- Home
- A-Z Publications
- Publications
Publications
Energy Transition in France
May 2022
Publication
To address the climate emergency France is committed to achieving carbon neutrality by 2050. It plans to significantly increase the contribution of renewable energy in its energy mix. The share of renewable energy in its electricity production which amounts to 25.5% in 2020 should reach at least 40% in 2030. This growth poses several new challenges that require policy makers and regulators to act on the technological changes and expanding need for flexibility in power systems. This document presents the main strategies and projects developed in France as well as various recommendations to accompany and support its energy transition policy.
Platinum Single-atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction
Jun 2021
Publication
Single-atom catalysts provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However the sluggish activity of the catalysts for alkaline water dissociation has hampered advances in highly efficient hydrogen production. Herein we develop a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline hydrogen evolution catalyst. It is found that Pt single atom coupled with NiO/Ni heterostructure enables the tunable binding abilities of hydroxyl ions (OH*) and hydrogen (H*) which efficiently tailors the water dissociation energy and promotes the H* conversion for accelerating alkaline hydrogen evolution reaction. A further enhancement is achieved by constructing PtSA-NiO/Ni nanosheets on Ag nanowires to form a hierarchical three-dimensional morphology. Consequently the fabricated PtSA-NiO/Ni catalyst displays high alkaline hydrogen evolution performances with a quite high mass activity of 20.6 A mg−1 for Pt at the overpotential of 100 mV significantly outperforming the reported catalysts.
Techno-economic Analysis of Hydrogen Enhanced Methanol to Gasoline Process from Biomass-derived Synthesis Gas
Mar 2021
Publication
In this paper the implications of the use of hydrogen on product yield and conversion efficiency as well as on economic performance of a hydrogen enhanced Biomass-to-Liquid (BtL) process are analyzed. A process concept for the synthesis of fuel (gasoline and LPG) from biomass-derived synthesis gas via Methanol-to-Gasoline (MtG) route with utilization of carbon dioxide from gasification by feeding additional hydrogen is developed and modeled in Aspen Plus. The modeled process produces 0.36 kg fuel per kg dry straw. Additionally 99 MW electrical power are recovered from purge and off gases from fuel synthesis in CCGT process covering the electricity consumption of fuel synthesis and synthesis gas generation. The hydrogen enhanced BtL procces reaches a combined chemical and electrical efficiency of 48.2% and overall carbon efficiency of 69.5%. The total product costs (TPC) sum up to 3.24 €/kg fuel. Raw materials (hydrogen and straw) make up the largest fraction of TPC with a total share of 75%. The hydrogen enhanced BtL process shows increased chemical energy and carbon efficiencies and thus higher product yields. However economic analysis shows that the process is unprofitable under current conditions due to high costs for hydrogen provision.
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate clean energy storage. However the electrocatalysts currently required for water electrolysis are noble metals making this potential option expensive and inaccessible for industrial applications. Therefore there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms structure and morphology. Even though some works tend to be contradictory they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons a review of recent progress is presented herein.
Combined Soft Templating with Thermal Exfoliation Toward Synthesis of Porous g-C3N4 Nanosheets for Improved Photocatalytic Hydrogen Evolution
Apr 2021
Publication
Insufficient active sites and fast charge carrier recombination are detrimental to photocatalytic activity of graphitic carbon nitride (g-C3N4). In this work a combination of pore creating with thermal exfoliation was employed to prepare porous g-C3N4 nanosheets for photocatalytic water splitting into hydrogen. Hexadecyl trimethyl ammonium chloride (CTAC) as the soft template promoted the formation of porous g-C3N4 during the thermal condensation of melamine. On further post-synthesis calcination the porous g-C3N4 aggregates were exfoliated into discrete nanosheets accompanied by an increase in specific surface area and defects. Optimal porous g-C3N4 nanosheets achieved 3.6 times the photocatalytic hydrogen evolution rate for bulk counterpart. The enhanced photocatalytic activity may be ascribed to TCN-1%CTAC has larger specific surface area stronger optical absorption intensity and higher photogenerated electron–hole separation efficiency. The external quantum efficiency of TCN-1%CTAC was measured to be 3.4% at 420 nm. This work provides a simple combinatorial strategy for the preparation of porous g-C3N4 nanosheets with low cost environmental friendliness and enhanced photocatalytic activity.
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
Hydrogen-based fuels previously attracted interest mainly as an alternative to shore up oil supply. However green hydrogen as opposed to the “grey” (fossil-based) or “blue” (hybrid) varieties also help to boost renewables in the energy mix and decarbonise energy-intensive industries.
This report from the International Renewable Energy Agency (IRENA) outlines the main barriers that inhibiting green hydrogen uptake and the policies needed to address these. It also offers insights on how to kickstart the green hydrogen sector as a key enabler of the energy transition at the national or regional level.
Key pillars of green hydrogen policy making include:
- National hydrogen strategy. Each country needs to define its level of ambition for hydrogen outline the amount of support required and provide a reference on hydrogen development for private investment and finance.
- Setting policy priorities. Green hydrogen can support a wide range of end-uses. Policy makers should identify and focus on applications that provide the highest value.
- Guarantees of origin. Carbon emissions should be reflected over the whole lifecycle of hydrogen. Origin schemes need to include clear labels for hydrogen and hydrogen products to increase consumer awareness and facilitate claims of incentives.
- Governance system and enabling policies. As green hydrogen becomes mainstream policies should cover its integration into the broader energy system. Civil society and industry must be involved to maximise the benefits.
- Subsequent briefs will explore the entire hydrogen value chain providing sector-by-sector guidance on the design and implementation of green hydrogen policies.
Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst
Feb 2022
Publication
Hydrogen production from biomass pyrolysis is economically and technologically attractive from the perspectives of energy and the environment. The two-stage catalytic pyrolysis of pine sawdust for hydrogen-rich gas production is investigated using nano-NiO/Al2O3 as the catalyst at high temperatures. The influences of residence time (0–30 s) and catalytic temperature (500–800 ◦C) on pyrolysis performance are examined in the distribution of pyrolysis products gas composition and gas properties. The results show that increasing the residence time decreased the solid and liquid products but increased gas products. Longer residence times could promote tar cracking and gas-phase conversion reactions and improve the syngas yield H2/CO ratio and carbon conversion. The nano-NiO/A12O3 exhibits excellent catalytic activity for tar removal with a tar conversion rate of 93% at 800 ◦C. The high catalytic temperature could significantly improve H2 and CO yields by enhancing the decomposition of tar and gas-phase reactions between CO2 and CH4 . The increasing catalytic temperature increases the dry gas yield and carbon conversion but decreases the H2/CO ratio and low heating value.
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly when employing the membranes in fluidized bed reactors the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes resistance to hydrogen embrittlement and stability at high temperature.
Anchoring of Turbulent Premixed Hydrogen/Air Flames at Externally Heated Walls
Oct 2020
Publication
A joint experimental and numerical investigation of turbulent flame anchoring at externally heated walls is presented. The phenomenon has primarily been studied for laminar flames and micro-combustion while this study focuses on large-scale applications and elevated Reynolds number flows. Therefore a novel burner design is developed and examined for a diverse set of operating conditions. Hydroxyl radical chemiluminescence measurements are employed to validate the numerical method. The numerical investigation evaluates the performance of various hydrogen/air kinetics Reynolds-averaged turbulence models and the eddy dissipation concept (EDC) as a turbulence-chemistry interaction model. Simulation results show minor differences between detailed chemical mechanisms but pronounced deviations for a reduced kinetic. The baseline k-ω turbulence model is assessed to most accurately predict flame front position and shape. Universal applicability of EDC modelling constants is contradicted. Conclusively the flame anchoring concept is considered a promising approach for pilot flames in continuous combustion devices.
Water Photo-Oxidation Reaction on Clean and Doped Two-Dimensional Graphitic C2N
Apr 2020
Publication
In the search for new efficient photo-catalysts for hydrogen production through water splitting the main attention has been paid to tuning the band gap width and its position with respect to vacuum level. However actual electro-catalytic activity for the water oxidation reaction on a catalyst surface is no less important than those quantities. In this work we evaluate from first principles the thermodynamics of the reaction on relatively new candidates for water splitting: two-dimensional C2N and that doped with phosphorus. We find that the 4-step reaction usually expected for water splitting will not proceed on these systems resulting in oxygen atoms left strongly adsorbed to the surface. Another option a 3-step reaction is also found to be unfavorable. We also test an effect of higher oxygen coverage on the reaction thermodynamics as suggested elsewhere. We find that indeed the doubled O-coverage makes the 4-step reaction feasible for the doped C2N. However an unacceptably high anode potential is required to make this reaction proceed. We thus conclude that the materials under consideration may not be efficient electro-catalysts for water splitting.
Indentation and Hydride Orientation in Zr-2.5%Nb Pressure Tube Material
Jun 2019
Publication
In this study indentations were made on Zr-2.5%Nb pressure tube material to induce multi-axial stress field. An I-shaped punch mark was indented on the Pressure tube material with predefined punch load. Later material was charged with 50 wppm of hydrogen. The samples near the punch mark were metallographically examined for hydrides orientation. It was observed that hydrides exhibited preferentially circumferential orientation far away from the indent to mixed orientation containing both circumferential and radial hydrides near the indent. This is probably as a result of stress field generated by indentation. Extent of radial hydride formation was observed to be varying with indentation load.
A Review on Recent Advances in Hydrogen Energy, Fuel Cell, Biofuel and Fuel Refining via Ultrasound Process Intensification
Mar 2021
Publication
Hydrogen energy is one of the most suitable green substitutes for harmful fossil fuels and has been investigated widely. This review extensively compiles and compares various methodologies used in the production storage and usage of hydrogen. Sonochemistry is an emerging synthesis process and intensification technique adapted for the synthesis of novel materials. It manifests acoustic cavitation phenomena caused by ultrasound where higher rates of reactions occur locally. The review discusses the effectiveness of sonochemical routes in developing fuel cell catalysts fuel refining biofuel production chemical processes for hydrogen production and the physical chemical and electrochemical hydrogen storage techniques. The operational parameters and environmental conditions used during ultrasonication also influence the production rates which have been elucidated in detail. Hence this review's major focus addresses sonochemical methods that can contribute to the technical challenges involved in hydrogen usage for energy.
HyDeploy Report: Material Effects of Introducing Hydrogen into the UK Gas Supply
Jun 2018
Publication
Introduction of hydrogen into the UK gas main has been reviewed in terms of how materials within the Keele G3 gas distribution network (G3 GDN) on the Keele University network may be affected by contact with natural gas (NG):hydrogen blends up to a limit of 20 % mol/mol hydrogen.<br/>This work has formed part of the supporting evidence for a 1 year hydrogen blending trial on the Keele G3 GDN coordinated by the HyDeploy consortium (formed of representatives of Cadent Northern Gas Networks ITM Power Progressive Energy HSL and Keele University).<br/>A wide range of materials were identified and assessed via a combination of literature review and practical test programmes. No significant changes to material properties in terms of accelerated material degradation or predicted efficiency of gas confinement were identified which would cause concern for the year-long trial at Keele.<br/>It can be concluded that materials on the Keele G3 GDN should be acceptable to provide a safe operating network the HyDeploy demonstrator project up to a level of 20 % mol/mol hydrogen.<br/>Check the supplements tab for the other documents in this report
Suitable Site Selection for Solar‐Based Green Hydrogen in Southern Thailand Using GIS‐MCDM Approach
May 2022
Publication
Climate change mitigation efforts are in dire need of greener and more versatile fuel al‐ ternatives to fossil fuels. Green hydrogen being both renewable and flexible has the potential to offset fossil fuels as the primary fuel source. Countries around the world are planning to develop their green hydrogen industries and accurate potential assessment is vital. This study employed the consolidation of a geographic information system (GIS) and the analytical hierarchy process (AHP) technique of multicriteria decision making (MCDM) for the potential assessment of green hydrogen in southern Thailand through the selection of suitable sites for solar‐based green hy‐ drogen production. Technical economic and environmental criteria with 10 sub‐criteria were con‐ sidered for the selection of suitable sites. With 0.243 (24.3%) weight the distance from protected areas turned out to be the most important sub‐criterion whereas the criterion of elevation with a 0.017 (1.7%) score was considered the least important. Southern Thailand is a well‐suited area for solar‐based green hydrogen production with a 4302 km2 area of high suitability and a 3350 km2 area of moderate suitability. These suitable areas can be utilized to develop the green hydrogen industry of Thailand and the method developed can be employed for the assessment of green hydrogen potential in other parts of the country. Studies like these are vital for the development of green hydrogen road maps for Thailand to develop its hydrogen policy and promote investments in the sector.
Mg-based Materials for Hydrogen Storage
Aug 2021
Publication
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities. This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties. Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity
May 2021
Publication
In the present work an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques i.e. X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study modifying parameters such as temperature the mass of the catalyst stirring speed and concentration of base in order to find the optimal conditions of reaction which allow performing the test in a kinetically limited regime.
Investigation of Structure of AlN Thin Films Using Fourier-transform Infrared Spectroscopy
Feb 2020
Publication
This study focuses on structural imperfections caused by hydrogen impurities in AlN thin films obtained using atomic layer deposition method (ALD). Currently there is a severe lack of studies regarding the presence of hydrogen in the bulk of AlN films. Fourier-transform infrared spectroscopy (FTIR) is one of the few methods that allow detection bonds of light elements in particular - hydrogen. Hydrogen is known to be a frequent contaminant in AlN films grown by ALD method it may form different bonds with nitrogen e.g. amino (–NH2) or imide (–NH) groups which impair the quality of the resulting film. Which is why it is important to investigate the phenomenon of hydrogen as well as to search for the suitable methods to eliminate or at least reduce its quantity. In this work several samples have been prepared using different precursors substrates and deposition parameters and characterized using FTIR and additional techniques such as AFM XPS and EDS to provide a comparative and comprehensive analysis of topography morphology and chemical composition of AlN thin films.
Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields
Nov 2018
Publication
Underground hydrogen storage is a potential way to balance seasonal fluctuations in energy production from renewable energies. The risks of hydrogen storage in depleted gas fields include the conversion of hydrogen to CH4(g) and H2S(g) due to microbial activity gas–water–rock interactions in the reservoir and cap rock which are connected with porosity changes and the loss of aqueous hydrogen by diffusion through the cap rock brine. These risks lead to loss of hydrogen and thus to a loss of energy. A hydrogeochemical modeling approach is developed to analyze these risks and to understand the basic hydrogeochemical mechanisms of hydrogen storage over storage times at the reservoir scale. The one-dimensional diffusive mass transport model is based on equilibrium reactions for gas–water–rock interactions and kinetic reactions for sulfate reduction and methanogenesis. The modeling code is PHREEQC (pH-REdox-EQuilibrium written in the C programming language). The parameters that influence the hydrogen loss are identified. Crucial parameters are the amount of available electron acceptors the storage time and the kinetic rate constants. Hydrogen storage causes a slight decrease in porosity of the reservoir rock. Loss of aqueous hydrogen by diffusion is minimal. A wide range of conditions for optimized hydrogen storage in depleted gas fields is identified.
A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier
Jun 2021
Publication
Global energy sources are being transformed from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind solar and hydrogen. The biggest challenge with hydrogen as a renewable energy carrier is the storage and delivery system’s complexity. Therefore other media such as ammonia for indirect storage are now being considered. Research has shown that at reasonable pressures ammonia is easily contained as a liquid. In this form energy density is approximately half of that of gasoline and ten times more than batteries. Ammonia can provide effective storage of renewable energy through its existing storage and distribution network. In this article we aimed to analyse the previous studies and the current research on the preparation of ammonia as a next-generation renewable energy carrier. The study focuses on technical advances emerging in ammonia synthesis technologies such as photocatalysis electrocatalysis and plasmacatalysis. Ammonia is now also strongly regarded as fuel in the transport industrial and power sectors and is relatively more versatile in reducing CO2 emissions. Therefore the utilisation of ammonia as a renewable energy carrier plays a significant role in reducing GHG emissions. Finally the simplicity of ammonia processing transport and use makes it an appealing choice for the link between the development of renewable energy and demand.
Thermodynamic Modeling of Hydrogen Refueling for Heavy-duty Fuel Cell Buses and Comparison with Aggregated Real Data
Apr 2021
Publication
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises both refuelling infrastructure and vehicles should be deployed together with improved refuelling protocols. Several studies focus on refuelling the light-duty vehicles with 10 kgH2 up to 700 bar however less known effort is reported for refuelling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustrates the application of a lumped model to a fuel cell bus tank-to-tank refuelling event tailored upon the real data acquired in the 3Emotion Project. The evolution of the main refuelling quantities such as pressure temperature and mass flow are predicted dynamically throughout the refuelling process as a function of the operating parameters within the safety limits imposed by SAE J2601/2 technical standard. The results show to refuel the vehicle tank from half to full capacity with an Average Pressure Ramp Rate (APRR) equal to 0.03 MPa/s are needed about 10 min. Furthermore it is found that the effect of varying the initial vehicle tank pressure is more significant than changing the ambient temperature on the refuelling performances. In conclusion the analysis of the effect of different APRR from 0.03 to 0.1 MPa/s indicate that is possible to safely reduce the duration of half-to-full refuelling by 62% increasing the APRR value from 0.03 to 0.08 MPa/s.
No more items...