- Home
- A-Z Publications
- Publications
Publications
A Power Dispatch Allocation Strategy to Produce Green Hydrogen in a Grid-integrated Offshore Hybrid Energy System
Mar 2024
Publication
A dedicated grid-tied offshore hybrid energy system for hydrogen production is a promising solution to unlock the full benefit of offshore wind and solar energy and realize decarbonization and sustainable energy security targets in electricity and other sectors. Current knowledge of these offshore hybrid systems is limited particularly in the integration component control and allocation aspects. Therefore a grid-integrated analytical model with a power dispatch allocation strategy between the grid and electrolyzer for the co-production of hydrogen from the offshore hybrid energy system is developed in this paper. While producing hydrogen the proposed offshore hybrid energy system supplies a percentage of its capacity to the onshore grid facility and the amount of the electricity is quantified based on the electricity market price and available total offshore generation. The detailed controls of each component are discussed. A case study considers a hypothetical hybrid offshore energy system of 10 MW situated in a potential offshore off the NSW of Australia based on realistic metrological data. A grid-scale proton-exchange membrane electrolyzer stack is used and a model predictive power controller is implemented on the distributed hydrogen generation scheme. The model is helpful for the assessment or optimization of both the economics and feasibility of the dedicated offshore hybrid energy farm for hydrogen production systems.
2022 Standards Report
Feb 2022
Publication
Purpose: The standards module of the FCHO (https://www.fchobservatory.eu/observatory/Policyand-RCS/Standards) presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. Scope: This report presents the developments in European and international standards for the year 2021 and the start of 2022. Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2022; on a European level many standards are still in the process of being drafted. In 2021 & 2022 11 new standards have been published on the subject of fuel cell technologies and safety and measurement protocols of hydrogen technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. In the upcoming years multiple standards will be replaced such as the ISO 12619 1-12 set of standards affecting 40% of all collected standards. Previous Reports: The first report was published in September 2020 followed up by a second report in 2021. This report is the 3 rd Annual report.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
Green Hydrogen Production Potential in West Africa – Case of Niger
Jul 2022
Publication
Niger offers the possibility of producing green hydrogen due to its high solar energy potential. Due to the still growing domestic oil and coal industry the use of green hydrogen in the country currently seems unlikely at the higher costs of hydrogen as an energy vector. However the export of green hydrogen to industrialized countries could be an option. In 2020 a hydrogen partnership has been established between Germany and Niger. The potential import of green hydrogen represents an option for Germany and other European countries to decarbonize domestic energy supply. Currently there are no known projects for the electrolytic production of hydrogen in Niger. In this work potential hydrogen demand across electricity and transport sectors is forecasted until 2040. The electricity demand in 2040 is expected at 2934 GWh and the gasoline and diesel demand at 964 m3 and 2181 m3 respectively. Accordingly the total hydrogen needed to supply electricity and the transport sector (e.g. to replace 1% gasoline and diesel demand in 2040) is calculated at 0.0117 Mt. Only a small fraction of 5% of the land area in Niger would be sufficient to generate the required electricity from solar PV to produce hydrogen.
A Multi-period Sustainable Hydrogen Supply Chain Model Considering Pipeline Routing and Carbon Emissions: The Case Study of Oman
Nov 2022
Publication
This paper presents a mathematical model for a multi-period hydrogen supply chain design problem considering several design features not addressed in other studies. The model is formulated as a mixed-integer program allowing the production and storage facilities to be extended over time. Pipeline and tube trailer transport modes are considered for carrying hydrogen. The model also allows finding the optimal pipeline routes and the number of transport units. The objective is to obtain an efficient supply chain design within a given time frame in a way that the demand and carbon dioxide emissions constraints are satisfied and the total cost is minimized. A computer program is developed to ease the problem-solving process. The computer program extracts the geographical information from Google Maps and solves the problem using an optimization solver. Finally the applicability of the proposed model is demonstrated in a case study from Oman.
Heating Economics Evaluated Against Emissions: An Analysis of Low-carbon Heating Systems with Spatiotemporal and Dwelling Variations
Oct 2022
Publication
An understanding of heating technologies from the consumers’ perspective is critical to ensure low-carbon technologies are adopted for reducing their current associated emissions. Existing studies from the consumers’ perspective do not compare and optimise the full range and combinations of potential heating systems. There is also little consideration of how spatiotemporal and dwelling variations combined alter the economic and environmental effectiveness of technologies. The novelty of this paper is the creation and use of a new comprehensive framework to capture the range of heating technologies and their viability for any specific dwelling’s traits and climate from customers’ perspective which is missing from current studies. The model optimises combinations of prime heaters energy sources ancillary solar technologies and sizes thermal energy storage sizes and tariffs with hourly heating simulation across a year and compares their operation capital and lifetime costs alongside emissions to realise the true preferential heating systems for customers which could be used by various stakeholders. Using the UK as a case study the results show electrified heating is generally the optimum lifetime cost solution mainly from air source heat pumps coupled with photovoltaics. However direct electrical heating becomes more economically viable as dwelling demands reduce from smaller dwellings or warmer climates as shorter durations of the ownership are considered or with capital cost constraints from lower income households. Understanding this is of high importance as without correctly targeted incentives a larger uptake of direct electrical heating may occur which will burden the electrical network and generation to a greater extent than more efficient heat pumps.
Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers
Dec 2022
Publication
The fishing sector is faced with emission problems arising from the extensive use of diesel engines as prime movers. Energy efficiency environmental performance and minimization of operative costs through the reduction of fuel consumption are key research topics across the whole maritime sector. Ship emissions can be determined at different levels of complexity and accuracy i.e. by analyzing ship technical data and assuming its operative profile or by direct measurements of key parameters. This paper deals with the analysis of the environmental footprint of a fishing trawler operating in the Adriatic Sea including three phases of the Life-Cycle Assessment (manufacturing Well-to-Pump (WTP) and Pump-to-Wake (PTW)). Based on the data on fuel consumption the viability of replacing the conventional diesel-powered system with alternative options is analyzed. The results showed that fuels such as LNG and B20 represent the easiest solution that would result in a reduction of harmful gases and have a positive impact on overall costs. Although electrification and hydrogen represent one of the cleanest forms of energy due to their high price and complex application in an obsolete fleet they do not present an optimal solution for the time being. The paper showed that the use of alternative fuels would have a positive effect on the reduction of harmful emissions but further work is needed to find an environmentally acceptable and economically profitable pathway for redesigning the ship power system of fishing trawlers.
Hydrogen Trapping and Embrittlement in Metals - A Review
Apr 2024
Publication
Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engineering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE and hydrogen trapping and to develop HE-resistant alloys.
Towards a Prioritization of Alternative Energy Sources for Sustainable Shipping
Apr 2023
Publication
Studies on the prospects of the use of alternative fuels in the maritime industry have rarely been assessed in the context of developing countries. This study assesses seven energy sources for shipping in the context of Bangladesh with a view to ranking their prospects based on sustainability as well as identifying the energy transition criteria. Data were collected from maritime industry experts including seafarers shipping company executives government representatives and academics. The Bayesian Best-Worst Method (BWM) was used for ranking nine criteria related to the suitability and viability of the considered alternative energy sources. Next the PROMETHEE-GAIA method is applied for priority analysis of the seven energy alternatives. The findings reveal that capital cost alternative energy price and safety are the most important factors for alternative energy transition in Bangladesh. Apart from the benchmark HFO Liquified Natural Gas (LNG) HFO-Wind and LNG-Wind hybrids are considered the most viable alternatives. The findings of the study can guide policymakers in Bangladesh in terms of promoting viable energy sources for sustainable shipping.
Feasibility of Hydrogen Fuel Cell Technology for Railway Intercity Services: A Case Study for the Piedmont in North Carolina
Jul 2021
Publication
Diesel fuel combustion results in exhaust containing air pollutants and greenhouse gas emissions. Many railway vehicles use diesel fuel as their energy source. Exhaust emissions as well as concerns about economical alternative power supply have driven efforts to move to hydrogen motive power. Hydrogen fuel cell technology applied to railways offers the opportunity to eliminate harmful exhaust emissions and the potential for a low- or zero-emission energy supply chain. Currently only multiple-unit trains with hydrail technology operate commercially. Development of an Integrated Hybrid Train Simulator for intercity railway is presented. The proposed tool incorporates the effect of powertrain components during the wheel-to-tank process. Compared to its predecessors the proposed reconfigurable tool provides high fidelity with medium requirements and minimum computation time. Single train simulation and the federal government’s Greenhouse gases Regulated Emissions and Energy use in Transportation (GREET) model are used in combination to evaluate the feasibility of various train and powertrain configurations. The Piedmont intercity service operating in North Carolina is used as a case study. The study includes six train configurations and powertrain options as well as nine hydrogen supply options in addition to the diesel supply. The results show that a hydrail option is not only feasible but a low- or zero-carbon hydrogen supply chain could be possible.
Low-carbon and Cost-efficient Hydrogen Optimisation through a Grid-connected Electrolyser: The Case of GreenLab Skive
Nov 2022
Publication
Power-to-X technologies are a promising means to achieve Denmark’s carbon emission reduction targets. Water electrolysis can potentially generate carbon-neutral fuels if powered with renewable electricity. However the high variability of renewable sources threatens the Power-to-X plant’s cost-efficiency instead favouring high and constant operation rates. Therefore a diversified electricity supply is often an option to maximise the load factor of the Power-to-X systems. This paper analyses the impact of using different power sources on the cost of production and the carbon intensity of hydrogen produced by a Power-to-X system. GreenLab Skive the world’s first industrial facility with Power-to-X integrated into an industrial symbiosis network has been used as a case study. Results show that the wind/PV/grid-connected electrolyser for hydrogen and electricity production can reduce operational costs and emissions saving 30.6 × 107 kgCO2 and having a Net Present Value twice higher than a grid-connected electrolyser. In addition the carbon emission coefficient for this configuration is 3.5 × 10− 2 kgH2/kgCO2 against 7.0 gH2/gCO2 produced by Steam Methane Reforming. A sensitivity analysis detects the optimal capacity ratio between the renewables and the electrolyser. A plateau is reached for carbon emission performances suggesting a wind/grid-connected electrolyser setup with a wind farm three times the size of the electrolyser. Results demonstrate that hydrogen cost is not competitive yet with the electricity suggesting an investment cost reduction but can be competitive with the current hydrogen price if the wind capacity is less than three times the electrolyser capacity.
Future Energy Scenarios 2022
Jul 2022
Publication
Future Energy Scenarios (FES) represent a range of different credible ways to decarbonise our energy system as we strive towards the 2050 target.<br/>We’re less than 30 years away from the Net Zero deadline which isn’t long when you consider investment cycles for gas networks electricity transmission lines and domestic heating systems.<br/>FES has an important role to play in stimulating debate and helping to shape the energy system of the future.
A Review of Renewable Hydrogen Generation and Proton Exchange Membrane Fuel Cell Technology for Sustainable Energy Development
Mar 2023
Publication
Beyond its typical usage as an economical fuel for creating ammonia methanol and petroleum refineries hydrogen has become a modern form of energy. Energy-scarce advanced countries like Japan and Korea are concerned about energy privacy and environmental responsibility. Many wealthy countries have been fervently building hydrogen networks and renewable energy sources to fulfil their main goals or the growing requirement for energy. In this study we concentrate on proton-exchange membrane fuel cells (PEMFCs) generally viewed as financially viable for vehicle industries especially for automobiles demanding less hydrogen infrastructure facilities like fleets of cabs buses and logistical automobiles. This overview includes all of the significant PEMFC components focusing on the reaction gas diffusion and polymer. Without question the equipment necessary for a consistent supply of ultra-pure hydrogen is essential for the effectiveness of PEMFC in extensive requests.
International Competitiveness of Low-carbon Hydrogen Supply to the Northwest European Market
Oct 2022
Publication
This paper analyses which sources of low-carbon hydrogen for the Northwest European market are most competitive taking into account costs of local production conversion and transport. Production costs of electrolysis are strongly affected by local renewable electricity costs and capacity factors. Transport costs are the lowest by pipelines for distances under 10000 km with costs linearly increasing with distance. For larger distances transport as ammonia is more efficient with less relation to distance despite higher conversion costs. The most competitive low-carbon hydrogen supply to the Northwest European market appears to be local Steam Methane Reforming with Carbon Capture and Storage when international gas prices return back to historical levels. When gas prices however remain high then import from Morocco with electrolysis directly connected to offshore wind generation is found to be the most competitive source of low-carbon hydrogen. These conclusions are robust for various assumptions on costs and capacity factors.
Optimal Energy Management in a Standalone Microgrid, with Photovoltaic Generation, Short-Term Storage, and Hydrogen Production
Mar 2020
Publication
This paper addresses the energy management of a standalone renewable energy system. The system is configured as a microgrid including photovoltaic generation a lead-acid battery as a short term energy storage system hydrogen production and several loads. In this microgrid an energy management strategy has been incorporated that pursues several objectives. On the one hand it aims to minimize the amount of energy cycled in the battery in order to reduce the associated losses and battery size. On the other hand it seeks to take advantage of the long-term surplus energy producing hydrogen and extracting it from the system to be used in a fuel cell hybrid electric vehicle. A crucial factor in this approach is to accommodate the energy consumption to the energy demand and to achieve this a model predictive control (MPC) scheme is proposed. In this context proper models for solar estimation hydrogen production and battery energy storage will be presented. Moreover the controller is capable of advancing or delaying the deferrable loads from its prescheduled time. As a result a stable and efficient supply with a relatively small battery is obtained. Finally the proposed control scheme has been validated on a real case scenario.
Hydrogen-Powered Aviation—Design of a Hybrid-Electric Regional Aircraft for Entry into Service in 2040
Mar 2023
Publication
Over the past few years the rapid growth of air traffic and the associated increase in emissions have created a need for sustainable aviation. Motivated by these challenges this paper explores how a 50-passenger regional aircraft can be hybridized to fly with the lowest possible emissions in 2040. In particular the use of liquid hydrogen in this aircraft is an innovative power source that promises to reduce CO2 and NOx emissions to zero. Combined with a fuel-cell system the energy obtained from the liquid hydrogen can be used efficiently. To realize a feasible concept in the near future considering the aspects of performance and security the system must be hybridized. In terms of maximized aircraft sustainability this paper analyses the flight phases and ground phases resulting in an aircraft design with a significant reduction in operating costs. Promising technologies such as a wingtip propeller and electric green taxiing are discussed in this paper and their potential impacts on the future of aviation are highlighted. In essence the hybridization of regional aircraft is promising and feasible by 2040; however more research is needed in the areas of fuel-cell technology thermal management and hydrogen production and storage.
Future of Electric and Hydrogen Cars and Trucks: An Overview
Apr 2023
Publication
The negative consequences of toxic emissions from internal combustion engines energy security climate change and energy costs have led to a growing demand for clean power sources in the automotive industry. The development of eco-friendly vehicle technologies such as electric and hydrogen vehicles has increased. This article investigates whether hydrogen vehicles will replace electric vehicles in the future. The results showed that fuel-cell cars are unlikely to compete with electric cars. This is due to the advancements in electric vehicles and charging infrastructure which are becoming more cost-effective and efficient. Additionally the technical progress in battery electric vehicles (BEVs) is expected to reduce the market share of fuel-cell electric vehicles (FCEVs) in passenger vehicles. However significant investments have been made in hydrogen cars. Many ongoing investments seem to follow the sunk cost fallacy where decision-makers continue to invest in an unprofitable project due to their already invested resources. Furthermore even with megawatt charging fuel-cell trucks cost more than battery-powered electric trucks. The use cases for fuel-cell electric trucks are also much more limited as their running expenses are higher compared to electric cars. Hydrogen vehicles may be beneficial for heavy transport in remote areas. However it remains to be seen if niche markets are large enough to support fuel-cell electric truck commercialization and economies of scale. In summary we believe that hydrogen vehicles will not replace electric cars and trucks at least before 2050.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
CFD Modelling of Hydrogen and Hydrogen-methane Explosions - Analysis of Varying Concentration and Reduced Oxygen Atmospheres
Feb 2023
Publication
This paper evaluates the predictive capabilities of the advanced consequence model FLACS-CFD for deflagrations involving hydrogen. Two modelling approaches are presented: the extensively validated model system originally developed for hydrocarbons included in FLACS-CFD 22.1 and a Markstein number dependent model implemented in the in-house version FLACS-CFD 22.1 IH. The ability of the models to predict the overpressure and the flame arrival time for scenarios with different concentrations of hydrogen and thus different Lewis and Markstein numbers is assessed. Furthermore the effect of adding methane or nitrogen on overpressure for different regimes of premixed combustion are investigated. The validation dataset includes deflagrations in the open or in congested open areas and vented deflagrations in empty or congested enclosures. The overpressure predictions by FLACS-CFD 22.1 IH are found to be more accurate than those obtained with FLACS-CFD 22.1 for scenarios with varying hydrogen concentrations and/or added nitrogen or methane in the mixture. The predictions by FLACS-CFD 22.1 IH for lean hydrogen mixtures are within a factor of 2 of the values observed in the experiments. Further development of the model is needed for more accurate prediction of deflagrations involving rich hydrogen mixtures as well as scenarios with other fuels and/or conditions where the initial pressure or temperature deviate significantly from ambient conditions.
Low Carbon Optimal Operation of Integrated Energy System Based on Concentrating Solar Power Plant and Power to Hydrogen
Mar 2023
Publication
A new integrated energy system (IES) framework is created in order to encourage the consumption of renewable energy which is represented by wind and solar energy and lower carbon emissions. The connection between the units in the composite system is examined in this research. In-depth analysis is done on how energy is transferred between electricity heat gas and hydrogen. The system model and constraints are used to build an objective function with the lowest total operating cost. The calculation of carbon trading includes the ladder carbon trading method. And set up 6 cases for analysis which verifies the effectiveness of the participation of the concentrated solar power plant (CSPP) in the heat supply and power to hydrogen system (P2HS) in reducing the total operating cost of the system reducing wind curtailment and light curtailment and reducing carbon emissions. Under the model considered in this paper reduces the total operating cost reduces by 27.04% when the concentrated solar power plant is involved in the supply of thermal load. And the carbon emission is reduced by 14.529%. Compared with the traditional power to gas considers the power to hydrogen system in this paper which reduces the total operating cost by 4.79%.
Comparative Risk Assessment of a Hydrogen Refueling Station Using Gaseous Hydrogen and Formic Acid as the Hydrogen Carrier
Mar 2023
Publication
To realize a hydrogen economy many studies are being conducted regarding the development and analysis of hydrogen carriers. Recently formic acid has been receiving attention as a potential hydrogen carrier due to its high volumetric energy density and relatively safe characteristics. However hydrogen refueling systems using formic acid are very different from conventional hydrogen refueling stations and quantitative risks assessments need to be conducted to verify their safe usage. In this study a comparative safety analysis of a formic acid hydrogen refueling station (FAHRS) and a gaseous hydrogen refueling station (GHRS) was conducted. Since there is no FAHRS under operation a process simulation model was developed and integrated with quantitative risk assessment techniques to perform safety analysis. Results of the analysis show that the FAHRS poses less risk than the GHRS where the vapor cloud explosion occurring in the buffer tank is of greatest consequence. A GHRS poses a greater risk than an FAHRS due to the high pressure required to store hydrogen in the tube trailer. The mild operating conditions required for storage and dehydrogenation of formic acid contribute to the low risk values of an FAHRS. For risk scenarios exceeding the risk limit risk mitigation measures were applied to design a safe process for GHRS. The results show that the installation of active safety systems for the GHRS allow the system to operate within acceptable safety regions.
Large-scale Hydrogen Production via Water Electrolysis: A Techno-economic and Environmental Assessment
Jul 2022
Publication
Low-carbon (green) hydrogen can be generated via water electrolysis using photovoltaic wind hydropower or decarbonized grid electricity. This work quantifies current and future costs as well as environmental burdens of large-scale hydrogen production systems on geographical islands which exhibit high renewable energy potentials and could act as hydrogen export hubs. Different hydrogen production configurations are examined considering a daily hydrogen production rate of 10 tonnes on hydrogen production costs life cycle greenhouse gas emissions material utilization and land transformation. The results demonstrate that electrolytic hydrogen production costs of 3.7 Euro per kg H2 are within reach today and that a reduction to 2 Euro per kg H2 in year 2040 is likely hence approaching cost parity with hydrogen from natural gas reforming even when applying ‘‘historical’’ natural gas prices. The recent surge of natural gas prices shows that cost parity between green and grey hydrogen can already be achieved today. Producing hydrogen via water electrolysis with low costs and low GHG emissions is only possible at very specific locations nowadays. Hybrid configurations using different electricity supply options demonstrate the best economic performance in combination with low environmental burdens. Autonomous hydrogen production systems are especially effective to produce low-carbon hydrogen although the production of larger sized system components can exhibit significant environmental burdens and investments. Some materials (especially iridium) and the availability of land can be limiting factors when scaling up green hydrogen production with polymer electrolyte membrane (PEM) electrolyzers. This implies that decision-makers should consider aspects beyond costs and GHG emissions when designing large-scale hydrogen production systems to avoid risks coming along with the supply of for example scarce materials
Optimal Planning of Hybrid Electricity–Hydrogen Energy Storage System Considering Demand Response
Mar 2023
Publication
In recent years the stability of the distribution network has declined due to the large proportion of the uses of distributed generation (DG) with the continuous development of renewable energy power generation technology. Meanwhile the traditional distribution network operation mode cannot keep the balance of the source and load. The operation mode of the active distribution network (ADN) can effectively reduce the decline in operation stability caused by the high proportion of DG. Therefore this work proposes a bi-layer model for the planning of the electricity–hydrogen hybrid energy storage system (ESS) considering demand response (DR) for ADN. The upper layer takes the minimum load fluctuation maximum user purchase cost satisfaction and user comfort as the goals. Based on the electricity price elasticity matrix model the optimal electricity price formulation strategy is obtained for the lower ESS planning. In the lower layer the optimal ESS planning scheme is obtained with the minimum life cycle cost (LCC) of ESS the voltage fluctuation of ADN and the load fluctuation as the objectives. Finally the MOPSO algorithm is used to test the model and the correctness of the proposed method is verified by the extended IEEE-33 node test system. The simulation results show that the fluctuation in the voltage and load is reduced by 62.13% and 37.06% respectively.
Implications of Hydrogen Import Prices for the German Energy System in a Model-comparison Experiment
Mar 2024
Publication
With its ability to store and transport energy without releasing greenhouse gases hydrogen is considered an important driver for the decarbonisation of energy systems. As future hydrogen import prices from global markets are subject to large uncertainties it is unclear what impact different hydrogen and derivative import prices will have on the future German energy system. To answer that research question this paper explores the impact of three different import price scenarios for hydrogen and its derivatives on the German energy system in a climate-neutral setting for Europe in 2045 using three different energy system models. The analysis shows that the quantities of electricity generated as well as the installed capacities for electricity generation and electrolysis increase as the hydrogen import price rises. However the resulting differences between the import price scenarios vary across the models. The results further indicate that domestic German (and European) hydrogen production is often cost-efficient.
Power-to-gas and the Consequences: Impact of Higher Hydrogen Concentrations in Natural Gas on Industrial Combustion Processes
Sep 2017
Publication
Operators of public electricity grids today are faced with the challenge of integrating increasing numbers of renewable and decentralized energy sources such as wind turbines and photovoltaic power plants into their grids. These sources produce electricity in a very inconstant manner due to the volatility of wind and solar power which further complicates power grid control and management. One key component that is required for modern energy infrastructures is the capacity to store large amounts of energy in an economically feasible way.<br/>One solution that is being discussed in this context is “power-to-gas” i.e. the use of surplus electricity to produce hydrogen (or even methane with an additional methanation process) which is then injected into the public natural gas grid. The huge storage capacity of the gas grid would serve as a buffer offering benefits with regards to sustainability and climate protection while also being cost-effective since the required infrastructure is already in place.<br/>One consequence would be however that the distributed natural gas could contain larger and fluctuating amounts of hydrogen. There is some uncertainty how different gas-fired applications and processes react to these changes. While there have already been several investigations for domestic appliances (generally finding that moderate amounts of H2 do not pose any safety risks which is the primary focus of domestic gas utilization) there are still open questions concerning large-scale industrial gas utilization. Here in addition to operational safety factors like efficiency pollutant emissions (NOX) process stability and of course product quality have to be taken into account.<br/>In a German research project Gas- und Wärme-Institut Essen e. V. (GWI) investigated the impact of higher and fluctuating hydrogen contents (up to 50 vol.-% much higher than what is currently envisioned) on a variety of industrial combustion systems using both numerical and experimental methods. The effects on operational aspects such as combustion behavior flame monitoring and pollutant emissions were analyzed.<br/>Some results of these investigations will be presented in this contribution.
Aluminum-Based Fuels as Energy Carriers for Controllable Power and Hydrogen Generation—A Review
Dec 2022
Publication
Metallic aluminum is widely used in propellants energy-containing materials and batteries due to its high energy density. In addition to burning in the air aluminum can react with water to generate hydrogen. Aluminum is carbon-free and the solid-phase products can be recycled easily after the reaction. Micron aluminum powder is stable in the air and enables global trade. Aluminum metal is considered to be a viable recyclable carrier for clean energy. Based on the reaction characteristics of aluminum fuel in air and water this work summarizes the energy conversion system of aluminum fuel the combustion characteristics of aluminum and the recycling of aluminum. The conversion path and application direction of electric energy and chemistry in the aluminum energy conversion system are described. The reaction properties of aluminum in the air are described as well as the mode of activation and the effects of the aluminum-water reaction. In situ hydrogen production is achievable through the aluminum-water reaction. The development of low-carbon and energy-saving electrolytic aluminum technology is introduced. The work also analyzes the current difficulties and development directions for the large-scale application of aluminum fuel energy storage technology. The development of energy storage technology based on aluminum is conducive to transforming the energy structure.
Chilean National Green Hydrogen Strategy
Nov 2020
Publication
Like hydrogen Chile is small by nature and accordingly contributes just 0.3% to global greenhouse gas emissions. However we too have an outsized role to play in turning the tide on rising emissions and pursuing a low carbon path to growth and development.<br/>What we lack in size we more than make up for in potential. In the desert in the North with the highest solar irradiance on the planet and in the Patagonia in the South with strong and consistent winds we have the renewable energy potential to install 70 times the electricity generation capacity we have today. This abundant renewable energy will enable us to become the cheapest producer of green hydrogen on Earth. Our National Green Hydrogen Strategy is aimed at turning this promise into reality.<br/>The Strategy is the result of collaborative work between industry academia civil society and the public sector and is an essential piece of our carbon neutrality plan and commitment to sustainable development. It will allow us to produce and export products that are created using zero carbon fuels distinguishing our exports as clean products for end users. It will also enable us to export our renewable energy to the world in the form of green liquid hydrogen green ammonia and clean synthetic fuels.<br/>Traditionally Chile lacked fossil fuels and was forced to import the energy it required. Now the coming of age of the tiniest atom will allow us to drive deep decarbonization in our own country and throughout the world. This Strategy is the first step for Chile in embracing this promise and fulfilling its new potential.
The Sector Coupling Concept: A Critical Review
Jun 2020
Publication
Pursued climate goals require reduced greenhouse gas emissions by substituting fossil fuels with energy from renewable sources in all energy-consuming processes. On a large-scale this can mainly be achieved through electricity from wind and sun which are subject to intermittency. To efficiently integrate this variable energy a coupling of the power sector to the residential transport industry and commercial/trade sector is often promoted called sector coupling (SC). Nevertheless our literature review indicates that SC is frequently misinterpreted and its scope varies among available research from exclusively considering the use of excess renewable electricity to a rather holistic view of integrated energy systems including excess heat or even biomass sources. The core objective of this article is to provide a thorough understanding of the SC concept through an analysis of its origin and its main purpose as described in the current literature. We provide a structured categorization of SC derived from our findings and critically discuss its remaining challenges as well as its value for renewable energy systems. We find that SC is rooted in the increasing use of variable renewable energy sources and its main assets are the flexibility it provides for renewable energy systems decarbonization potential for fossil-fuel-based end-consumption sectors and consequently reduced dependency on oil and gas extracting countries. However the enabling technologies face great challenges in their economic feasibility because of the uncertain future development of competing solutions.
Modeling of Hydrogen Production System for Photovoltaic Power Generation and Capacity Optimization of Energy Storage System
Sep 2022
Publication
Hydrogen production using solar energy is an important way to obtain hydrogen energy. However the inherent intermittent and random characteristics of solar energy reduce the efficiency of hydrogen production. Therefore it is necessary to add an energy storage system to the photovoltaic power hydrogen production system. This paper establishes a model of a photovoltaic power generation hydrogen system and optimizes the capacity configuration. Firstly the mathematical model is modeled and analyzed and the system is modeled using Matlab/Simulink; secondly the principle of optimal configuration of energy storage capacity is analyzed to determine the optimization strategy we propose the storage capacity configuration algorithm based on the low-pass filtering principle and optimal time constant selection; finally a case study is conducted whose photovoltaic installed capacity of 30 MW verifying the effectiveness of the proposed algorithm analyzing the relationship between energy storage capacity and smoothing effect. The results show that as the cut-off frequency decreases the energy storage capacity increases and the smoothing effect is more obvious. The proposed algorithm can effectively reduce the 1 h maximum power variation of PV power generation. In which the maximum power variation of PV generation 1 h before smoothing is 4.31 MW. We set four different sets of time constants the maximum power variation of PV generation 1 h after smoothing is reduced to 0.751 0.389 0.078 and 0.04 MW respectively.
Technical, Economic, Carbon Footprint Assessment, and Prioritizing Stations for Hydrogen Production Using Wind Energy: A Case Study
Jul 2021
Publication
While Afghanistan’s power sector is almost completely dependent on fossil fuels it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province in this study a technical economic and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment for three heights of 10 30 and 40 m using the Weibull probability distribution function. This technical assessment was expanded by estimating the energy pattern factor probability of wind speeds greater than 5 m/s wind power density annual power output and annual hydrogen output. This was followed by an economic assessment which involved computing the Leveled Cost Of Energy (LCOE) the Leveled Cost Of Hydrogen (LCOH) and the payback period and finally an carbon footprint assessment which involved estimating the consequent CO2 reduction in two scenarios. The assessments were performed for 22 turbines manufactured by reputable companies with capacities ranging from 600 kW to 2.3 MW. The results showed that the entire Badakhshan province and especially Qal’eh-ye Panjeh and Fayazabad have excellent potentials in terms of wind energy that can be harvested for wind power and hydrogen production. Also wind power generation in this province will be highly cost-effective as the produced electricity will cost about one-third of the price of electricity supplied by the government. For better evaluation the GIS maps of wind power and hydrogen outputs were prepared using the IDW method. These maps showed that the eastern and northeastern parts of Badakhshan province have higher wind power-hydrogen production potentials. The results of ranking the stations with SWARA-EDAS hybrid MCDM methods showed that Qal’eh-ye Panjeh station was the best location to produce hydrogen from wind energy.
Hydrogen-rich Fuel Combustion Characteristics of a Counter Dual-swirl Combustor at Fixed Power
Nov 2021
Publication
In order to reduce the emission of carbon dioxide gas turbine power station will expect to use more clean fuels in the future especially those like hydrogen. Hydrogen-rich fuel(syngas) combustion characteristics of the novel counter dual-swirl gas turbine combustor under fixed calorific value input were studied by experiment and numerical simulation. PIV and temperature rake were used respectively to obtain the velocity and temperature distribution in the combustion chamber. The turbulence model of Reynolds stress and the kinetic model of detailed chemical syngas combustion were used simultaneously in the computational simulations. Based on the obtained results it was found that there is a reasonable agreement between the numerical results and the experimental data. The analysis shows that the flow field and temperature field of the combustor were almost unaffected by the change of hydrogen content and shows a nearly identical distribution structure under all conditions with hydrogen content below 90%; but when the H2 content reaches 90% the above characteristic plots were significantly changed. As the H2 content in the fuel increases on the center line of the combustor the jet velocity of the fuel decreased the temperature of the gas flow increased the recovery coefficient of total pressure decreased and the temperature distribution at the combustor outlet became more uniform. In addition it is also found that the syngas turbine with the same output power consumed less fuel than the gas turbine with hydrocarbon fuel. This paper provides reference for the study of hydrogen-rich syngas turbine and the application of hydrogen-rich fuel in combustor of energy system.
Techno-economic Assessment of Long-distance Supply Chains of Energy Carriers: Comparing Hydrogen and Iron for Carbon-free Electricity Generation
Mar 2023
Publication
The effective usage of renewable energy sources requires ways of storage and delivery to balance energy demand and availability divergences. Carbon-free chemical energy carriers are proposed solutions converting clean electricity into stable media for storage long-distance energy trade and on-demand electricity generation. Among them hydrogen (H2) is noteworthy being the subject of significant investment and research. Metal fuels such as iron (Fe) represent another promising solution for a clean energy supply but establishing an interconnected ecosystem still requires considerable research and development. This work proposes a model to assess the supply chain characteristics of hydrogen and iron as clean carbon-free energy carriers and then examines case studies of possible trade routes between the potential energy exporters Morocco Saudi Arabia and Australia and the energy importers Germany and Japan. The work comprises the assessment of economic (levelized cost of electricity - LCOE) energetic (thermodynamic efficiency) and environmental (CO2 emissions) aspects which are quantified by the comprehensive model accounting for the most critical processes in the supply chain. The assessment is complemented by sensitivity and uncertainty analyses to identify the main drivers for energy costs. Iron is shown to be lower-cost and more efficient to transport in longer routes and for long-term storage but potentially more expensive and less efficient than H2 to produce and convert. Uncertainties related to the supply chain specifications and the sensitivity to the used variables indicate that the path to viable energy carriers fundamentally depends on efficient synthesis conversion storage and transport. A break-even analysis demonstrated that clean energy carriers could be competitive with conventional energy carriers at low renewable energy prices while carbon taxes might be needed to level the playing field. Thereby green iron shows potential to become an important energy carrier for long-distance trade in a globalized clean energy market.
Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization
Sep 2016
Publication
A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV)/wind turbine (WT)/battery (B)/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH)) for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP) have been addressed for sizing HS-BH from a more comprehensive perspective considering the basic demand of load the profit from hydrogen which is produced by HS-BH and an effective energy storage strategy. An improved ant colony optimization (ACO) algorithm has been presented to solve the sizing problem of HS-BH. Finally a simulation experiment has been done to demonstrate the developed results in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang China.
Perspectives on Hydrogen
Dec 2022
Publication
Humankind has an urgent need to reduce carbon dioxide emissions. Such a challenge requires deep transformation of the current energy system in our society. Achieving this goal has given an unprecedented role to decarbonized energy vectors. Electricity is the most consolidated of such vectors and a molecular vector is in the agenda to contribute in the future to those end uses that are difficult to electrify. Additionally energy storage is a critical issue for both energy vectors. In this communication discussion on the status hopes and perspectives of the hydrogen contribution to decarbonization are presented emphasizing bottlenecks in key aspects such as education reskilling and storage capacity and some concerns about the development of a flexible portfolio of technologies that could affect the contribution and impact of the whole hydrogen value chain in society. This communication would serve to the debate and boost discussion about the topic.
Numerical Investigation on the Liquid Hydrogen Leakage and Protection Strategy
Apr 2023
Publication
One of China’s ambitious hydrogen strategies over the past few years has been to promote fuel cells. A number of hydrogen refueling stations (HRSs) are currently being built in China to refuel hydrogen-powered automobiles. In this context it is crucial to assess the dangers of hydrogen leaking in HRSs. The present work simulated the liquid hydrogen (LH2) leakage with the goal of undertaking an extensive consequence evaluation of the LH2 leakage on an LH2 refueling station (LHRS). Furthermore the utilization of an air curtain to prevent the diffusion of the LH2 leakage is proposed and the defending effect is studied accordingly. The results reveal that the Richardson number effectively explained the variation of plume morphology. Furthermore different facilities have great influence on the gas cloud diffusion trajectory with the consideration of different leakage directions. The air curtain shows satisfactory prevention of the diffusion of the hydrogen plume. Studies show that with the increase in air volume (equivalent to wind speed) and the narrowing of the air curtain width (other factors remain unchanged) the maximum flammable distance of hydrogen was shortened.
Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines
Mar 2024
Publication
This paper presents a theoretical analysis of the selected properties of HCNG fuel calculations and a literature review of the other fuels that allow the storage of ecologically produced hydrogen. Hydrogen has the most significant CO2 reduction potential of all known fuels. However its transmission in pure form is still problematic and its use as a component of fuels modified by it has now become an issue of interest for researchers. Many types of hydrogen-enriched fuels have been invented. However this article will describe the reasons why HCNG may be the hydrogen-enriched fuel of the future and why internal combustion (IC) piston engines working on two types of fuel could be the future method of using it. CO2 emissions are currently a serious problem in protecting the Earth’s natural climate. However secondarily power grid stabilization with a large share of electricity production from renewable energy sources must be stabilized with very flexible sources—as flexible as multi-fuel IC engines. Their use is becoming an essential element of the electricity power systems of Western countries and there is a chance to use fuels with zero or close to zero CO2 emissions like e-fuels and HCNG. Dual-fuel engines have become an effective way of using these types of fuels efficiently; therefore in this article the parameters of hydrogen-enriched fuel selected in terms of relevance to the use of IC engines are considered. Inaccuracies found in the literature analysis are discussed and the essential properties of HCNG and its advantages over other hydrogen-rich fuels are summarized in terms of its use in dual-fuel (DF) IC engines.
Optimizing Renewable Injection in Integrated Natural Gas Pipeline Networks Using a Multi-Period Programming Approach
Mar 2023
Publication
In this paper we propose an optimization model that considers two pathways for injecting renewable content into natural gas pipeline networks. The pathways include (1) power-to-hydrogen or PtH where off-peak electricity is converted to hydrogen via electrolysis and (2) power-to-methane or PtM where carbon dioxide from different source locations is converted into renewable methane (also known as synthetic natural gas SNG). The above pathways result in green hydrogen and methane which can be injected into an existing natural gas pipeline network. Based on these pathways a multi-period network optimization model that integrates the design and operation of hydrogen from PtH and renewable methane is proposed. The multi-period model is a mixed-integer non-linear programming (MINLP) model that determines (1) the optimal concentration of hydrogen and carbon dioxide in the natural gas pipelines (2) the optimal location of PtH and carbon dioxide units while minimizing the overall system cost. We show using a case study in Ontario the optimal network structure for injecting renewable hydrogen and methane within an integrated natural gas network system provides a $12M cost reduction. The optimal concentration of hydrogen ranges from 0.2 vol % to a maximum limit of 15.1 vol % across the network while reaching a 2.5 vol % at the distribution point. This is well below the maximum limit of 5 vol % specification. Furthermore the optimizer realized a CO2 concentration ranging from 0.2 vol % to 0.7 vol %. This is well below the target of 1% specified in the model. The study is essential to understanding the practical implication of hydrogen penetration in natural gas systems in terms of constraints on hydrogen concentration and network system costs.
A Numerical Study on Turquoise Hydrogen Production by Catalytic Decomposition of Methane
Feb 2023
Publication
Catalytic decomposition of methane (CDM) is a novel technology for turquoise hydrogen production with solid carbon as the by-product instead of CO2. A computational fluid dynamics model was developed to simulate the CDM process in a 3D fixed bed reactor accounting for the impact of carbon deposition on catalytic activity. The model was validated with experimental data and demonstrated its capability to predict hydrogen concentration and catalyst deactivation time under varying operating temperatures and methane flow rates. The catalyst lifespan was characterized by the maximum carbon yield (i.e. gC/gcat) which is a crucial indicator for determining the cost of hydrogen generation. Parametric studies were performed to analyse the effect of inlet gas composition and operating pressure on CDM performance. Various CH4/H2 ratios were simulated to improve the methane conversion efficiency generating a higher amount of hydrogen while increasing the maximum carbon yield up to 49.5 gC/gcat. Additionally higher operating pressure resulted in higher methane decomposition rates which reflects the nature of the chemical kinetics.
Performance Evaluation of a Hydrogen-fired Combined Cycle with Water Recovery
Mar 2023
Publication
Hydrogen can alleviate the increasing environmental pollution and has good development prospects in power generation due to its high calorific value and low environmental impact. The previously designed hydrogen-fired combined cycle ignored water recycling which led to an inefficient application of hydrogen and the wastage of water. This paper proposes the concept of a hydrogen-fired combined cycle with water recovery to reuse the condensed water as an industrial heat supply. It was applied to an F-class combined cycle power plant. The results demonstrate that the efficiency of hydrogen-fired combined cycles with and without water recovery increased by 1.92% and 1.35% respectively compared to that of the natural-gas-fired combined cycle under full working conditions. In addition an economic comparison of the three cycles was conducted. The levelized cost of energy of the hydrogen-fired combined cycle with water recovery will be 52.22% lower than that of the natural-gas-fired combined cycle in 2050. This comparative study suggested that water recovery supplementation could improve the gas turbine efficiency. The proposed hydrogen-fired combined cycle with water recovery would provide both environmental and economic benefits.
Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution
Apr 2023
Publication
Natural gas distribution companies are developing ambitious plans to decarbonize the services that they provide in an affordable manner and are accelerating plans for the strategic integration of renewable natural gas and the blending of green hydrogen produced by electrolysis powered with renewable electricity being developed from large new commitments by states such as New York and Massachusetts. The demonstration and deployment of hydrogen blending have been proposed broadly at 20% of hydrogen by volume. The safe distribution of hydrogen blends in existing networks requires hydrogen blends to exhibit similar behavior as current supplies which are also mixtures of several hydrocarbons and inert gases. There has been limited research on the properties of blended hydrogen in low-pressure natural gas distribution systems. Current natural gas mixtures are known to be sufficiently stable in terms of a lack of chemical reaction between constituents and to remain homogeneous through compression and distribution. Homogeneous mixtures are required both to ensure safe operation of customer-owned equipment and for safety operations such as leak detection. To evaluate the stability of mixtures of hydrogen and natural gas National Grid experimentally tested a simulated distribution natural gas pipeline with blends containing hydrogen at up to 50% by volume. The pipeline was outfitted with ports to extract samples from the top and bottom of the pipe at intervals of 20 feet. Samples were analyzed for composition and the effectiveness of odorant was also evaluated. The new results conclusively demonstrate that hydrogen gas mixtures do not significantly separate or react under typical distribution pipeline conditions and gas velocity profiles. In addition the odorant retained its integrity in the blended gas during the experiments and demonstrated that it remains an effective method of leak detection.
A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers
Dec 2022
Publication
Hydrogen is one of the energy carriers that has started to play a significant role in the clean energy transition. In the hydrogen ecosystem storing hydrogen safely and with high volumetric density plays a key role. In this regard metal hydride storage seems to be superior to compressed gas storage which is the most common method used today. However thermal management is a challenge that needs to be considered. Temperature changes occur during charging and discharging processes due to the reactions between metal metal hydride and hydrogen which affect the inflow or outflow of hydrogen at the desired flow rate. There are different thermal management techniques to handle this challenge in the literature. When the metal hydride storage tanks are used in integrated systems together with a fuel cell and/or an electrolyzer the thermal interactions between these components can be used for this purpose. This study gives a comprehensive review of the heat transfer during the charging and discharging of metal hydride tanks the thermal management system techniques used for metal hydride tanks and the studies on the thermal management of metal hydride tanks with material streams from the fuel cell and/or electrolyzers.
Fluid-dynamics Analyses and Economic Investigation of Offshore Hydrogen Transport via Steel and Composite Pipelines
Apr 2024
Publication
One of the challenges associated with the use of hydrogen is its storage and transportation. Hydrogen pipelines are an essential infrastructure for transporting hydrogen from offshore production sites to onshore distribution centers. This paper presents an innovative analysis of the pressure drops velocity profile and levelized cost of hydrogen (LCOH) in various hydrogen transportation scenarios examining the influence of pipeline type (steel vs. composite) diameter and outlet pressure. The role of the compressor and the pipeline individually and together was assessed for 1000 and 100 tons of hydrogen. Notably the LCOH was highly sensitive to these parameters with the compressor contribution ranging between 21.52% and 85.11% and the pipeline’s share varying from 14.89% to 78.48%. The outflow pressure and diameter of the pipeline have a significant impact on the performance: when 1000 tons of hydrogen is transported the internal pressure drop ranges from 2 to 30 bar and the flow velocity can vary between 2 and 25 m/s. For equivalent hydrogen quantities the composite pipeline exhibits the same trends but with minor variations in the specific values.
Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies
Apr 2023
Publication
Hydrogen-based multi-microgrid systems (HBMMSs) are beneficial for energy saving and emission reductions. However the optimal sizing of HBMMSs lacks a practical configuration optimization model and a reasonable solution method. To address these problems we designed a novel structure of HBMMSs that combines conventional energy renewable energy and a hydrogen energy subsystem. Then we established a bi-level multi-objective capacity optimization model while considering electricity market trading and different hydrogen production strategies. The objective of the inner model which is the minimum annual operation cost and the three objectives of the outer model which are the minimum total annual cost (TAC); the annual carbon emission (ACE); and the maximum self-sufficiency rate (SSR) are researched simultaneously. To solve the above optimization model a two-stage solution method which considers the conflicts between objectives and the objectivity of objective weights is proposed. Finally a case study is performed. The results show that when green hydrogen production strategies are adopted the three objectives of the best configuration optimization scheme are USD 404.987 million 1.106 million tons and 0.486 respectively.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
Investigation of Hydrogen-Blended Natural Gas Pipelines in Utility Tunnel Leakage and Development of an Accident Ventilation Strategy for the Worst Leakage Conditions
Mar 2024
Publication
The development of hydrogen-blended natural gas (HBNG) increases the risk of gas transportation and presents challenges for pipeline security in utility tunnels. The objective of this study is to investigate the diffusion properties of HBNG in utility tunnels and evaluate the effectiveness of various ventilation mechanisms. The numerical simulation software Fluent 2023 R1 is applied to simulate and analyze the leakage of small holes in a HBNG pipeline in the natural gas compartment. By examining the leaking behavior of HBNG through small holes in different circumstances we aimed to identify the most unfavorable operational situation for leakage. Subsequently we analyzed the ventilation strategy for sub-high-pressure pipes at various pressure levels in this unfavorable condition. This study’s findings demonstrate that blending hydrogen improves the gas diffusion capacity and increases the likelihood of explosion. The primary factors that influence the pattern of leakage are the size of the leaking holes and the pressure of the pipeline. The gas compartment experiences the most unfavorable working conditions for natural gas pipeline leaks when there are higher pressures wider leak openings higher hydrogen blending ratios (HBRs) and leaks in close proximity to an air inlet. When the HBR is 20% the minimum accident ventilation rates for pressures of 0.4 MPa and 0.8 MPa are 15 air changes per hour and 21 air changes per hour respectively. The maximum allowable wind speed for accident ventilation is 5 m/s as regulated by China’s national standard GB 50838-2015. This regulation makes it difficult to minimize the risk of leakage in a 1.6 MPa gas pipeline. It is recommended to install a safety interlock device to quickly shut off the pipeline in the event of a leak in order to facilitate the dispersion of the substance.
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
Assessing and Modelling Hydrogen Reactivity in Underground Hydrogen Storage: A Review and Models Simulating the Lobodice Town Gas Storage
Apr 2023
Publication
Underground Hydrogen storage (UHS) is a promising technology for safe storage of large quantities of hydrogen in daily to seasonal cycles depending on the consumption requirements. The development of UHS requires anticipating hydrogen behavior to prevent any unexpected economic or environmental impact. An open question is the hydrogen reactivity in underground porous media storages. Indeed there is no consensus on the effects or lack of geochemical reactions in UHS operations because of the strong coupling with the activity of microbes using hydrogen as electron donor during anaerobic reduction reactions. In this work we apply different geochemical models to abiotic conditions or including the catalytic effect of bacterial activity in methanogenesis acetogenesis and sulfate-reduction reactions. The models are applied to Lobodice town gas storage (Czech Republic) where a conversion of hydrogen to methane was measured during seasonal gas storage. Under abiotic conditions no reaction is simulated. When the classical thermodynamic approach for aqueous redox reactions is applied the simulated reactivity of hydrogen is too high. The proper way to simulate hydrogen reactivity must include a description of the kinetics of the aqueous redox reactions. Two models are applied to simulate the reactions of hydrogen observed at Lobodice gas storage. One modeling the microbial activity by applying energy threshold limitations and another where microbial activity follows a Monod-type rate law. After successfully calibrating the bio-geochemical models for hydrogen reactivity on existing gas storage data and constraining the conditions where microbial activity will inhibit or enhance hydrogen reactivity we now have a higher confidence in assessing the hydrogen reactivity in future UHS in aquifers or depleted reservoirs.
Power Balance Control and Dimensioning of a Hybrid Off-grid Energy system for a Nordic Climate Townhouse
Mar 2023
Publication
This paper investigates conversion of a Nordic oil-heated townhouse into carbon-neutral by different energy efficiency (EE) improvements and an off-grid system including solar photovoltaics (PV) wind power and battery and hydrogen energy storage systems (BESS and HESS). A heat-pump-based heating system including waste heat recovery (WHR) from the HESS and an off-grid electrical system are dimensioned for the building by applying models developed in MATLAB and Microsoft Excel to study the life cycle costs (LCC). The work uses a measured electrical load profile and the heat generation of the new heating system and the power generation are simulated by commercial software. It is shown that the EE improvements and WHR from the HESS have a positive effect on the dimensioning of the off-grid system and the LCC can be reduced by up to €2 million. With the EE improvements and WHR the component dimensioning can be reduced by 22%–41% and 13%–51% on average respectively. WHR can cover up to 57% of the building's annual heat demand and full-power dimensioning of the heat pump is not reasonable when WHR is applied. Wind power was found to be very relevant in the Nordic conditions reducing the LCC by 32%.
Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor
Nov 2022
Publication
In recent years growing awareness about environmental issues is pushing humankind to explore innovative technologies to reduce the anthropogenic sources of pollutants. Among these sources internal combustion engines in non-road mobile machinery (NRMM) such as agricultural tractors are one of the most important. The aim of this work is to explore the possibility of replacing the conventional diesel engine with an electric powertrain powered by a hybrid storage system consisting of a small battery pack and a fuel-cell system. The battery pack (BP) is necessary to help the fuel cell manage sudden peaks in power demands. Numerical models of the conventional powertrain and a fuel-cell tractor were carried out. To compare the two powertrains work cycles derived from data collected during real operative conditions were exploited and simulated. For the fuel-cell tractor a control strategy to split the electric power between the battery pack and the fuel cell was explored. The powertrains were compared in terms of greenhouse gas emissions (GHG) according to well-to-wheel (WTW) equivalent CO2 emission factors available in the literature. Considering the actual state-of-the-art hydrogen production methods the simulation results showed that the fuel-cell/battery powertrain was able to accomplish the tasks with a reduction of about 50% of the equivalent CO2 emissions compared to traditional diesel-powered vehicles.
Design for Reliability and Safety: Challenges and Opportunities in Hydrogen Mobility Assets
Sep 2023
Publication
Safety and reliability are important performance attributes of any engineered system where humanmachine interactions are present. However they are usually approached as afterthoughts or in some cases unintended consequences of the system design and development process that must be addressed and verified in subsequent design stages. In plain words safety and reliability are often seen as constraints that add layers of complexity and extra costs to the minimum functional system of interest. No longer. Shell Hydrogen is embedding the Design for Reliability and Safety approach to engineer our products and assets in such a way that safety and reliability are at the core of a concurrent engineering process throughout the system lifecycle. This has been achieved in practice by leveraging systems reliability and safety engineering methods along with the experience and expertise of Shell Hydrogen original equipment manufacturers and system integrators in designing building and operating hydrogen assets for mobility applications.<br/>The challenges in implementing this approach are many ranging from access to historical data on equipment and component safety and reliability performance to lack of standardization in the industry when dealing with hydrogen related hazards. In this paper we will describe the approach in more detail some of our early successes and failures during deployment and the continual improvement journey that lies ahead.
No more items...