiency as well as the related constraints and opportunities.
A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future
Dec 2023
Publication
The H2-ICE project aims at developing through numerical simulation a new generation of hybrid powertrains featuring a hydrogen-fueled Internal Combustion Engine (ICE) suitable for 12 m urban buses in order to provide a reliable and cost-effective solution for the abatement of both CO2 and criteria pollutant emissions. The full exploitation of the potential of such a traction system requires a substantial enhancement of the state of the art since several issues have to be addressed. In particular the choice of a more suitable fuel injection system and the control of the combustion process are extremely challenging. Firstly a high-fidelity 3D-CFD model will be exploited to analyze the in-cylinder H2 fuel injection through supersonic flows. Then after the optimization of the injection and combustion process a 1D model of the whole engine system will be built and calibrated allowing the identification of a “sweet spot” in the ultra-lean combustion region characterized by extremely low NOx emissions and at the same time high combustion efficiencies. Moreover to further enhance the engine efficiency well above 40% different Waste Heat Recovery (WHR) systems will be carefully scrutinized including both Organic Rankine Cycle (ORC)-based recovery units as well as electric turbo-compounding. A Selective Catalytic Reduction (SCR) aftertreatment system will be developed to further reduce NOx emissions to near-zero levels. Finally a dedicated torque-based control strategy for the ICE coupled with the Energy Management Systems (EMSs) of the hybrid powertrain both optimized by exploiting Vehicle-To-Everything (V2X) connection allows targeting H2 consumption of 0.1 kg/km. Technologies developed in the H2-ICE project will enhance the know-how necessary to design and build engines and aftertreatment systems for the efficient exploitation of H2 as a fuel as well as for their integration into hybrid powertrains.
Carbon Footprint Enhancement of an Agricultural Telehandler through the Application of a Fuel Cell Powertrain
Mar 2024
Publication
The growing awareness about climate change and environmental pollution is pushing the industrial and academic world to investigate more sustainable solutions to reduce the impact of anthropic activities. As a consequence a process of electrification is involving all kind of vehicles with a view to gradually substitute traditional powertrains that emit several pollutants in the exhaust due to the combustion process. In this context fuel cell powertrains are a more promising strategy with respect to battery electric alternatives where productivity and endurance are crucial. It is important to replace internal combustion engines in those vehicles such as the those in the sector of NonRoad Mobile Machinery. In the present paper a preliminary analysis of a fuel cell powertrain for a telehandler is proposed. The analysis focused on performance fuel economy durability applicability and environmental impact of the vehicle. Numerical models were built in MATLAB/Simulink and a simple power follower strategy was developed with the aim of reducing components degradation and to guarantee a charge sustaining operation. Simulations were carried out regarding both peak power conditions and a typical real work scenario. The simulations’ results showed that the fuel cell powertrain was able to achieve almost the same performances without excessive stress on its components. Indeed a degradation analysis was conducted showing that the fuel cell system can achieve satisfactory durability. Moreover a Well-to-Wheel approach was adopted to evaluate the benefits in terms of greenhouse gases of adopting the fuel cell system. The results of the analysis demonstrated that even if considering grey hydrogen to feed the fuel cell system the proposed powertrain can reduce the equivalent CO2 emissions of 69%. This reduction can be further enhanced using hydrogen from cleaner production processes. The proposed preliminary analysis demonstrated that fuel cell powertrains can be a feasible solution to substitute traditional systems on off-road vehicles even if a higher investment cost might be required.
Sustainable Power Generation Expansion in Island Systems with Extensive RES and Energy Storage
Oct 2023
Publication
Insular networks constitute ideal fields for investment in renewables and storage due to their excellent wind and solar potential as well the high generation cost of thermal generators in such networks. Nevertheless in order to ensure the stability of insular networks network operators impose strict restrictions on the expansion of renewables. Storage systems render ideal solutions for overcoming the aforementioned restrictions unlocking additional renewable capacity. Among storage technologies hybrid battery-hydrogen demonstrates beneficial characteristics thanks to the complementary features that battery and hydrogen exhibit regarding efficiency self-discharge cost etc. This paper investigates the economic feasibility of a private investment in renewables and hybrid hydrogen-battery storage realized on the interconnected island of Crete Greece. Specifically an optimization formulation is proposed to optimize the capacity of renewables and hybrid batteryhydrogen storage in order to maximize the profit of investment while simultaneously reaching a minimum renewable penetration of 80% in accordance with Greek decarbonization goals. The numerical results presented in this study demonstrate that hybrid hydrogen-battery storage can significantly reduce electricity production costs in Crete potentially reaching as low as 64 EUR/MWh. From an investor’s perspective even with moderate compensation tariffs the energy transition remains profitable due to Crete’s abundant wind and solar resources. For instance with a 40% subsidy and an 80 EUR/MWh compensation tariff the net present value can reach EUR 400 million. Furthermore the projected cost reductions for electrolyzers and fuel cells by 2030 are expected to enhance the profitability of hybrid renewable-battery-hydrogen projects. In summary this research underscores the sustainable and economically favorable prospects of hybrid hydrogen-battery storage systems in facilitating Crete’s energy transition with promising implications for investors and the wider renewable energy sector.
Model-based Economic Analysis of Off-grid Wind/Hydrogen Systems
Sep 2023
Publication
Hydrogen has emerged in the context of large-scale renewable uptake and deep decarbonization. However the high cost of splitting water into hydrogen using renewable energy hinders the development of green hydrogen. Here we provide a cost analysis of hydrogen from off-grid wind. It is found that the current cost evaluation can be improved by examining the operational details of electrolysis. Instead of using low-resolution wind-speed data and linear electrolysis models we generate 5-min resolution wind data and utilize detailed electrolysis models that can describe the safe working range startup time and efficiency variation. Economic assessments are performed over 112 locations in seven countries to demonstrate the influence of operational models. It is shown that over-simplified models lead to less reliable results and the relative error can be 63.65% at most. Further studies have shown the global picture of producing green hydrogen. Based on the improved model we find that the levelized cost of hydrogen ranges from 1.66$/kg to 13.61$/kg. The wind-based hydrogen is cost-competitive in areas with abundant resources and lower investment cost such as China and Denmark. However it is still costly in most of the studied cases. An optimal sizing strategy or involving a battery as electricity storage can further reduce the hydrogen cost the effectiveness of which is location-specific. The sizing strategies of electrolyzers differ by country and rely on the specific wind resource. In contrast the sizing of batteries presents similar trends. Smaller batteries are preferred in almost all the investigated cases.
Comparison of Battery Electric Vehicles and Fuel Cell Vehicles
Sep 2023
Publication
In the current context of the ban on fossil fuel vehicles (diesel and petrol) adopted by several European cities the question arises of the development of the infrastructure for the distribution of alternative energies namely hydrogen (for fuel cell electric vehicles) and electricity (for battery electric vehicles). First we compare the main advantages/constraints of the two alternative propulsion modes for the user. The main advantages of hydrogen vehicles are autonomy and fast recharging. The main advantages of battery-powered vehicles are the lower price and the wide availability of the electricity grid. We then review the existing studies on the deployment of new hydrogen distribution networks and compare the deployment costs of hydrogen and electricity distribution networks. Finally we conclude with some personal conclusions on the benefits of developing both modes and ideas for future studies on the subject.
Research on Energy Management Method of Fuel Cell/Supercapacitor Hybrid Trams Based on Optimal Hydrogen Consumption
Jul 2023
Publication
In this paper based on the operating states and characteristics of fuel cell/supercapacitor hybrid trams an optimal hydrogen energy management method is proposed. This method divides the operating states into two parts: traction state and non-traction state. In the traction state the real-time loss function of the hybrid power system which is used to obtain the fuel cell optimal output power under the different demand powers and supercapacitor voltage is established. In the non-traction state the constant-power charging method which is obtained by solving the power-voltage charging model is used to ensure the supercapacitor voltage of the beginning-state and the end-state in an entire operation cycle are the same. The RT-LAB simulation platform is used to verify that the proposed method has the ability to control the hybrid real-time system. Using the comparative experiment between the proposed method and power-follow method the results show that the proposed method offers a significant improvement in both fuel cell output stability and hydrogen consumption in a full operation cycle.
Optimal Decarbonization Strategies for an Industrial Port Area by Using Hydrogen as Energy Carrier
Jul 2023
Publication
This article discusses possible strategies for decarbonizing the energy systems of an existing port. The approach consists in creating a complete superstructure that includes the use of renewable and fossil energy sources the import or local production of hydrogen vehicles and other equipment powered by Diesel electricity or hydrogen and the associated refuelling and storage units. Two substructures are then identified one including all these options the other considering also the addition of the energy demand of an adjacent steel industry. The goal is to select from each of these two substructures the most cost-effective configurations for 2030 and 2050 that meet the emission targets for those years under different cost scenarios for the energy sources and conversion/storage units obtained from the most reliable forecasts found in the literature. To this end the minimum total cost of all the energy conversion and storage units plus the associated infrastructures is sought by setting up a Mixed Integer Linear Programming optimization problem where integer variables handle the inclusion of the different generation and storage units and their activation in the operational phases. The comprehensive picture of possible solutions set allows identifying which options can most realistically be realized in the years to come in relation to the different assumed cost scenarios. Optimization results related to the scenario projected to 2030 indicate the key role played by Diesel hybrid and electric systems while considering the most stringent or much more stringent scenarios for emissions in 2050 almost all vehicles energy demand and industry hydrogen demand is met by hydrogen imported as ammonia by ship.
No more items...