- Home
- A-Z Publications
- Publications
Publications
Experimental and Theoretical Insights to Demonstrate the Hydrogen Evolution Activity of Layered Platinum Dichalcogenides Electrocatalysts
Mar 2021
Publication
Hydrogen is a highly efficient and clean renewable energy source and water splitting through electrocatalytic hydrogen evolution is a most promising approach for hydrogen generation. Layered transition metal dichalcogenides-based nano-structures have recently attracted significant interest as robust and durable catalysts for hydrogen evolution. We systematically investigated the platinum (Pt) based dichalcogenides (PtS2 PtSe2 and PtTe2) as highly energetic and robust hydrogen evolution electrocatalysts. PtTe2 catalyst unveiled the rapid hydrogen evolution process with the low overpotentials of 75 and 92 mV (vs. RHE) at a current density of 10 mA cm−2 and the small Tafel slopes of 64 and 59 mV/dec in acidic and alkaline medium respectively. The fabricated PtTe2 electrocatalyst explored a better catalytic activity than PtS2 and PtSe2. The density functional theory estimations explored that the observed small Gibbs free energy for H-adsorption of PtTe2 was given the prominent role to achieve the superior electrocatalytic and excellent stability activity towards hydrogen evolution due to a smaller bandgap and the metallic nature. We believe that this work will offer a key path to use Pt based dichalcogenides for hydrogen evolution electrocatalysts.
Insights into the Principles, Design Methodology and Applications of Electrocatalysts Towards Hydrogen Evolution Reaction
Apr 2021
Publication
The electrolysis of water for sustainable hydrogen producing is a crucial segment of various emerging clean-energy technologies. However pursuing an efficient and cheap alternative catalyst to substitute state-of-the-art platinum-group electrocatalysts remains a prerequisite for the commercialization of this technology. Typically precious-metal-free catalysts have always much lower activities towards hydrogen production than that of Pt-group catalysts. To explore high-performance catalysts maximally exposed active sites rapid charge transfer ability and desirable electronic configuration are essentially demanded. Herein the fundamentals of hydrogen evolution reaction will be briefly described and the main focus will be on the interfacial engineering strategies by means of constructing defect structure creating heterojunction phase engineering lattice strain control designing hierarchical architecture and doping heteroatoms to effectively proliferate the catalytic active sites facilitate the electron diffusion and regulate the electronic configuration of numerous transition metals and their nitrides carbides sulfides phosphides as well as oxides achieving a benchmark performance of platinum-free electrocatalysts for the hydrogen evolution reaction. This review unambiguously offers proof that the conventional cheap and earth-abundant transition metal-based substances can be translated into an active water splitting catalyst by the rational and controllable interfacial designing.
Hydrothermal Conversion of Lignin and Black Liquor for Phenolics with the Aids of Alkali and Hydrogen Donor
Jun 2019
Publication
The potentials of phenolic productions from lignin and black liquor (BL) via hydrothermal technology with the aids of alkalis and hydrogen donors were investigated by conducting batch experiments in micro-tube reactors with 300 °C sub-critical water as the solvent. The results showed that all the employed alkalis improved lignin degradation and thus phenolics production and the strong alkalis additionally manifested deoxygenation to produce more phenolics free of methoxyl group(s). Relatively hydrogen donors more visibly facilitated phenolics formation. Combination of strong alkali and hydrogen donors exhibited synergistically positive effects on producing phenolics (their total yield reaching 22 wt%) with high selectivities to phenolics among which the yields of catechol and cresols respectively peaked 16 and 3.5 wt%. BL could be hydrothermally converted into phenolics at high yields (approaching 10 wt% with the yields of catechol and cresols of about 4 and 2 wt% respectively) with the aids of its inherent alkali and hydrogen donors justifying its cascade utilization.
Nanotechnology Enabled Hydrogen Gas Sensing
Sep 2019
Publication
An important contribution to industry standards and to effective installation of hybrid renewable energy systems is evaluation of hydrogen (H2) monitoring techniques under pilot-scale and/or real-world conditions. We have designed a hybrid system to integrate solar power electrolysis and hydrogen fuel cell components in a DC micro-grid with capacity to evaluate novel nanomaterials for enhanced H2 gas sensing performance. In general enhanced hydrogen sensing performance is evaluated by high sensitivity selectivity and stability as well as low power consumption. Unique properties such as high surface area to volume ratio a large number of surface active sites high specific surface area and reactivity are key attributes of nanomaterials used for gas sensing. These attributes enable sensors to be embedded in Internet-of-Things applications or in mobile systems. With rapid development of hydrogen-based technologies for clean energy applications there remains a requirement for faster accurate and selective H2 sensors with low cost and low power consumption. Operating principles for these sensors include catalytic thermal conductivity electrochemical resistance based optical and acoustic methods. In this paper we review performance of H2 gas sensors based on conductometric devices operating at room temperature up to 200 °C. The focus of this work includes nanostructured metal oxides graphene materials and transition metal dichalcogenides employed as sensing materials.
Hy4Heat Domestic Hydrogen Purge Procedures - Work Package 4
Jun 2021
Publication
The aim of this project was to review the current purge standards for UK domestic installations in particular IGEM/UP/1B and carry out experiments to assess the validity of those standards for use in hydrogen in order to understand and recommend safe purge practices for hydrogen in a domestic environment.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
- changeover to hydrogen will result in an increased risk of flammability inside the installation pipework
- changeover to hydrogen will result in a reduced risk of a build-up of flammable gas in any room where purging occurs.
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
Towards Net-zero Smart System: An Power Synergy Management Approach of Hydrogen and Battery Hybrid System with Hydrogen Safety Consideration
May 2022
Publication
The building system is one of key energy consumption sector in the market and low-carbon building will make a significant contribution for the worldwide carbon emission reduction. The multiple energy systems including renewable generations hydrogen energy and energy storage is the perspective answer to the net-zero building system. However the research gap lies in the synergy power management among the renewable flexible loads batteries and hydrogen energy systems and at the same time taking the unique characteristic of different energy sectors into account by power managing. This paper proposed the power management approach based on the game theory by which the different characteristics of the energy players are described via creating the competing relationship against net-zero emission objective so that to achieve the power synergy. Under the proposed power management method the hydrogen and battery hybrid system including the fuel cell electrolyzer and battery is designed and investigated as to unlock the power management regions and control constraints within the building system. Particularly for the hydrogen system within the hybrid system the safe and long-lifetime operation is considered respectively by high-efficiency and pressure constraints within the power management. Simulation results show that providing the same energy storage services for the building system the fuel cell with the proposed power management method sustains for 9.9 years much longer than that of equivalent consumption minimization (4.98) model predictive control (4.61) and rule-based method (7.69). Moreover the maximum tank temperature of the hydrogen tank is reduced by 3.4 K and 2.9 K compared with consumption minimization strategy and model predictive control. Also the real-time of the proposed power management is verified by a scaled-down experiment platform.
Scenarios to Decarbonize Austria’s Energy Consumption and the Role of Underground Hydrogen Storage
May 2022
Publication
The European Union is aiming at reaching greenhouse gas (GHG) emission neutrality in 2050. Austria’s current greenhouse gas emissions are 80 million t/year. Renewable Energy (REN) contributes 32% to Austria’s total energy consumption. To decarbonize energy consumption a substantial increase in energy generation from renewable energy is required. This increase will add to the seasonality of energy supply and amplifies the seasonality in energy demand. In this paper the seasonality of energy supply and demand in a Net-Zero Scenario are analyzed for Austria and requirements for hydrogen storage derived. We looked into the potential usage of hydrogen in Austria and the economics of hydrogen generation and technology and market developments to assess the Levelized Cost of Hydrogen (LCOH). Then we cover the energy consumption in Austria followed by the REN potential. The results show that incremental potential of up to 140 TWh for hydropower photovoltaic (PV) and wind exists in Austria. Hydropower generation and PV is higher in summer- than in wintertime while wind energy leads to higher energy generation in wintertime. The largest incremental potential is PV with agrivoltaic systems significantly increasing the area amenable for PV compared with PV usage only. Battery Electric Vehicles (BEV) and Fuel Cell Vehicles (FCV) use energy more efficiently than Internal Combustion Engine (ICE) cars; however the use of hydrogen for electricity generation significantly decreases the efficiency due to electricity–hydrogen– electricity conversion. The increase in REN use and the higher demand for energy in Austria in wintertime require seasonal storage of energy. We developed three scenarios Externally Dependent Scenario (EDS) Balanced Energy Scenario (BES) or Self-Sustained Scenario (SSS) for Austria. The EDS scenario assumes significant REN import to Austria whereas the SSS scenario relies on REN generation within Austria. The required hydrogen storage would be 10.82 bn m3 for EDS 13.34 bn m3 for BES and 18.69 bn m3 for SSS. Gas and oil production in Austria and the presence of aquifers indicates that sufficient storage capacity might be available. Significant technology development is required to be able to implement hydrogen as an energy carrier and to balance seasonal energy demand and supply.
Enhanced Hydrogen Storage Properties of Mg by the Synergistic Effect of Grain Refinement and NiTiO 3 Nanoparticles
May 2021
Publication
As a promising hydrogen storage material the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics. In this paper three kinds of NiTiO3 catalysts with different mole ratio of Ni to Ti were successfully synthesized and doped into nanocrystalline Mg to improve its hydrogen storage properties. Experimental results indicated that all the Mg-NiTiO3 composites showed prominent hydrogen storage performance. Especially the Mg-NiTiO3/TiO2 composite could take up hydrogen at room temperature and the apparent activation energy for hydrogen absorption was dramatically decreased from 69.8 ± 1.2 (nanocrystalline Mg) kJ/mol to 34.2 ± 0.2 kJ/mol. In addition the hydrogenated sample began to release hydrogen at about 193.2 °C and eventually desorbed 6.6 wt% H2. The desorption enthalpy of the hydrogenated Mg-NiTiO3 -C was estimated to be 78.6 ± 0.8 kJ/mol 5.3 kJ/mol lower compared to 83.9 ± 0.7 kJ/mol of nanocrystalline Mg. Besides the sample revealed splendid cyclic stability during 20 cycles. No obvious recession occurred in the absorption and desorption kinetics and only 0.3 wt% hydrogen capacity degradation was observed. Further structural analysis demonstrates that nanosizing and catalyst doping led to a synergistic effect on the enhanced hydrogen storage performance of Mg-NiTiO3 -C composite which might serve as a reference for future design of highly effective hydrogen storage materials.
Evaluation of Stability and Catalytic Activity of Ni Catalysts for Hydrogen Production by Biomass Gasification in Supercritical Water
Mar 2019
Publication
Supercritical water gasification is a promising technology for wet biomass utilization. In this paper Ni and other metal catalysts were synthesized by wet impregnation. The stability and catalytic activities of Ni catalysts were evaluated. Firstly catalytic activities of Ni Fe Cu catalysts supported on MgO were tested using wheat straw as raw material in a batch reactor at 723 K and water density of 0.07 cm3/g. Experimental results showed that the order of metal catalyst activity for hydrogen generation was Ni/MgO > Fe/MgO > Cu/MgO. Secondly the influence of different supports on Ni catalysts performance was investigated. The results showed that the order of the Ni catalysts’ activity with different supports was Ni/MgO > Ni/ZnO > Ni/Al2O3 > Ni/ZrO2. Finally the effects of Ni loading and the amount of Ni catalyst addition on hydrogen production and the stability of Ni/MgO catalyst were studied. It was found that serious deactivation of Ni catalyst in the process of supercritical water gasification took place. Even if carbon deposited on the catalyst surface was removed by high temperature calcination and the catalyst was reduced with hydrogen the activity of used catalyst was only partially restored.
Why Can’t We Just Burn Hydrogen? Challenges When Changing Fuels in an Existing Infrastructure
Feb 2021
Publication
The current global consumption of natural gas as a fuel is roughly 4 trillion cubic meters per year. In terms of energy the demand for natural gas exceeds the global demand for fossil fuels for transportation. Despite this observation the challenges to natural gas end use that arise when changing the composition of the fuel are largely absent from public policy and research agendas whereas for transportation fuels the issues are more appreciated. Natural gas is delivered via complex networks of interconnected pipelines to end users for direct and indirect heating in household and industrial sectors and for power generation. This interconnectedness is a crucial aspect of the challenge for introducing new fuels.<br/>In this paper we discuss the issues that arise from changing fuel properties for an existing population of end-use equipment. To illustrate the issues we will consider the changes in (combustion) performance of domestic combustion equipment and gas engines for power generation in response to substituting natural gas by hydrogen or hydrogen/natural gas blends. During the discussion we shall also indicate methods for characterizing the properties of the fuel and identify the combustion challenges that must be addressed for a successful transition from the current fuel mix to whatever the future mix may be.
Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study
Mar 2018
Publication
This study evaluates the environmental profile of a real biomass-based hydrogen production small-scale (1 MWth) system composed of catalytic candle indirectly heated steam gasifier coupled with zinc oxide (ZnO) guard bed water gas shift (WGS) and pressure swing absorber (PSA) reactors. Environmental performance from cradle-to-gate was investigated by life cycle assessment (LCA) methodology. Biomass production shows high influence over all impact categories. In the syngas production process the main impacts observed are global warming potential (GWP) and acidification potential (AP). Flue gas emission from gasifier burner has the largest proportion of total GWP. The residual off gas use in internal combustion engine (ICE) leads to important environmental savings for all categories. Hydrogen renewability score is computed as 90% due to over 100% decline in non-renewable energy demand. Sensitivity analysis shows that increase in hydrogen production efficiency does not necessarily result in decrease in environmental impacts. In addition economic allocation of environmental charges increases all impact categories especially AP and photochemical oxidation (POFP).
Potentials of Hydrogen Technologies for Sustainable Factory Systems
Mar 2021
Publication
The industrial sector is the world’s second largest emitter of greenhouse gases hence a methodology for decarbonizing factory systems is crucial for achieving global climate goals. Hydrogen is an important medium for the transition towards carbon neutral factories due to its broad applicability within the factory including its use in electricity and heat generation and as a process gas or fuel. One of the main challenges is the identification of economically and environmentally suitable design scenarios such as for the entire value chain for hydrogen generation and application. For example the infrastructure for renewable electricity hydrogen generation hydrogen conversion (e.g. into synthetic fuels) storage and transport systems as well as application in the factory. Due to the high volatility of energy generation and the related dynamic interdependencies within a factory system a valid technical economic and environmental evaluation of benefits induced by hydrogen technologies can only be achieved using digital factory models. In this paper we present a framework to integrate hydrogen technologies into factory systems. This enables decision makers to identify promising measures according to their expected impact and collect data for appropriate factory modelling. Furthermore a concept for factory modelling and simulation is presented and demonstrated in a case study from the electronics industry assessing the use of hydrogen for decentralized power and heat generation.
Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
Nov 2021
Publication
In this paper the composition function and structure of the catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) are summarized. The hydrogen reduction reaction (HOR) and oxygen reduction reaction (ORR) processes and their mechanisms and the main interfaces of CL (PEM|CL and CL|MPL) are described briefly. The process of mass transfer (hydrogen oxygen and water) proton and electron transfer in MEA are described in detail including their influencing factors. The failure mechanism of CL (Pt particles CL crack CL flooding etc.) and the degradation mechanism of the main components in CL are studied. On the basis of the existing problems a structure optimization strategy for a high‐performance CL is proposed. The commonly used preparation processes of CL are introduced. Based on the classical drying theory the drying process of a wet CL is explained. Finally the research direction and future challenges of CL are pointed out hoping to provide a new perspective for the design and selection of CL materials and preparation equipment.
Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis
Jun 2017
Publication
The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant for CO2 methanation (Sabatier reaction). The utilization of CO2 as a feedstock for producing methane contributes to alleviate global climate changes and sequestration related problems. The produced methane is a carbon neutral gas that fits into existing infrastructure and allows issues related to the aforementioned intermittency and non-programmability of solar energy to be overcome. In this paper an experimental apparatus composed of an electrolyzer and a tubular fixed bed reactor is built and used to produce methane via Sabatier reaction. The objective of the experimental campaign is the evaluation of the process performance and a comparison with other CO2 valorization paths such as methanol production. The investigated pressure range was 2–20 bar obtaining a methane volume fraction in outlet gaseous mixture of 64.75% at 8 bar and 97.24% at 20 bar with conversion efficiencies of respectively 84.64% and 99.06%. The methanol and methane processes were compared on the basis of an energy parameter defined as the spent energy/stored energy. It is higher for the methanol process (0.45) with respect to the methane production process (0.41–0.43) which has a higher energy storage capability.
Interaction of Hydrogen with the Bulk, Surface and Subsurface of Crystalline RuO2 from First Principles
Feb 2021
Publication
Hydrogen and its interaction with metal oxide surfaces is of major importance for a wide range of research and applied fields spanning from catalysis energy storage microelectronics to metallurgy. This paper reviews state of the art of first principles calculations on the well-known ruthenium oxide (RuO2) surface in its (110) orientation and its interaction with hydrogen. In addition to it the paper also fills gaps in knowledge with new calculations and results on the (001) surface. Bulk and surface interactions are thoroughly reviewed. This includes systematic analysis of adsorption sites local agglomeration propensity of hydrogen and migration pathways in which literature data and their potential deviations are explained. We notably discuss novel results on propensity for agglomeration of hydrogen within bulk channels [001] oriented in which the proton-like behavior of adsorbed hydrogen hinders further agglomeration in adjacent channels. The paper brings new insights into the migration pathways on the surface and in bulk both exhibiting preferential diffusion paths along the [001] direction. The paper finally investigates the subsurface region. We show that while the subsurface has more stable sites for adsorption compared to bulk its accessibility from the surface shows prohibitive activation barriers inhibiting penetration into subsurface and bulk. We further calculate and discuss adsorption and penetration processes on the alternative RuO2 (001) surface.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Laser Induced Hydrogen Emission from Ethanol with Dispersed Graphene Particles
Apr 2021
Publication
Efficient hydrogen emission from ethanol with disperse graphene foam particles by using a continuous wave infrared laser diode is reported. The products of ethanol dissociation - hydrogen methane and carbon oxide were measured using mass spectrometry. It was found that the most efficient generation of hydrogen was observed when graphene particles were irradiated by a focused laser beam proceeded at the surface of ethanol solution. The process was assisted by intense white light emission resulting from the laser induced multiphoton ionization of graphene combined with the simultaneous emission of hot electrons. The hot electron emission enables the efficient dissociation of ethanol molecules located close to the solution surface with graphene foam particles.
Consumer Attitudes to Fuel Cell Vehicles Post Trial in the United Kingdom
Mar 2016
Publication
Fuel cell vehicles (FCVs) have clear societal and environmental benefits and can help mitigate the issues of climate change urban air pollution and oil dependence. In order for FCVs to have the biggest impact on these issues they need to be employed in large numbers. First though they need to be adopted by consumers. Their acceptance depends on positive consumer attitudes towards the vehicles. Currently there is a limited understanding within the literature on how consumers perceive FCVs and what the likelihood of adoption by consumers would be despite significant governmental and organisational investments into the technology. Therefore this study assesses consumer attitudes towards FCVs in the United Kingdom. 81 persons drove a Hyundai FCV at the Low Carbon Vehicle Event in September 2015 of which 30 took part in this study. The results show that at present FCVs are perceived mostly as being similar to incumbent internal combustion engine vehicles. This is an admirable technical achievement however in order for consumers to adopt FCVs they will need to be perceived as having distinctive benefits. Two significant barriers to the adoption of FCVs are observed in this sample: high costs and lack of refuelling infrastructure. This paper goes on to make suggestions on how and which beneficial attributes of the vehicles can be promoted to consumers and also makes suggestions on how the barriers can be overcame so that FCVs will be adopted by consumers.
Characterization of the Hazards from Jet Releases of Hydrogen
Sep 2005
Publication
Hydrogen is a convenient energy storage medium; it can be produced from fossil fuels and biomass via chemical conversion processes or from intermittent renewable sources like wind and solar via electrolysis. It is the fuel of choice for the clean fuel-cell vehicles of the future. If the general public are to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. For the safe design of retail facilities through the development of appropriate codes and standards it is essential to understand all the hazards that could arise following an accidental release of hydrogen. If it is to be stored and used as a high-pressure gas the hazards associated with jet releases from accidental leaks must be considered. This paper describes work by Shell and the Health and Safety Laboratory to characterise the hazards from jet releases of hydrogen. Jet release experiments have been carried out using small leaks (circular holes ranging from 1 mm to 12 mm diameter) at system pressures up to 150 barg. Concentration measurements were made in the unignited free jets to determine the extent of the flammable cloud generated. Ignited jets were observed both in the visible and infrared to determine the flame size and shape. The experimental results for the extent of the flammable cloud and jet flame length were found to be in good agreement with model predictions.
Review on Blended Hydrogen-fuel Internal Combustion Engines: A Case Study for China
Apr 2022
Publication
Under the dual pressure of energy conservation and environmental protection the internal combustion engine industry is facing huge challenges and it is imperative to find new clean energy. Hydrogen energy is expected to replace traditional fossil fuels as an excellent fuel for internal combustion engines because of its clean continuous regeneration and good combustion performance. This review article focuses on the research and development of blended hydrogen-fuel internal combustion engines in China since the beginning of this century. The main achievements gained by Chinese researchers in performing research on the effects of the addition of hydrogen into engines which predominantly include many types of hydrogen-blended engines such as gasoline diesel natural gas and alcohol engines rotary engines are discussed and analyzed in these areas of the engine’s performance and the combustion and emission characteristics etc. The merits and demerits of blended hydrogen-fuel internal combustion engines could be concluded and summarized after discussion. Finally the development trend and direction of exploration on hydrogen-fuel internal combustion engines could also be forecasted for relevant researchers.
No more items...