- Home
- A-Z Publications
- Publications
Publications
Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities
Jun 2022
Publication
A general rise in environmental and anthropogenically induced greenhouse gas emissions has resulted from worldwide population growth and a growing appetite for clean energy industrial outputs and consumer utilization. Furthermore well-established advanced and emerging countries are seeking fossil fuel and petroleum resources to support their aviation electric utilities industrial sectors and consumer processing essentials. There is an increasing tendency to overcome these challenging concerns and achieve the Paris Agreement’s priorities as emerging technological advances in clean energy technologies progress. Hydrogen is expected to be implemented in various production applications as a fundamental fuel in future energy carrier materials development and manufacturing processes. This paper summarizes recent developments and hydrogen technologies in fuel refining hydrocarbon processing materials manufacturing pharmaceuticals aircraft construction electronics and other hydrogen applications. It also highlights the existing industrialization scenario and describes prospective innovations including theoretical scientific advancements green raw materials production potential exploration and renewable resource integration. Moreover this article further discusses some socioeconomic implications of hydrogen as a green resource.
Optimized Configuration and Operating Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Mar 2022
Publication
Hydrogen refueling stations (HRSs) are critical for the popularity of hydrogen vehicles (fuel cell electric vehicles—FCEVs). However due to high installation investment and operating costs the proliferation of HRSs is difficult. This paper studies HRSs with on-site electrolytic production and hydrogen storage devices and proposes an optimization method to minimize the total costs including both installation investment and operating costs (OPT-ISL method). Moreover to acquire the optimization constraints of hydrogen demand this paper creatively develops a refueling behavior simulation method for different kinds of FCEVs and proposes a hydrogen-demand estimation model to forecast the demand with hourly intervals for HRS. The Jensen–Shannon divergence is applied to verify the accuracy of the hydrogen-demand estimation. The result: 0.029 is much smaller than that of the estimation method in reference. Based on the estimation results and peak-valley prices of electricity from the grid a daily hydrogen generation plan is obtained as well as the optimal capacities of electrolyzers and storage devices. As for the whole costs compared with previous configuration methods that only consider investment costs or operating costs the proposed OPT-ISL method has the least 8.1 and 10.5% less respectively. Moreover the proposed OPT-ISL method shortens the break-even time for HRS from 11.1 years to 7.8 years a decrease of 29.7% so that the HRS could recover its costs in less time.
Temperature Effect on the Mechanical Properties of Liner Materials used for Type IV Hydrogen Storage Tanks
Sep 2021
Publication
Type IV hydrogen storage tanks play an important role in hydrogen fuel cell vehicles (HFCVs) due to their superiority of lightweight good corrosion and fatigue resistance. It is planned to be used between -40℃ and 85℃ at which the polymer liner may have a degradation of mechanical properties and buckling collapse. This demand a good performance of liner materials in that temperature range. In this article the temperature effect on mechanical properties of polyamide 6 (PA6) liner material including specimens with weld seam was investigated via the stress-strain curve (S-S curve) macroscopic and microscopic morphology. Considering that the mechanical properties will change after the liner molding process this test takes samples directly from the liner. Results show that the tensile strength and tensile modulus increased by 2.46 times and 10.6 times respectively with the decrease of temperature especially in the range from 50℃ to -90℃. For the elongation at break and work of fracture they do not monotonously increase with the temperature up. Both of them reduce when the temperature rises from 20°C to 50°C especially for the work of fracture decreasing by 63%. The weld seam weakens the mechanical properties and the elongation at break and work of fracture are more obvious which are greater than 40% at each temperature. In addition the SEM images indicate that the morphology of fracture surface at -90°C is different from that at other temperatures which is a sufficient evidence of toughness reducing in low temperature.
Industrial Decarbonization Pathways: The Example of the German Glass Industry
Nov 2022
Publication
Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately +200%. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching the complete phase-out from natural gas to renewable energy carriers. Furthermore the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target.
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Renewable Hydrogen Production from Butanol Steam Reforming over Nickel Catalysts Promoted by Lanthanides
Oct 2021
Publication
Hydrogen is mainly produced by steam reforming of natural gas a non-renewable resource. Alternative and renewable routes for hydrogen production play an important role in reducing dependence on oil and minimizing the emission of greenhouse gases. In this work butanol a model compound of bio-oil was employed for hydrogen production by steam reforming. The reaction was evaluated for 30 h in a tubular quartz reactor at 500 ◦C atmospheric pressure GHSV of 500000 h−1 and an aqueous solution feed of 10% v/v butanol. For this reaction catalysts with 20 wt.% NiO were prepared by wet impregnation using three supports: γ-alumina and alumina modified with 10 wt.% of cerium and lanthanum oxides. Both promoters increased the reduction degree of the catalysts and decreased catalyst acidity which is closely related to coke formation and deactivation. Ni/La2O3– Al2O3 presented a higher nickel dispersion (14.6%) which combined with other properties led to a higher stability higher mean hydrogen yield (71%) and lower coke formation per mass (56%). On the other hand the nonpromoted catalyst suffered a significant deactivation associated with coke formation favored by its highest acidity (3.1 µmol m−2 ).
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
A CFD Analysis of Liquefied Gas Vessel Explosions
Dec 2021
Publication
Hydrogen is one of the most suitable candidates in replacing fossil fuels. However storage issues due to its very low density under ambient conditions are encountered in many applications. The liquefaction process can overcome such issues by increasing hydrogen’s density and thus enhancing its storage capacity. A boiling liquid expanding vapour explosion (BLEVE) is a phenomenon in liquefied gas storage systems. It is a physical explosion that might occur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boiling point at atmospheric pressure. Even though it is an atypical accident scenario (low probability) it should be always considered due to its high yield consequences. For all the above-mentioned reasons the BLEVE phenomenon for liquid hydrogen (LH2) vessels was studied using the CFD methodology. Firstly the CFD model was validated against a well-documented CO2 BLEVE experiment. Secondly hydrogen BLEVE cases were simulated based on tests that were conducted in the 1990s on LH2 tanks designed for automotive purposes. The parametric CFD analysis examined different filling degrees initial pressures and temperatures of the tank content with the aim of comprehending to what extent the initial conditions influence the blast wave. Good agreement was shown between the simulation outcomes and the LH2 bursting scenario tests results.
Spherically Expanding Flame Simulations in Cantera Using a Lagrangian Formulation
Sep 2021
Publication
A Lagrangian-based one-dimensional approach has been developed using Cantera to study the dynamics of spherically expanding flames. The detailed reaction model USC-Mech II has been employed to examine flame propagating in hydrogen-air mixtures. In the first part our approach has been validated against laminar flame speed and Markstein number data from the literature. It was shown that the laminar flame speed was predicted within 5% on average but that discrepancies were observed for the Markstein number especially for rich mixtures. In the second part a detailed analysis of the thermo-chemical dynamics along the path of Lagrangian particles propagating in stretched flames was performed. For mixtures with negative Markstein lengths it was found that at high stretch rates the mixture entering the reaction-dominated period is less lean with respect to the initial mixture than at low stretch rate. This induces a faster rate of chemical heat release and of active radical production which results in a higher flame propagation speed. Opposite effects were observed for mixtures with positive Markstein lengths for which slower flame propagation was observed at high stretch rates compared to low stretch rates."
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service
Sep 2021
Publication
For achieving Net Zero-aims hydrogen is an indispensable component probably the main component. For the usage of hydrogen a wide acceptance is necessary which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13."
AI Agents Envisioning the Future: Forecast-based Operation of Renewable Energy Storage Systems Using Hydrogen with Deep Reinforcement Learning
Feb 2022
Publication
Hydrogen-based energy storage has the potential to compensate for the volatility of renewable power generation in energy systems with a high renewable penetration. The operation of these storage facilities can be optimized using automated energy management systems. This work presents a Reinforcement Learning-based energy management approach in the context of CO2-neutral hydrogen production and storage for an industrial combined heat and power application. The economic performance of the presented approach is compared to a rule-based energy management strategy as a lower benchmark and a Dynamic Programming-based unit commitment as an upper benchmark. The comparative analysis highlights both the potential benefits and drawbacks of the implemented Reinforcement Learning approach. The simulation results indicate a promising potential of Reinforcement Learning-based algorithms for hydrogen production planning outperforming the lower benchmark. Furthermore a novel approach in the scientific literature demonstrates that including energy and price forecasts in the Reinforcement Learning observation space significantly improves optimization results and allows the algorithm to take variable prices into account. An unresolved challenge however is balancing multiple conflicting objectives in a setting with few degrees of freedom. As a result no parameterization of the reward function could be found that fully satisfied all predefined targets highlighting one of the major challenges for Reinforcement Learning -based energy management algorithms to overcome.
Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles
Mar 2022
Publication
A proton exchange membrane fuel cell (PEMFC) is known as one of the most promising energy sources for electric vehicles. A hydrogen system is required to provide hydrogen to the stack in time to meet the flow and pressure requirements according to the power requirements. In this study a 1-D model of a hydrogen system including the fuel cell stack was established. Two modes one with and one without a proportion integration differentiation (PID) control strategy were applied to analyze the pressure characteristics and performance of the PEMFC. The results showed that the established model could be well verified with experimental data. The anode pressure fluctuation with a PID control strategy was more stable which reduced the damage to the fuel cell stack caused by sudden changes of anode pressure. In addition the performance of the stack with the PID control mode was slightly improved. There was an inflection point for hydrogen utilization; the hydrogen utilization rate was higher under the mode without PID control when the current density was greater than 0.4 A/cm2 . What is more a hierarchical control strategy was proposed which made the pressure difference between the anode and cathode meet the stack working requirements and more importantly maintained the high hydrogen utilization of the hydrogen system.
Optimal Dispatch Model for PV-electrolysis Plants in Self-consumption Regime to Produce Green Hydrogen: A Spanish Case Study
May 2022
Publication
The production of green hydrogen from renewable energy by means of water electrolysis is a promising approach to support energy sector decarbonization. This paper presents a techno-economic model of plants with PV sources connected to electrolysis in self-consumption regime that considers the dynamics of electrolysis systems. The model calculates the optimal hourly dispatch of the electrolysis system including the operational states (production standby and idle) the load factor in production and the energy imports and exports to the electricity grid. Results indicate that the model is a useful decision support tool to operate electrolysis plants connected to PV plants in self-consumption regimes with the target of reducing hydrogen production costs.
Design and Analysis of Photovoltaic/wind Operations at MPPT for Hydrogen Production using a PEM Electrolyzer: Towards Innovations in Green Technology
Jul 2023
Publication
In recent times renewable energy systems (RESs) such as Photovoltaic (PV) and wind turbine (WT) are being employed to produce hydrogen. This paper aims to compare the efficiency and performance of PV and WT as sources of RESs to power polymer electrolyte membrane electrolyzer (PEMEL) under different conditions. The study assessed the input/ output power of PV and WT the efficiency of the MPPT controller the calculation of the green hydrogen production rate and the efficiency of each system separately. The study analyzed variable irradiance from 600 to 1000 W/m2 for a PV system and a fixed temperature of 25˚C while for the WT system it considered variable wind speed from 10 to 14 m/s and zero fixed pitch angle. The study demonstrated that the applied controllers were effective fast low computational and highly accurate. The obtained results showed that WT produces twice the PEMEL capacity while the PV system is designed to be equal to the PEMEL capacity. The study serves as a reference for designing PV or WT to feed an electrolyzer. The MATLAB program validated the proposed configurations with their control schemes.
Safety and Other Considerations in the Development of a Hydrogen Fueling Protocol for Heavy-duty Vehicles
Sep 2021
Publication
Several manufacturers are developing heavy duty (HD) hydrogen stations and vehicles as zeroemissions alternatives to diesel and gasoline. In order to meet customer demands the new technology must be comparable to conventional approaches including safety reliability fueling times and final fill levels. For a large HD vehicle with a storage rated to 70 MPa nominal working pressure the goal to meet liquid fuel parity means providing 100 kg of hydrogen in 10 minutes. This paper summarizes the results to date of the PRHYDE project efforts to define the concepts of HD fueling which thereby lays the groundwork for the development of the safe and effective approach to filling these large vehicles. The project starts by evaluating the impact of several different assumptions such as the availability of static vehicle data (e.g. vehicle tank type and volume) and station data (e.g. expected station precooling capability) but also considers using real time dynamic data (e.g. vehicle tank gas temperature and pressure station gas temperature etc.) for optimisation to achieve safety and efficiency improvements. With this information the vehicle or station can develop multiple maps of fill time versus the hydrogen delivery temperature which are used to determine the speed of fueling. This will also allow the station or vehicle to adjust the rate of fueling as the station pre-cooling levels and other conditions change. The project also examines different steps for future protocol development such as communication of data between the vehicle and station and if the vehicle or station is controlling the fueling.
Measurement and Modeling on Hydrogen Jet and Combustion from a Pressurize Vessel
Sep 2021
Publication
Hydrogen safety is an important topic for hydrogen energy application. Unintended hydrogen releases and combustions are potential accident scenarios which are of great interest for developing and updating the safety codes and standards. In this paper hydrogen releases and delayed ignitions were studied.
1921–2021: A Century of Renewable Ammonia Synthesis
Apr 2022
Publication
Synthetic ammonia manufactured by the Haber–Bosch process and its variants is the key to securing global food security. Hydrogen is the most important feedstock for all synthetic ammonia processes. Renewable ammonia production relies on hydrogen generated by water electrolysis using electricity generated from hydropower. This was used commercially as early as 1921. In the present work we discuss how renewable ammonia production subsequently emerged in those countries endowed with abundant hydropower and in particular in regions with limited or no oil gas and coal deposits. Thus renewable ammonia played an important role in national food security for countries without fossil fuel resources until after the mid-20th century. For economic reasons renewable ammonia production declined from the 1960s onward in favor of fossil-based ammonia production. However renewable ammonia has recently gained traction again as an energy vector. It is an important component of the rapidly emerging hydrogen economy. Renewable ammonia will probably play a significant role in maintaining national and global energy and food security during the 21st century.
Metal Hydroborates: From Hydrogen Stores to Solid Electrolyte
Nov 2021
Publication
The last twenty years of an intense research on metal hydroborates as solid hydrogen stores and solid electrolytes are reviewed. It is shown that from the most promising application in hydrogen storage due to their high gravimetric and volumetric capacities the focus has moved to solid electrolytes due to high cation mobility in disordered structures with rotating or tumbling anions-hydroborate clusters. Various strategies of overcoming the strong covalent bonding of hydrogen in hydroborates for hydrogen storage and disordering their structures at room temperature for solid electrolytes are discussed. The important role of crystal chemistry and crystallography knowledge in material design can be read in the cited literature.
Risk Assessment of a Gaseous Hydrogen Fueling Station (GHFs)
Sep 2021
Publication
Promoted by national and European investment plans promoting the use of hydrogen as energy carrier the number of Gaseous Hydrogen Fueling Station (or GHFS) has been growing up quite significantly over the past years. Considering the new possible hazards and the related accidents induced by these installations like seen in 2019 in Norway this paper presents a risk assessment of a typical GHFS using the same methodology as the one required in France by the authorities for Seveso facilities. The fact that a hydrogen fueling station could be used by a public not particularly trained to handle hydrogen underlines the importance of this risk assessment. In this article typical components related to GHFS (dispenser high pressure storage compressor low pressure storage) are listed and the hazard potentials linked to these components and the substances involved are identified. Based on these elements and an accidentology a risk analysis has been conducted in order to identify all accidental situations that could occur. The workflow included a detailed risk assessment consisting in modeling the thermal and explosion effects of all hazardous phenomena and in assessing the probability of occurrence for these scenarios. Regarding possible mitigation measures the study was based on an international benchmark for codes and standards made for GFHS. These preliminary outcomes of this study may be useful for any designer and/or owner of a GFHS.
H2-powered Aviation at Airports – Design and Economics of LH2 Refueling Systems
Feb 2022
Publication
In this paper the broader perspective of green hydrogen (H2) supply and refueling systems for aircraft is provided as an enabling technology brick for more climate friendly H2-powered aviation. For this two H2 demand scenarios at exemplary airports are determined for 2050. Then general requirements for liquid hydrogen (LH2) refueling setups in an airport environment are derived and techno-economic models for LH2 storage liquefaction and transportation to the aircraft are designed. Finally a cost tradeoff study is undertaken for the design of the LH2 setup including LH2 refueling trucks and a LH2 pipeline and hydrant system. It is found that for airports with less than 125 ktLH2 annual demand a LH2 refueling truck setup is the more economic choice. At airports with higher annual LH2 demands a LH2 pipeline & hydrant system can lead to slight cost reductions and enable safer and faster refueling. However in all demand scenarios the refueling system costs only mark 3 to 4% of the total supply costs of LH2. The latter are dominated by the costs for green H2 produced offsite followed by the costs for liquefaction of H2 at an airport. While cost reducing scaling effects are likely to be achieved for H2 liquefaction plants other component capacities would already be designed at maximum capacities for medium-sized airports. Furthermore with annual LH2 demands of 100 ktLH2 and more medium and larger airports could take a special H2 hub role by 2050 dominating regional H2 consumption. Finally technology demonstrators are required to reduce uncertainty around major techno-economic parameters such as the investment costs for LH2 pipeline & hydrant systems.
Reducing the Cost of Low-carbon Hydrogen Production via Emerging Chemical Looping Process
Jan 2023
Publication
A thorough techno-economic analysis where inherent carbon capture is examined against state-of-the-art blue hydrogen production configurations for large (100000 Nm3 /h) and very large (333000 Nm3 /h) capacities. Advanced solvent-based technologies based on post-combustion capture and auto-thermal reformer combined with a gas heated reformer are simulated with process flowsheet software and compared with the emerging chemical looping process. A network of dynamically operated packed bed reactors has been designed and modelled using an in-house code and key parameters generating uncertainties in the results have been examined in a sensitivity analysis. The chemical looping reforming process presents a higher net reforming efficiency than the benchmark cases (8.2 % higher at large scale and 1.5 % higher at very large scale) ranged 75.4–75.7 % while the specific energy for CO2 avoidance is negative in the range of − 0.78 to − 0.85 MJ/kgCO2. In the carbon capture cases the chemical looping reforming in packed beds technology generated a levelised cost of hydrogen of 168.9 £/kNm3 H2 for the large scale and 159.1 £/kNm3 H2 for the very large scale with the values for the benchmark cases being higher at 196.4 and 166.6 £/kNm3 H2 respectively while the levelised cost of hydrogen values are 1 % higher in the benchmark cases where carbon emission price is accounted for. The carbon capture ratio is 99.9 % for the chemical looping reforming cases compared to 90–91 % for the benchmark ones thus providing a significant foreground for the scale-up and implementation of chemical looping reforming technologies for hydrogen production.
Cost Minimisation of Renewable Hydrogen in a Dutch Neighbourhood While Meeting European Union Sustainability Targets
Jun 2022
Publication
Decentralised renewable energy production in the form of fuels or electricity can have large scale deployment in future energy systems but the feasibility needs to be assessed. The novelty of this paper is in the design and implementation of a mixed integer linear programming optimisation model to minimise the net present cost of decentralised hydrogen production for different energy demands on neighbourhood urban scale while simultaneously adhering to European Union targets on greenhouse gas emission reductions. The energy system configurations optimised were assumed to possibly consist of a variable number or size of wind turbines solar photovoltaics grey grid electricity usage battery storage electrolyser and hydrogen storage. The demands served are hydrogen for heating and mobility and electricity for the households. A hydrogen residential heating project currently being developed in Hoogeveen The Netherlands served as a case study. Six scenarios were compared each taking one or multiple energy demand services into question. For each scenario the levelised cost of hydrogen was calculated. The lowest levelised cost of hydrogen was found for the combined heating and mobility scenario: 8.36 € kg− 1 for heating and 9.83 € kg− 1 for mobility. The results support potential cost reductions of combined demand patterns of different energy services. A sensitivity analysis showed a strong influence of electrolyser efficiency wind turbine parameters and emission reduction factor on levelised cost. Wind energy was strongly preferred because of the lower cost and the low greenhouse gas emissions compared to solar photovoltaics and grid electricity. Increasing electrolyser efficiency and greenhouse gas emission reduction of the used technologies deserve further research.
A Case Study Using Hydrogen Fuel Cell as Range Extender for Lithium Battery Electric Vehicle
Mar 2024
Publication
This paper presents a case study of a lithium battery and fuel cell integrated powertrain system for a renewable energy vehicle. The performance analysis includes evaluating the energy consumption of the vehicle and the efficiency of the power generation components. When driven solely by the lithium battery at average speeds of 15 km/h and 20 km/h it was observed that speed significantly influences the travel distance of the vehicle with higher speeds resulting in lower mileage. The energy efficiency rates were found to be 89.3% and 85.7% at speeds of 15 km/h and 20 km/h respectively indicating an 18.1% decrease in efficiency from low to higher speeds. When the lithium battery is solely charged by the hydrogen fuel cell the efficiency under test conditions reaches approximately 32.5%. In the “FC + B + SC” driving mode which combines the use of the lithium battery fuel cell and solar panel to power the vehicle the travel range can be extended to 50.62 km and 42.05 km respectively representing an increase of over 50% with overall efficiencies of 63.8% and 60.7% respectively. This hybrid powertrain system exhibits rapid dynamic response high energy and power density and enables longer travel distances for the renewable energy vehicle.
Techno-economic Assessment of Electrolytic Hydrogen in China Considering Wind-solar-load Characteristic
Jan 2023
Publication
Hydrogen production by electrolysis is considered an essential means of consuming renewable energy in the future. However the current assessment of the potential of renewable energy electrolysis for hydrogen production is relatively simple and the perspective is not comprehensive. Here we established a Combined Wind and Solar Electrolytic Hydrogen system considering the influence of regional wind-solar-load characteristics and transmission costs to evaluate the hydrogen production potential of 31 provincial-level regions in China in 2050. The results show that in 2050 the levelized cost of hydrogen (LCOH) in China’s provincial regions will still be higher than 10 ¥/kg which is not cost-competitive compared to the current hydrogen production from fossil fuels. It is more cost-effective to deploy wind turbines than photovoltaic in areas with similar wind and solar resources or rich in wind resources. Wind-solar differences impact LCOH equipment capacity configuration and transmission cost composition while load fluctuation significantly impacts LCOH and electricity storage configuration. In addition the sensitivity analysis of 11 technical and economic parameters showed differences in the response performance of LCOH changes to different parameters and the electrolyzer conversion efficiency had the most severe impact. The analysis of subsidy policy shows that for most regions (except Chongqing and Xizang) subsidizing the unit investment cost of wind turbines can minimize LCOH. Nevertheless from the perspective of comprehensive subsidy effect subsidy cost and hydrogen energy development it is more cost-effective to take subsidies for electrolysis equipment with the popularization of hydrogen
Techno-Economic Analysis of Low Carbon Hydrogen Production from Offshore Wind Using Battolyser Technology
Aug 2022
Publication
A battolyser is a combined battery electrolyser in one unit. It is based on flow battery technology and can be adapted to produce hydrogen at a lower efficiency than an electrolyser but without the need for rare and expensive materials. This paper presents a method of determining if a battolyser connected to a wind farm makes economic sense based on stochastic modelling. A range of cost data and operational scenarios are used to establish the impact on the NPV and LCOE of adding a battolyser to a wind farm. The results are compared to adding a battery or an electrolyser to a wind farm. Indications are that it makes economic sense to add a battolyser or battery to a wind farm to use any curtailed wind with calculated LCOE at £56/MWh to £58/MWh and positive NPV over a range of cost scenarios. However electrolysers are still too expensive to make economic sense.
Numerical Prediction of Lean Premixed Hydrogen Deflagrations in Vented Vessels
Sep 2021
Publication
In water-cooled nuclear power plants hydrogen gas can be generated by various mechanisms during an accident. In case combustion of the resulting hydrogen-air mixture within the facility occurs existing containment structures may be compromised and excessive radio-active material can be released to the environment. Thus an improved understanding of the propagation of lean hydrogen deflagrations within buildings and structures is essential for the development of appropriate accident management strategies associated with these scenarios. Following the accident in Fukushima Japan the application of three-dimensional computational fluid dynamics methods to high-fidelity detailed analysis of hydrogen combustion processes in both closed and vented vessels has become more widespread. In this study a recently developed large-eddy-simulation (LES) capability is applied to the prediction of lean premixed hydrogen deflagrations in vented vessels. The LES methodology makes use of a flamelet- or progress-variable-based combustion model coupled with an empirical burning velocity model (BVM) an anisotropic block-based adaptive mesh refinement (AMR) strategy an accurate finite-volume numerical scheme and a mesh independent subfilter-scale (SFS) model. Several different vessel and vent sizes and configurations are considered herein. The LES predictions are compared to experimental data obtained from the Large-Scale Vented Combustion Test Facility (LSVCTF) of the Canadian Nuclear Laboratories (CNL) with both quiescent and turbulent initial conditions. Following descriptions of the LES models LES results for both variable chamber sizes and single- and double-vent cases are presented to illustrate the capabilities of the proposed computational approach. In particular the predicted time histories of pressure as well as the maximum overpressure achieved within the vessels and combustion compartments are compared to those from the LSVCTF experiments. The influences of the modelled ignition process initial turbulence and mesh resolution on the LES results are also discussed. The findings highlight the potential and limitations of the proposed LES approach for accurately describing lean premixed hydrogen deflagrations within vented vessels.
Energy-Efficient Distributed Carbon Capture in Hydrogen Production from Natural Gas
Apr 2011
Publication
Lowering the energy penalty associated with CO2 capture is one of the key issues of Carbon Capture and Storage (CCS) technologies. The efficiency of carbon capture must be improved to reduce the energy penalty because capture stage is the most energy-consuming stage in the entire process of CCS. Energy-efficient distributed carbon capture in hydrogen production has been demonstrated with an advanced membrane reformer system. We have already developed and operated an advanced 40 Nm3 /h-class membrane reformer system and demonstrated its high hydrogen production efficiency of 81.4% (HHV) which is the world highest efficiency in terms of hydrogen production from natural gas. The system has another significant feature that the CO2 concentration in the reactor off-gas is as high as 70~90% and CO2 can be liquefied and separated easily with little energy loss. An apparatus for CO2 capture was combined to the membrane reformer system and over 90% of CO2 in the reactor off-gas was captured by cryogenic separation. The total energy efficiency of hydrogen production even with CO2 capture was still as high as 78.6% (HHV) which is 510% higher than the conventional reforming technologies. The total CO2 emission from hydrogen production was decreased by 50% with only a 3% energy loss. A sensitivity analysis was also carried out to evaluate the effects of the operating conditions of the system on hydrogen production efficiency and CO2 reduction rate.
Current Status and Development Trend of Wind Power Generation-based Hydrogen Production Technology
Jan 2019
Publication
The hydrogen production technology by wind power is an effective mean to improve the utilization of wind energy and alleviate the problem of wind power curtailment. First the basic principles and technical characteristics of the hydrogen production technology by wind power are briefly introduced. Then the history of the hydrogen production technology is reviewed and on this basis the hydrogen production system by wind power is elaborated in detail. In addition the prospect of the application of the hydrogen production technology by wind power is analyzed and discussed. In the end the key technology of the hydrogen production by wind power and the problems to be solved are comprehensively reviewed. The development of hydrogen production technology by wind power is analyzed from many aspects which provides reference for future development of hydrogen production technology by wind power
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
Discharge Modeling of Large Scale LH2 Experiments with an Engineering Tool
Sep 2021
Publication
Accurate estimation of mass flow rate and release conditions is important for the design of dispersion and combustion experiments for the subsequent validation of CFD codes/models for consequence assessment analysis within related risk assessment studies and for associated Regulation Codes and Standards development. This work focuses on the modelling of the discharge phase of the recent large scale LH2 release and dispersion experiments performed by HSE within the framework of PRESLHY project. The experimental conditions covered sub-cooled liquid stagnation conditions at two pressures (2 and 6 bara) and 3 release nozzle diameters (1 ½ and ¼ inches). The simulations were performed using a 1d engineering tool which accounts for discharge line effects due to friction extra resistance due to fittings and area change. The engineering tool uses the Possible Impossible Flow (PIF) algorithm for choked flow calculations and the Helmholtz Free Energy (HFE) EoS formulation. Three different phase distribution models were applied. The predictions are compared against measured and derived data from the experiments and recommendations are given both regarding engineering tool applicability and future experimental design.
Machine Learning Approach for Prediction of Hydrogen Environment Embrittlement in Austenitic Steels
Jun 2022
Publication
This study introduces a machine learning approach to predict the effect of alloying elements and test conditions on the hydrogen environment embrittlement (HEE) index of austenitic steels for the first time. The correlation between input features and the HEE index was analyzed with Pearson's correlation coefficient (PCC) and Maximum Information Coefficient (MIC) algorithms. The correlation analysis results identified Ni and Mo as dominant features influencing the HEE index of austenitic steels. Based on the analysis results the performance of the four representative machine learning models as a function of the number of top-ranked features was evaluated: random forest (RF) linear regression (LR) Bayesian ridge (BR) and support vector machine (SVM). Regardless of the type and the number of top-ranking features the RF model had the highest accuracy among various models. The machine learning-based approach is expected to be useful in designing new steels having mechanical properties required for hydrogen applications.
A Parametric Approach for Conceptual Integration and Performance Studies of Liquid Hydrogen Short–Medium Range Aircraft
Jul 2022
Publication
The present paper deals with the investigation at conceptual level of the performance of short–medium-range aircraft with hydrogen propulsion. The attention is focused on the relationship between figures of merit related to transport capability such as passenger capacity and flight range and the parameters which drive the design of liquid hydrogen tanks and their integration with a given aircraft geometry. The reference aircraft chosen for such purpose is a box-wing short–mediumrange airplane the object of study within a previous European research project called PARSIFAL capable of cutting the fuel consumption per passenger-kilometre up to 22%. By adopting a retrofitting approach non-integral pressure vessels are sized to fit into the fuselage of the reference aircraft under the assumption that the main aerodynamic flight mechanic and structural characteristics are not affected. A parametric model is introduced to generate a wide variety of fuselage-tank cross-section layouts from a single tank with the maximum diameter compatible with a catwalk corridor to multiple tanks located in the cargo deck and an assessment workflow is implemented to perform the structural sizing of the tanks and analyse their thermodynamic behaviour during the mission. This latter is simulated with a time-marching approach that couples the fuel request from engines with the thermodynamics of the hydrogen in the tanks which is constantly subject to evaporation and depending on the internal pressure vented-out in gas form. Each model is presented in detail in the paper and results are provided through sensitivity analyses to both the technologic parameters of the tanks and the geometric parameters influencing their integration. The guidelines resulting from the analyses indicate that light materials such as the aluminium alloy AA2219 for tanks’ structures and polystyrene foam for the insulation should be selected. Preferred values are also indicted for the aspect ratios of the vessel components i.e. central tube and endcaps as well as suggestions for the integration layout to be adopted depending on the desired trade-off between passenger capacity as for the case of multiple tanks in the cargo deck and achievable flight ranges as for the single tank in the section.
A Brief History of Process Safety Management
Sep 2021
Publication
Common root causes are often to be found in many if not most process safety incidents. Whilst largescale events are relatively rare such events can have devastating consequences. The subsequent investigations often uncover that the risks are rarely visible the direct causes are often hidden and that a ‘normalization of deviation’ is a common human characteristic. Process Safety Management (PSM) builds on the valuable lessons learned from past incidents to help prevent future recurrences. An understanding of how PSM originated and has evolved as a discipline over the past 200 years can be instructive when considering the safety implications of emerging technologies. An example is hydrogen production where risks must be effectively identified mitigated and addressed to provide safe production transportation storage and use .
Recent Application of Nanomaterials to Overcome Technological Challenges of Microbial Electrolysis Cells
Apr 2022
Publication
Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus understanding the technological challenges of MECs the characteristics of nanomaterials and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein the critical challenges that need to be addressed for MECs are highlighted and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.
Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives
Jul 2022
Publication
Hydrogen fuel cell vehicles can complement other electric vehicle technologies as a zeroemission technology and contribute to global efforts to achieve the emission reduction targets. This article spotlights the current deployment status of fuel cells in road transport. For this purpose data collection was performed by the Advanced Fuel Cells Technology Collaboration Programme. Moreover the available incentives for purchasing a fuel cell vehicle in different countries were reviewed and future perspectives summarized. Based on the collected information the development trends in the last five years were analyzed and possible further trends that could see the realization of the defined goals derived. The number of registered vehicles was estimated to be 51437 units with South Korea leading the market with 90% of the vehicles being concentrated in four countries. A total of 729 hydrogen refueling stations were in operation with Japan having the highest number of these. The analysis results clearly indicate a very positive development trend for fuel cell vehicles and hydrogen refueling stations in 2021 with the highest number of new vehicles and stations in a single year paralleling the year’s overall economic recovery. Yet a more ambitious ramp-up in the coming years is required to achieve the set targets.
Hydrogen Bubble Growth in Alkaline Water Electrolysis: An Immersed Boundary Simulation Study
Nov 2022
Publication
Enhancing the efficiency of industrial water electrolysis for hydrogen production is important for the energy transition. In electrolysis hydrogen is produced at the cathode which forms bubbles due to the diffusion of dissolved hydrogen in the surrounding supersaturated electrolyte. Hydrogen (and oxygen) bubbles play an important role in the achievable electrolysis efficiency. The growth of the bubbles is determined by diffusive and convective mass transfer. In turn the presence and the growth of the hydrogen bubbles affect the electrolysis process at the cathode.<br/>In the present study we simulate the growth of a single hydrogen bubble attached to a vertical cathode in a 30 wt KOH solution in a cathodic compartment represented by a narrow channel. We solve the Navier-Stokes equations mass transport equations and potential equation for a tertiary current distribution. A sharp interface immersed boundary method with an artificial compressibility method for the pressure is employed. To verify the numerical accuracy of the method we performed a grid refinement study and checked the global momentum and hydrogen mass balances. We investigate the effects of flow rate and operation pressure upon bubble growth behaviour species concentrations potential and current density. We compare different cases in two ways: for the same time and for the same bubble radius. We observe that increasing the flow velocity leads to a small increase in efficiency. Increasing the operation pressure causes higher hydrogen density which slows down the bubble growth. It is remarkable that for a given bubble radius increasing the pressure leads to a small decrease in efficiency.
Recent Advances in Hybrid Water Electrolysis for Energy-saving Hydrogen Production
Nov 2022
Publication
Electricity-driven water splitting to convert water into hydrogen (H2) has been widely regarded as an efficient approach for H2 production. Nevertheless the energy conversion efficiency of it is greatly limited due to the disadvantage of the sluggish kinetic of oxidation evolution reaction (OER). To effectively address the issue a novel concept of hybrid water electrolysis has been developed for energy– saving H2 production. This strategy aims to replace the sluggish kinetics of OER by utilizing thermodynamically favorable organics oxidation reaction to replace OER. Herein recent advances in such water splitting system for boosting H2 evolution under low cell voltage are systematically summarized. Some notable progress of different organics oxidation reactions coupled with hydrogen evolution reaction (HER) are discussed in detail. To facilitate the development of hybrid water electrolysis the major challenges and perspectives are also proposed.
Permeability Modeling and Estimation of Hydrogen Loss through Polymer Sealing Liners in Underground Hydrogen Storage
Apr 2022
Publication
Fluctuations in renewable energy production especially from solar and wind plants can be solved by large‐scale energy storage. One of the possibilities is storing energy in the form of hydrogen or methane–hydrogen blends. A viable alternative for storing hydrogen in salt caverns is Lined Rock Cavern (LRC) underground energy storage. One of the most significant challenges in LRC for hydrogen storage is sealing liners which need to have satisfactory sealing and mechanical properties. An experimental study of hydrogen permeability of different kinds of polymers was conducted followed by modeling of hydrogen permeability of these materials with different additives (graphite halloysite and fly ash). Fillers in polymers can have an impact on the hydrogen permeability ratio and reduce the amount of polymer required to make a sealing liner in the reservoir. Results of this study show that hydrogen permeability coefficients of polymers and estimated hydrogen leakage through these materials are similar to the results of salt rock after the salt creep process. During 60 days of hydrogen storage in a tank of 1000 m2 inner surface 1 cm thick sealing liner and gas pressure of 1.0 MPa only approx. 1 m3STP of hydrogen will diffuse from the reservoir. The study also carries out the modeling of the hydrogen permeability of materials using the Max‐ well model. The difference between experimental and model results is up to 17% compared to the differences exceeding 30% in some other studies.
Hydrogen Blowdown Release Experiments at Different Temperatures in the Discha-facility
Sep 2021
Publication
In this work experiments on horizontal hydrogen jet releases from a 2.815 dm³ volume tank to the ambience are described. For the main experimental series tank valve and release line were cooled down to a temperature of approx. 80 K in a bath of liquid nitrogen. As a reference similar experiments were also performed with the uncooled tank at ambient temperature. The releases were carried out through four nozzles with different circular orifice diameters from 0.5 to 4 mm and started from initial tank pressures from 0.5 to 20 MPa (rel.). During the releases pressures and temperatures inside the vessel as well as inside the release line were measured. Outside the nozzle further temperature and hydrogen concentration measurements were performed along and besides the jet axis. The electrostatic field builtup in the jet was monitored using two field meters in different distances from the release nozzle and optical observation via photo and video-cameras was performed for the visualization of the H2-jet via the BOS-method. The experiments were performed in the frame of the EU-funded project PRESHLY in which several tests of this program were selected for a comparative computational study the results of which will also be presented at this conference. So on the one hand the paper gives a comprehensive description of the facility on the other hands it also describes the experimental procedure and the main findings.
Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand
Jan 2023
Publication
Non-energy use of natural gas is gaining importance. Gas used for 183 million tons annual ammonia production represents 4% of total global gas supply. 1.5-degree pathways estimate an ammonia demand growth of 3–4-fold until 2050 as new markets in hydrogen transport shipping and power generation emerge. Ammonia production from hydrogen produced via water electrolysis with renewable power (green ammonia) and from natural gas with CO2 storage (blue ammonia) is gaining attention due to the potential role of ammonia in decarbonizing energy value chains and aiding nations in achieving their net-zero targets. This study assesses the technical and economic viability of different routes of ammonia production with an emphasis on a systems level perspective and related process integration. Additional cost reductions may be driven by optimum sizing of renewable power capacity reducing losses in the value chain technology learning and scale-up reducing risk and a lower cost of capital. Developing certification and standards will be necessary to ascertain the extent of greenhouse gas emissions throughout the supply chain as well as improving the enabling conditions including innovative finance and de-risking for facilitating international trade market creation and large-scale project development.
Reforming Processes for Syngas Production: A Mini-review on the Current Status, Challenges, and Prospects for Biomass Conversion to Fuels
Mar 2022
Publication
Dedicated bioenergy combined with carbon capture and storage are important elements for the mitigation scenarios to limit the global temperature rise within 1.5 °C. Thus the productions of carbon-negative fuels and chemicals from biomass is a key for accelerating global decarbonisation. The conversion of biomass into syngas has a crucial role in the biomass-based decarbonisation routes. Syngas is an intermediate product for a variety of chemical syntheses to produce hydrogen methanol dimethyl ether jet fuels alkenes etc. The use of biomass-derived syngas has also been seen as promising for the productions of carbon negative metal products. This paper reviews several possible technologies for the production of syngas from biomass especially related to the technological options and challenges of reforming processes. The scope of the review includes partial oxidation (POX) autothermal reforming (ATR) catalytic partial oxidation (CPO) catalytic steam reforming (CSR) and membrane reforming (MR). Special attention is given to the progress of CSR for biomass-derived vapours as it has gained significant interest in recent years. Heat demand and efficiency together with properties of the reformer catalyst were reviewed more deeply in order to understand and propose solutions to the problems that arise by the reforming of biomass-derived vapours and that need to be addressed in order to implement the technology on a big scale.
The Use of Strontium Ferrite in Chemical Looping Systems
May 2020
Publication
This work reports a detailed chemical looping investigation of strontium ferrite (SrFeO3−δ) a material with the perovskite structure type able to donate oxygen and stay in a nonstoichiometric form over a broad range of oxygen partial pressures starting at temperatures as low as 250°C (reduction in CO measured in TGA). SrFeO3−δ is an economically attractive simple but remarkably stable material that can withstand repeated phase transitions during redox cycling. Mechanical mixing and calcination of iron oxide and strontium carbonate was evaluated as an effective way to obtain pure SrFeO3−δ. In–situ XRD was performed to analyse structure transformations during reduction and reoxidation. Our work reports that much deeper reduction from SrFeO3−δ to SrO and Fe is reversible and results in oxygen release at a chemical potential suitable for hydrogen production. Thermogravimetric experiments with different gas compositions were applied to characterize the material and evaluate its available oxygen capacity. In both TGA and in-situ XRD experiments the material was reduced below δ=0.5 followed by reoxidation either with CO2 or air to study phase segregation and reversibility of crystal structure transitions. As revealed by in-situ XRD even deeply reduced material regenerates at 900°C to SrFeO3−δ with a cubic structure. To investigate the catalytic behaviour of SrFeO3−δ in methane combustion experiments were performed in a fluidized bed rig. These showed SrFeO3−δ donates O2 into the gas phase but also assists with CH4 combustion by supplying lattice oxygen. To test the material for combustion and hydrogen production long cycling experiments in a fluidized bed rig were also performed. SrFeO3−δ showed stability over 30 redox cycles both in experiments with a 2-step oxidation performed in CO2 followed by air as well as a single step oxidation in CO2 alone. Finally the influence of CO/CO2 mixtures on material performance was tested; a fast and deep reduction in elevated pCO2 makes the material susceptible to carbonation but the process can be reversed by increasing the temperature or lowering pCO2.
Approaches and Methods to Demonstrate Repurposing of the UK's Local Transmission System (LTS) Pipelines for Transportation of Hydrogen
Sep 2021
Publication
Hydrogen has the potential as an energy solution to contribute to decarbonisation targets as it has the capability to deliver low-carbon energy at the scale required. For this to be realised the suitability of the existing natural gas pipeline networks for transporting hydrogen must be established. The current paper describes a feasibility study that was undertaken to assess the potential for repurposing the UK’s Local Transmission System (LTS) natural gas pipelines for hydrogen service. The analysis focused on SGN’s network which includes 3000 km of LTS pipelines in Scotland and the south of England. The characteristics of the LTS pipelines in terms of materials of construction and operation were first evaluated. This analysis showed that a significant percentage of SGN’s LTS network consists of lower strength grades of steel pipeline that operate at low stresses which are factors conducive to a pipeline’s suitability for hydrogen service. An assessment was also made of where existing approaches in pipeline operation may require modifications for hydrogen. The effects of changes in mechanical properties of steel pipelines on integrity and lifetime as a result of potential hydrogen degradation were demonstrated using fitness-for-purpose analysis. A review of pipeline risk assessment and Land-Use Planning (LUP) zone calculations for hydrogen was undertaken to identify any required changes. Case studies on selected sections of the LTS pipeline were then carried out to illustrate the potential changes to LUP zones. The work concluded with a summary of identified gaps that require addressing to ensure safe pipeline repurposing for hydrogen which cover materials performance inspection risk assessment land use planning and procedures.
Advanced Hydrogen Production through Methane Cracking: A Review
Jul 2015
Publication
Hydrogen is widely produced and used for our day-to-day needs. It has also the potential to be used as fuel for industry or can be used as an energy carrier for stationary power. Hydrogen can be produced by different processes like from fossil fuels (Steam methane reforming coal gasification cracking of natural gas); renewable resources (electrolysis wind etc.); nuclear energy (thermochemical water splitting). In this paper few processes have been discussed briefly. Cracking of methane has been given special emphasis in this review for production of hydrogen. There are mainly two types of cracking non-catalytic and catalytic. Catalytic cracking of methane is governed mainly by finding a suitable catalyst; its generation deactivation activation and filament formation for the adsorption of carbon particles (deposited on metal surface); study of metallic support which helps in finding active sites of the catalyst for the reaction to proceed easily. Non-catalytic cracking of methane is mainly based on thermal cracking. Moreover several thermal cracking processes with their reactor configurations have been discussed.
Techno-economic Evaluation on a Hybrid Technology for Low Hydrogen Concentration Separation and Purification from Natural Gas Grid
Jul 2020
Publication
Hydrogen can be stored and distributed by injecting into existing natural grids then at the user site separated and used in different applications. The conventional technology for hydrogen separation is pressure swing adsorption (PSA). The recent NREL study showed the extraction cost for separating hydrogen from a 10% H2 stream with a recovery of 80% is around 3.3e8.3 US$/kg. In this document new system configurations for low hydrogen concentration separation from the natural gas grid by combining novel membrane-based hybrid technologies will be described in detail. The focus of the manuscript will be on the description of different configurations for the direct hydrogen separation which comprises a membrane module a vacuum pump and an electrochemical hydrogen compressor. These technological combinations bring substantial synergy effect of one another while improving the total hydrogen recovery purity and total cost of hydrogen. Simulation has been carried out for 17 different configurations; according to the results a configuration of two-stage membrane modules (in series) with a vacuum pump and an electrochemical hydrogen compressor (EHC) shows highest hydrogen purity (99.9997%) for 25 kg/day of hydrogen production for low-pressure grid. However this configuration shows a higher electric consumption (configuration B) due to the additional mechanical compressor between the two-stage membrane modules and the EHC. Whereas when the compressor is excluded and a double skin Pd membrane (PdDS) module is used in a single stage while connected to a vacuum pump (configuration A5) the hydrogen purity (99.92%) slightly decreases yet the power consumption considerably improves (1.53 times lower). Besides to these two complementary configurations the combination of a single membrane module a vacuum pump and the electrochemical compressor has been also carried out (configuration A) and results show that relatively higher purity can be achieved. Based on four master configurations this document presents a different novel hybrid system by integrating two to three technologies for hydrogen purification combined in a way that enhances the strengths of each of them.
Experimental Investigation on the Burning Behavior of Homogenous H2-CO-Air Mixtures in an Obstructed Semi-confined Channel
Sep 2021
Publication
In the current work the combustion behavior of hydrogen-carbon monoxide-air mixtures in semiconfined geometries is investigated in a large horizontal channel facility (dimensions 9 m x 3 m x 0.6 m (L x W x H)) as a part of a joint German nuclear safety project. In the channel with evenly distributed obstacles (blockage ratio 50%) and an open to air ground face homogeneous H2-CO-air mixtures are ignited at one end. The combustion behavior of the mixture is analyzed using the signals of pressure sensors modified thermocouples and ionization probes for flame front detection that are distributed along the channel ceiling. In the experiments various fuel concentrations (cH2 + cCO = 14 to 22 Vol%) with different H2:CO ratios (75:25 50:50 and 25:75) are used and the transition regions for a significant flame acceleration to sonic speed (FA) as well as to a detonation (DDT) are investigated. The conditions for the onset of these transitions are compared with earlier experiments performed in the same facility with H2-air mixtures. The results of this work will help to allow a more realistic estimation of the pressure loads generated by the combustion of H2-CO-air mixtures in obstructed semi-confined geometries.
Demonstration of Green Hydrogen Production Using Solar Energy at 28% Efficiency and Evaluation of its Economic Viability
Jan 2021
Publication
The solar to hydrogen (STH) efficiency of photovoltaic-electrolysis (PV-E) setups is a key parameter to lower the cost of green hydrogen produced. Commercial c-Si solar cells have neared saturation with respect to their efficiency which warrants the need to look at alternative technologies. In this work we report a concentrator photovoltaic-electrolysis (CPV-E) setup with a STH efficiency of 28% at 41 suns (without the use of Fresnel lenses) the highest reported efficiency using an alkaline system to date. Using this as a base case we carried out a detailed techno-economic (TEA) analysis which showed that despite the high cost associated with CPV cells the levelized cost of hydrogen (LCOH) is at $5.9 kg1 close to that from c-Si solar farms ($4.9 kg1 ) primarily due to the high STH efficiency. We also report sensitivity analysis of factors affecting both CPV and alkaline electrolyser systems such as the CPV module efficiency and installed capacity electrolyser stack lifetime operating current density and working hours. Our results indicate that in a scenario where the installed capacity of CPV technology matches that of silicon and with an electrolyser operating current density of 0.7 A cm2 the LCOH from CPV electrolysis systems can be.
CO2 Emissions Reduction through Increasing H2 Participation in Gaseous Combustible—Condensing Boilers Functional Response
Apr 2022
Publication
Considering the imperative reduction in CO2 emissions both from household heating and hot water producing facilities one of the mainstream directions is to reduce hydrocarbons in combustibles by replacing them with hydrogen. The authors analyze condensing boilers operating when hydrogen is mixed with standard gaseous fuel (CH4 ). The hydrogen (H2 ) volumetric participation in the mixture is considered to vary in the range of 0 to 20%. The operation of the condensing boilers will be numerically modeled by computational programs and prior validated by experimental studies concluded in a European Certified Laboratory. The study concluded that an increase in the combustible flow with 16% will compensate the maximum H2 concentration situation with no other implications on the boiler’s thermal efficiency together with a decrease in CO2 emissions by approximately 7%. By assuming 0.9 (to/year/boiler) the value of CO2 emissions reduction for the condensing boiler determined in the paper and extrapolating it for the estimated number of boilers to be sold for the period 2019–2024 a 254700-ton CO2/year reduction resulted.
Present and Projected Developments in Hydrogen Production: A Technological Review
Mar 2022
Publication
Energy supplies that are safe environmentally friendly dependable and cost-effective are important for society's long-term growth and improved living standards though political social and economic barriers may inhibit their availability. Constantly increasing energy demand is induced by substantial population growth and economic development putting an increasing strain on fossil fuel management and sustainability which account for a major portion of this rising energy demand and moreover creates difficulties because of greenhouse gas emissions growth and the depletion of resources. Such impediments necessitate a global shift away from traditional energy sources and toward renewables. Aside from its traditional role is viewed as a promising energy vector and is gaining international attention as a promising fuel path as it provides numerous benefits in use case scenarios and unlike other synthesized carbon-based fuels could be carbon-free or perhaps even negative on a life-cycle criterion. Hydrogen ( ) is one of the most significant chemical substances on earth and can be obtained as molecular dihydrogen through various techniques from both non-renewable and renewable sources. The drive of this paper is to deliver a technological overview of hydrogen production methods. The major challenges development and research priorities and potential prospects for production was discussed.
Techno-Economic Analysis of a Novel Hydrogen-Based Hybrid Renewable Energy System for Both Grid-Tied and Off-Grid Power Supply in Japan: The Case of Fukushima Prefecture
Jun 2020
Publication
After the Great East Japan Earthquake energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES) in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture Japan. The techno-economic assessment of deploying the proposed systems was conducted using an integrated simulation-optimization modeling framework considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results the proposed HRES can generate about 47.3 MWh of electricity in all scenarios which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh respectively
Future Electricity Series Part 1 - Power from Fossil Fuels
Apr 2013
Publication
Power from Fossil Fuels analyses the role of coal and gas power generation in the UK's future power generation mix. It is the first of three reports in Carbon Connect's 2013 research inquiry the Future Electricity Series which examines what role fossil fuels renewables and nuclear can play in providing secure sustainable and affordable electricity in the UK. The report finds that significantly decarbonising the power sector by 2030 will prove the most successful strategy on energy sustainability security and affordability grounds and that switching the UK’s reliance on coal to gas generation - while using fossil fuel power stations increasingly for backup purposes - will be the most viable method of achieving this. The independent report chaired by former energy minister Charles Hendry MP and Opposition Energy and Climate Change Spokesperson in the House of Lords Baroness Worthington was compiled between January and April 2013 and received contributions from over 30 experts in academia industry Parliament and Government and was launched in Parliament on the 22nd April 2013. This independent inquiry was sponsored by the Institution of Gas Engineers and Managers
Building Hydrogen Competence, a Technology Aligned Skills and Knowledge Approach
Sep 2021
Publication
There is a pressing need for a framework and strategic approach to be taken to workforce safety training requirements of new hydrogen projects. It is apparent that organisations embarking on projects utilizing or producing green hydrogen need to implement a program of training for their workforce in order to ensure that all personnel within their organisation understand not only the environmental benefits of green hydrogen but also the safety considerations that come with either producing or using hydrogen as a fuel. Energy Transition must be safe to be successful. If such an approach is taken by industry and stakeholders it is also possible to use the high level content as a vehicle and basis to offer public audiences which also require a basic level of understanding in order to fully accept the transition to using hydrogen more widely as a fuel. This will be crucial to the success of national hydrogen strategies. Coeus Energy has developed an innovative framework of training following engagement with operators keen to ensure their duty of care responsibilities have been met. Whilst having highly skilled personnel already employed within their organisations specific hydrogen content is still required for workforce competence. This is where the framework need arises as the knowledge is required at all levels of an organisation.
CFD Simulation of Pressure Reduction Inside Large-scale Liquefied Hydrogen Tank
Sep 2021
Publication
Building the international hydrogen supply chain requires the large-scale liquefied hydrogen(LH2) carrier. During shipping LH2 with LH2 Carrier the tank is pressurized by LH2 evaporation due to heat ingress from outside. Before unloading LH2 at the receiving terminal reducing the tank pressure is essential for the safe tank operation. However pressure reduction might cause flashing leading to rapid vaporization of liquefied hydrogen liquid leakage. Moreover it was considered that pressure recovery phenomenon which was not preferred in terms of tank pressure management occurred at the beginning of pressure reduction. Hence the purpose of our research is to clarify the phenomenon inside the cargo tank during pressure reduction. The CFD analysis of the pressure reduction phenomenon was conducted with the VOF based in-house CFD code utilizing the C-CUP scheme combined with the hybrid Level Set and MARS method. In our previous research the pressure reduction experiments with the 30 m³ LH2 tank were simulated and the results showed that the pressure recovery was caused by the boiling delay and the tank pressure followed the saturation pressure after the liquid was fully stirred. In this paper the results were re-evaluated in terms of temperature. While pressure reduction was dominant the temperature of vapor-liquid interface decreased. Once the boiling bubble stirred the interface its temperature reached the saturation temperature after pressure recovery occurred. Moreover it was found that the liquid temperature during pressure reduction could not be measured because of the boiling from the wall of the thermometer. The CFD analysis on pressure reduction of 1250 m³ tank for the LH2 Carrier was also very could occur in the case of the 1250 m³ tank in a certain condition. These results provide new insight into the development of the LH2 carrier.
Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-photo Fermentative Approach to Biomass
Jan 2019
Publication
Biomass can be a sustainable choice for bioenergy production worldwide. Biohydrogen production using fermentative conversion of biomass has gained great interest during the last decade. Besides being an efficient transportation fuel biohydrogen can also be also be a low-carbon source of heat and electricity. Microbes assisted conversion (bioconversion) can be take place either in presence or absence of light. This is called photofermentation or dark-fermentation respectively. This review provides an overview of approaches of fermentative hydrogen production. This includes: dark photo and integrated fermentative modes of hydrogen production; the molecular basis behind its production and diverse range of its applicability industrially. Mechanistic understanding of the metabolic pathways involved in biomass-based fermentative hydrogen production are also reviewed.
Energy Management Strategies for a Zero-emission Hybrid Domestic Ferry
Oct 2021
Publication
The paper presents three approaches for the sizing and control of a maritime hybrid power-plant equipped with proton exchange membrane fuel cells and batteries. The study focuses on three different power-plant configurations including the energy management strategy and the power-plant component sizing. The components sizing is performed following the definition of the energy management strategy using the sequential optimization approach. These configurations are tested using a dynamic model developed in Simulink. The simulations are carried out to validate the technical feasibility of each configuration for maritime use. Each energy management strategy is developed to allow for the optimization of a chosen set of parameters such as hydrogen consumption and fuel cell degradation. It is observed that in the hybrid power-plant optimization there are always trade-offs and the optimization should be carried out by prioritizing primary factors the ship owner considers most important for day-to-day operations.
Influence of Non-equilibrium Conditions on Liquid Hydrogen Storage Tank Behavior
Sep 2021
Publication
In a liquid hydrogen storage tank hydrogen vapor exists above the cryogenic liquid. A common modeling assumption of a liquid hydrogen tank is thermodynamic equilibrium. However this assumption may not hold in all conditions. A non-equilibrium storage tank with a pressure relief valve and a burst disc in parallel was modeled in this work. The model includes different boiling regimes to handle scenarios with high heat transfer. The model was first validated with a scenario where normal boil-off from an unused tank was compared to experimental data. Then four abnormal tank scenarios were explored: a loss of vacuum in the insulation layer a high ambient temperature (to simulate an engulfing fire) a high ambient temperature with a simultaneous loss of vacuum and high conduction through the insulation layer. The burst disc of the tank opened only in the cases with extreme heat transfer to the tank (i.e. fire with a loss of vacuum and high insulation conductivity) quickly releasing the hydrogen. In the cases with only a loss of vacuum or only external heat from fire the pressure relief valve on the tank managed to moderate the pressure below the burst disc activation pressure. The high insulation conductivity case highlights differences between the equilibrium and non-equilibrium tank models. The mass loss from the tank through the burst disc is slower using a non-equilibrium model because mass transfer from the liquid to gas phase within the tank becomes limiting. The implications of this model and how it can be used to help inform safety codes and standards are discussed.
Preliminary Design of a Self-Sufficient Electrical Storage System Based on Electrolytic Hydrogen for Power Supply in a Residential Application
Oct 2021
Publication
The use of renewable energy and hydrogen technology is a sustainable solution for the intermittent feature of renewable energies. Hence the aim of the present work is to design a self-sufficient system for a one-family house by coupling a solar photovoltaic array and an anion exchange membrane water electrolyzer (AEMWE). The first step is the selection of the photovoltaic panel by using PV-SYST 7.0 software. Then the hydrogen production system is calculated by coupling the electrolyzer and photovoltaic panel current–potential curves. A fuel cell is selected to use the hydrogen produced when solar energy is not available. Finally the hydrogen storage tank is also estimated to store hydrogen for a design basis of four consecutive cloudy days according to the hydrogen consumption of the fuel cell. The whole system is designed by a simple procedure for a specific location in Ciudad Real (Spain) for January which is known as the coldest month of the year. The simple procedure described in this work could be used elsewhere and demonstrated that the hydrogen production at low scale is a suitable technology to use renewable energy for self-energy supporting in a residential application without any connection to the grid.
Recent Developments of Membranes and Electrocatalysts for the Hydrogen Production by Anion Exchange Membrane Water Electrolysers: A Review
Nov 2022
Publication
Hydrogen production using anion exchange membrane water electrolysis (AEMWE) offers hope to the energy crisis faced by humanity. AEM electrolysis can be coupled with intermittent and renewable energy sources as well as with the use of low-cost electrocatalysts and other low-cost stack components. In AEM water electrolysis one of the biggest advantages is the use of low-cost transition metal catalysts instead of traditional noble metal electrocatalysts. AEMWE is still in its infancy despite irregular research on catalysts and membranes. In order to generate commercially viable hydrogen AEM water electrolysis technology must be further developed including energy efficiency membrane stability stack feasibility robustness ion conductivity and cost reduction. An overview of studies that have been conducted on electrocatalysts membranes and ionomers used in the AEMWEs is here reported with the aim that AEMWE research may be made more practical by this review report by bridging technological gaps and providing practical research recommendations leading to the production of scalable hydrogen.
Hydrogen Sensing Properties of UV Enhanced Pd-SnO2 Nano-Spherical Composites at Low Temperature
Sep 2021
Publication
Metal oxide semiconductor (MOS) is promising in developing hydrogen detectors. However typical MOS materials usually work between 200-500°C which not only restricts their application in flammable and explosive gases detection but also weakens sensor stability and causes high power consumption. This paper studies the sensing properties of UV enhanced Pd-SnO2 nano-spherical composites at 80-360 ℃. In the experiment Pd of different molar ratios (0.5 2.5 5.0 10.0) was doped into uniform spherical SnO2 nanoparticles by a hydrothermal synthesis method. A xenon lamp with a filter was used as the ultraviolet excitation light source to examine the response of the spherical Pd- SnO2 nanocomposite to 50-1000 ppm H2 gas. The influence of different intensities of ultraviolet light on the gas-sensing properties of composite materials compared with dark condition was analyzed. The experiments show that the conductivity of the composites can be greatly stabilized and the thermal excitation temperature can be reduced to 180 ℃ under the effect of UV enhancement. A rapid response (4.4/ 17.4 s) to 200 ppm of H2 at 330 °C can be achieved by the Pd-SnO2 nanocomposites with UV assistance. The mechanism may be attributed to light motivated electron-hole pairs due to built-in electric fields under UV light illumination which can be captured by target gases and lead to UV controlled gas sensing performance. Catalytic active sites of hydrogen are provided on the surface of the mixed material by Pd. The results in this study can be helpful in reducing the response temperature of MOS materials and improving the performance of hydrogen detectors."
Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles
Mar 2022
Publication
Concerns about climate change air pollution and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles the best control strategies achieve a fuel cell system efficiency equal or greater to 33% while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Challenges in the Decarbonization of the Energy Sector
Jun 2020
Publication
In order to limit the effects of climate change the carbon dioxide emissions associated with the energy sector need to be reduced. Significant reductions can be achieved by using appropriate technologies and policies. In the context of recent discussions about climate change and energy transition this article critically reviews some technologies policies and frequently discussed solutions. The options for carbon emission reductions are grouped into (1) generation of secondary energy carriers (2) end-use energy sectors and (3) sector interdependencies. The challenges on the way to a decarbonized energy sector are identified with respect to environmental sustainability security of energy supply economic stability and social aspects. A global carbon tax is the most promising instrument to accelerate the process of decarbonization. Nevertheless this process will be very challenging for humanity due to high capital requirements the competition among energy sectors for decarbonization options inconsistent environmental policies and public acceptance of changes in energy use.
Everything About Hydrogen Podcast: Could Electrolysers Replicate Moore's Law?
Apr 2020
Publication
On this weeks episode the team are talking all things hydrogen with Sebastian-Justus Schmidt Chairman of Enapter and Thomas Chrometzka Head of Strategy at Enapter. On the show we discuss Enapter’s Anion Exchange Membrane (AEM) electrolyser and why Enapter believe that their modular electrolyser approach will revolutionise the cost of green hydrogen. We also discuss the wide array of use cases and sectors that Enapter are already working with to provide their solution as well as their view on where the current barriers exist for the hydrogen market. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Renewable Hydrogen Economy Outlook in Africa
Jun 2022
Publication
Hydrogen presents an opportunity for Africa to not only decarbonise its own energy use and enable clean energy access for all but also to export renewable energy. This paper developed a framework for assessing renewable resources for hydrogen production and provides a new critical analysis as to how and what role hydrogen can play in the complex African energy landscape. The regional solar wind CSP and bio hydrogen potential ranges from 366 to 1311 Gt/year 162 to 1782 Gt/year 463 to 2738 Gt/year and 0.03 to 0.06 Gt/year respectively. The water availability and sensitivity results showed that the water shortages in some countries can be abated by importing water from regions with high renewable water resources. A techno-economic comparative analysis indicated that a high voltage direct current (HVDC) system presents the most cost-effective transportation system with overall costs per kg hydrogen of 0.038 $/kg followed by water pipeline with 0.084 $/kg seawater desalination 0.1 $/kg liquified hydrogen tank truck 0.12 $/kg compressed hydrogen pipeline 0.16 $/kg liquefied ammonia pipeline 0.38 $/kg liquefied ammonia tank truck 0.60 $/kg and compressed hydrogen tank truck with 0.77 $/kg. The results quantified the significance of economies of scale due to cost effectiveness of systems such as compressed hydrogen pipeline and liquefied hydrogen tank truck systems when hydrogen production is scaled up. Decentralization is favorable under some constraints e.g. compressed hydrogen and liquefied ammonia tank truck systems will be more cost effective below 800 km and 1400 km due to lower investment and operation costs.
Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication
Nov 2021
Publication
Hydrogen has received tremendous global attention as an energy carrier and an energy storage system. Hydrogen carrier introduces a power to hydrogen (P2H) and power to hydrogen to power (P2H2P) facility to store the excess energy in renewable energy storage systems with the facts of large-scale storage capacity transportability and multiple utilities. This work examines the techno-economic feasibility of hybrid solar photovoltaic (PV)/hydrogen/fuel cell-powered cellular base stations for developing green mobile communication to decrease environmental degradation and mitigate fossil-fuel crises. Extensive simulation is carried out using a hybrid optimization model for electric renewables (HOMER) optimization tool to evaluate the optimal size energy production total production cost per unit energy production cost and emission of carbon footprints subject to different relevant system parameters. In addition the throughput and energy efficiency performance of the wireless network is critically evaluated with the help of MATLAB-based Monte-Carlo simulations taking multipath fading system bandwidth transmission power and inter-cell interference (ICI) into consideration. Results show that a more stable and reliable green solution for the telecommunications sector will be the macro cellular basis stations driven by the recommended hybrid supply system. The hybrid supply system has around 17% surplus electricity and 48.1 h backup capacity that increases the system reliability by maintaining a better quality of service (QoS). To end the outcomes of the suggested system are compared with the other supply scheme and the previously published research work for justifying the validity of the proposed system.
Improving Carbon Efficiency and Profitability of the Biomass to Liquid Process with Hydrogen from Renewable Power
Aug 2018
Publication
A process where power and biomass are converted to Fischer-Tropsch liquid fuels (PBtL) is compared to a conventional Biomass-to-Liquid (BtL) process concept. Based on detailed process models it is demonstrated that the carbon efficiency of a conventional Biomass to Liquid process can be increased from 38 to more than 90% by adding hydrogen from renewable energy sources. This means that the amount of fuel can be increased by a factor of 2.4 with the same amount of biomass. Electrical power is applied to split water/steam at high temperature over solid oxide electrolysis cells (SOEC). This technology is selected because part of the required energy can be replaced by available heat. The required electrical power for the extra production is estimated to be 11.6 kWh per liter syncrude (C ) 5+ . By operating the SOEC iso-thermally close to 850 °C the electric energy may be reduced to 9.5 kWh per liter which is close to the energy density of jet fuel. A techno-economic analysis is performed where the total investments and operating costs are compared for the BtL and PBtL. With an electrical power price of 0.05 $/kWh and with SOEC investment cost of the 1000 $/kW(el) the levelized cost of producing advanced biofuel with the PBtL concept is 1.7 $/liter which is approximately 30% lower than for the conventional BtL. Converting excess renewable electric power to advanced biofuel in a PBtL plant is a sensible way of storing energy as a fuel with a relatively high energy density.
Impact of Polymers on Magnesium-Based Hydrogen Storage Systems
Jun 2022
Publication
In the present scenario much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production storage and utilization). Comparatively considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density storage conditions/parameters and safety. In material-based HSS a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials Mg-based hydrides (Mg–H) showed considerable benefits such as low density hydrogen uptake and reversibility. However the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts like the inclusion of catalysts that have been made for Mg–H to alter the thermodynamic-related issues. Still those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg–H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg–H from contaminating (air and moisture). In this review the impact of different polymers (carboxymethyl cellulose polystyrene polyimide polypyrrole polyvinylpyrrolidone polyvinylidene fluoride polymethylpentene and poly(methyl methacrylate)) with Mg–H systems has been systematically reviewed. In polymer-encapsulated Mg–H the polymers act as a barrier for the reaction between Mg–H and O2/H2O selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus the H2 uptake amount and sorption kinetics improved considerably in Mg–H.
Nested Decomposition Approach for Dispatch Optimization of Large-Scale, Integrated Electricity, Methane and Hydrogen Infrastructures
Apr 2022
Publication
Energy system integration enables raising operational synergies by coupling the energy infrastructures for electricity methane and hydrogen. However this coupling reinforces the infrastructure interdependencies increasing the need for integrated modeling of these infrastructures. To analyze the cost-efficient sustainable and secure dispatch of applied large-scale energy infrastructures an extensive and non-linear optimization problem needs to be solved. This paper introduces a nested decomposition approach with three stages. The method enables an integrated and full-year consideration of large-scale multi-energy systems in hourly resolution taking into account physical laws of power flows in electricity and gas transmission systems as boundary conditions. For this purpose a zooming technique successively reduces the temporal scope while first increasing the spatial and last the technical resolution. A use case proves the applicability of the presented approach to large-scale energy systems. To this end the model is applied to an integrated European energy system model with a detailed focus on Germany in a challenging transport situation. The use case demonstrates the temporal regional and cross-sectoral interdependencies in the dispatch of integrated energy infrastructures and thus the benefits of the introduced approach.
Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept
Oct 2021
Publication
Germany’s energy transition known as ‘Energiewende’ was always very progressive. However it came technically to a halt at the question of large-scale seasonal energy storage for wind and solar which was not available. At the end of the 2000s we combined our knowledge of both electrical and process engineering imitated nature by copying photosynthesis and developed Power-to-Gas by combining water electrolysis with CO2 -methanation to convert water and CO2 together with wind and solar power to synthetic natural gas. Storing green energy by coupling the electricity with the gas sector using its vast TWh-scale storage facility was the solution for the biggest energy problem of our time. This was the first concept that created the term ‘sector coupling’ or ‘sectoral integration’. We first implemented demo sites presented our work in research industry and ministries and applied it in many macroeconomic studies. It was an initial idea that inspired others to rethink electricity as well as eFuels as an energy source and energy carrier. We developed the concept further to include Power-to-Liquid Power-to-Chemicals and other ways to ‘convert’ electricity into molecules and climate-neutral feedstocks and named it ‘Power-to-X’ at the beginning of the 2010s.
Effect of TPRD Diameter and Direction of Release on Hydrogen Dispersion in Underground Parking
Sep 2021
Publication
Unignited hydrogen release in underground parking could be considered inherently safer if the safety strategy to avoid the formation of the flammable hydrogen-air mixture under a ceiling is followed. This strategy excludes destructive deflagrative combustion and associated pressure and thermal effects in the case of ignition. This paper aims at understanding the effects of the thermally activated pressure relieve device (TPRD) diameter and direction of release on the build-up of hydrogen flammable concentration under the ceiling in the presence of mechanical ventilation required for underground parking. The study employs the similarity law for hydrogen jet concentration decay in a free under-expanded jet to find the lower limit of TPRD diameter that excludes the formation of a flammable mixture under the ceiling during upward release. This approach is conservative and does not include the effect of mechanical ventilation providing flow velocity around a few meters per second which is significantly below velocities in hydrogen momentum-dominated under-expanded jets. Hydrogen releases downwards under a vehicle at different angles and with different air velocities due to mechanical ventilation were investigated using computational fluid dynamics (CFD). The joint effect of TPRD diameter release direction and mechanical ventilation is studied. TPRD diameters for the release of hydrogen upwards and downwards preventing the creation of flammable hydrogen-air mixture under the parking ceiling are defined for different ceiling heights and locations of TPRD above the floor. Recommendations to the design of TPRD devices to underpin the safe introduction of hydrogen fuelled vehicles in currently existing underground parking and infrastructure are formulated."
A Catalyst Fusible Link for Hydrogen Detection and Activation of Passive Ventilation Systems
Sep 2021
Publication
This paper presents an experimental study of a hydrogen fusible link developed for use in the detection of hydrogen and in the activation of passive ventilation or other safety systems. Fusible links are commonly used to passively close fire dampers in the event of a fire; they generally consist of two pieces of metal joined together by a low temperature alloy to form a single device. When exposed to fire the link will heat up and eventually melt the alloy causing the metal pieces to separate. The same principle has been adopted for the hydrogen fusible link in which hydrogen recombiner catalyst was coated onto small rectangular brass plates. These plates were then soldered together to create prototypes of the hydrogen fusible link. When the resulting link is exposed to a hydrogen-air mixture an exothermic reaction occurs on the catalyst surface that will heat up the link and melt the solder separating the two sections of the hydrogen fusible link. A series of experiments was performed to characterize the thermal response of the hydrogen fusible links to various hydrogen-air mixtures. The effect of both hydrogen concentration and its rate of accumulation on the increase of catalyst temperature was examined. This study demonstrated the applicability of the hydrogen fusible link for managing hydrogen risk.
Experimental Parameters of Ignited Congestion Experiments of Liquid Hydrogen in the PRESLHY Project
Sep 2021
Publication
Liquid hydrogen (LH2) has the potential to form part of the UK energy strategy in the future and therefore could see widespread use due to the relatively high energy density when compared to other renewable energy sources. To study the feasibility of this the European Fuel Cells and Hydrogen Joint Undertaking (FCH JU) funded project PRESLHY undertook pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. Several key scenarios were identified as knowledge gaps and both theoretical and experimental studies were conducted to provide insight into these scenarios. This included experiments studying the effect of congestion on an ignited hydrogen plume that develops from a release of LH2; this paper describes the objectives experimental setup and a summary of the results from these activities. Characterisation of the LH2 release hydrogen concentration and temperatures measurements within the resulting gas cloud was undertaken along with pressure measurements both within the cloud and further afield. Various release conditions and congestion levels were studied. Results showed that at high levels of congestion increased overpressures occurred with the higher flow rates studied including one high order event. Data generated from these experiments is being taken forward to generate and validate theoretical models ultimately to contribute to the development of regulations codes and standards (RCS) for LH2."
Siting and Co-location with Hydrogen: What are the Risks?
Sep 2021
Publication
The demand for hydrogen has grown more than threefold since 1975 [1] and price is expected to significantly decrease by 2030 [2] concluding in an expected continual increase in demand. HyLaw defined by Hydrogen Europe lays out recommendations for hydrogen applications using identified Legal and Administrative Processes (LAPs) across 18 European countries. Regarding site location HyLaw refers to the land use plan. This defines the production and storage of hydrogen as an industrial activity and therefore regardless of the specific site methods of production or use the hydrogen site must be within a permitted industrial zone or under specific condition commercial areas [3]. Local authorities fire departments and other concerned parties may need to be consulted on site suitability for the project. Risktec explores a range of considerations for siting and layout of hydrogen developments including co-location with other assets for example with renewable energy sources hazardous facilities or public structures. Good practice tools and assessment techniques are presented to mitigate the risks associated with the production storage and use of hydrogen not just the surrounding site and environment but the operatives of the facility.
Ultra-clean Hydrogen Production by Ammonia Decomposition
Jan 2016
Publication
A rigorous heterogeneous mathematical model is used to simulate a cascade of multi-stage fixed bed membrane reactors (MSFBMR) with inter-stage heating and fresh sweep gas for the decomposition of ammonia to produce high purity hydrogen suitable for the PEM fuel cells. Different reactor configurations are compared. The comparison between a single fixed bed reactor (FBR) and a single fixed bed membrane reactor (FBMR) shows that the FBMR is superior to the FBR and gives 60.48% ammonia conversion higher than the FBR. However 20.91% exit ammonia conversion obtained by the FBMR is considered to be poor. The FBMR is limited by the kinetics at low temperatures. The numerical results show that the MSFBMR of four beds achieve 100.0% ammonia conversion. It was found that the membrane plays the prime role in the displacement of the thermodynamic equilibrium. The results also show that a linear relationship exists between the number of beds and the feed temperature and a correlation has been developed. A critical point for an effective hydrogen permeation zone has been identified. It is observed that the diffusion limitation is confined to a slim region at the entrance of the reactor. It is also observed that the heat load assumes a maximum inflection point and explanations offered. The results show that the multi-stage configuration has a promising potential to be applied successfully on-site for ultra-clean hydrogen production.
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
Baselining the Body of Knowledge for Hydrogen Shock Interactions and Debris Escalation
Sep 2021
Publication
The differences in behaviour of hydrogen when compared to natural gas under deflagration and detonation scenarios are well known. The authors currently work in the area of fire and explosion analysis and have identified what they feel are potential gaps in the current Body of Knowledge (BOK) available to the sector. This is especially related to the behaviour around secondary shock formation and interactions with surrounding structures especially with ‘open’ structures such as steel frameworks typically seen in an offshore environment and practicable methods for determining debris formation and propagation. Whilst the defence sector has extensive knowledge in these areas this is primarily in the area of high explosives where the level of shocks observed is stronger than those resulting from a hydrogen detonation. This information would need to be reviewed and assessed to ensure it is appropriate for application in the hydrogen sector. Therefore with a focus on practicality the authors have undertaken a two-phase approach. The first phase involves carrying out a through literature search and discussions within our professional networks in order to ascertain whether there is a gap in the BOK. If good research guidance and tools to support this area of assessment already exist the authors have attempted to collate and consolidate this into a form that can be made more easily available to the community. Secondly if there is indeed a gap in the BOK the authors have attempted to ensure that all relevant information is collated to act as a reference and provide a consistent baseline for future research and development activities.
An Alkaline-Acid Glycerol Electrochemical Reformer for Simultaneous Production of Hydrogen and Electricity
Apr 2022
Publication
This study shows the results for the first time of an glycerol alkaline-acid electrolyzer. Such a configuration allows spontaneous operation producing energy and hydrogen simultaneously as a result of the utilization of the neutralization and fuel chemical energy. The electroreformer—built with a 20 wt% Pd/C anode and cathode and a Na+ -pretreated Nafion® 117—can simultaneously produce hydrogen and electricity in the low current density region whereas it operates in electrolysis mode at high current densities. In the spontaneous region the maximum power densities range from 1.23 mW cm−2 at 30 ◦C to 11.9 mW cm−2 at 90 ◦C with a concomitant H2 flux ranging from 0.0545 STP m−3 m−2 h −1 at 30 ◦C to 0.201 STP m−3 m−2 h −1 at 90 ◦C due to the beneficial effect of the temperature on the performance. Furthermore over a chronoamperometric test the electroreformer shows a stable performance over 12 h. As a challenge proton crossover from the cathode to the anode through the cation exchange Nafion® partially reduces the pH gradient responsible for the extra electromotive force thus requiring a less permeable membrane.
Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane
Mar 2022
Publication
Environmental issues related to greenhouse gases (GHG) emissions have pushed the development of new technologies that will allow the economic production of low-carbon energy vectors such as hydrogen (H2 ) methane (CH4 ) and liquid fuels. Dry reforming of methane (DRM) has gained increased attention since it uses CH4 and carbon dioxide (CO2 ) which are two main greenhouse gases (GHG) as feedstock for the production of syngas which is a mixture of H2 and carbon monoxide (CO) and can be used as a building block for the production of fuels. Since H2 has been identified as a key enabler of the energy transition a lot of studies have aimed to benefit from the environmental advantages of DRM and to use it as a pathway for a sustainable H2 production. However there are several challenges related to this process and to its use for H2 production such as catalyst deactivation and the low H2/CO ratio of the syngas produced which is usually below 1.0. This paper presents the recent advances in the catalyst development for H2 production via DRM the processes that could be combined with DRM to overcome these challenges and the current industrial processes using DRM. The objective is to assess in which conditions DRM could be used for H2 production and the gaps in literature data preventing better evaluation of the environmental and economic potential of this process.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
Jul 2015
Publication
In Japan both CO2 (Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand FCV (Fuel Cell Vehicle) using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications or solution to energy issues of Japan. And then the Japanese government announced the road map for introducing hydrogen energy supply chain in this June2014. Under these circumstances imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction if the hydrogen price is affordable. To achieve this Kawasaki Heavy Industries Ltd. (KHI) performed a feasibility study on CO2-free hydrogen energy supply chain from Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study hydrogen production systems utilizing brown coal gasification and LH2 (liquid hydrogen) systems as storing and transporting hydrogen are examined. This paper shows the possibility of realizing the CO2 free hydrogen supply chain the cost breakdown of imported hydrogen cost its cost competitiveness with conventional fossil and LH2 systems as key technologies of the hydrogen energy chain.
Effect of the High-Pressure Hydrogen Gas Exposure in the Silica-Filled EPDM Sealing Composites with Different Silica Content
Mar 2022
Publication
With the increasing interest in hydrogen energy the stability of hydrogen storage facilities and components is emphasized. In this study we analyzed the effect of high-pressure hydrogen gas treatment in silica-filled EPDM composites with different silica contents. In detail cure characteristics crosslink density mechanical properties and hydrogen permeation properties were investigated. Results showed that material volume remaining hydrogen content and mechanical properties were changed after 96.3 MPa hydrogen gas exposure. With an increase in the silica content the crosslink density and mechanical properties increased but hydrogen permeability was decreased. After treatment high-silica-content composites showed lower volume change than low-silica-content composites. The crack damage due to the decompression caused a decrease in mechanical properties but high silica content can inhibit the reduction in mechanical properties. In particular EPDM/silica composites with a silica content of above 60 phr exhibited excellent resistance to hydrogen gas as no change in their physical and mechanical properties was observed.
Analysis to Support Revised Distances between Bulk Liquid Hydrogen Systems and Exposures
Sep 2021
Publication
The minimum distances between exposures and bulk liquid hydrogen listed in the National Fire Protection Agency’s Hydrogen Technology Code NFPA 2 are based on historical consensus without a documented scientific analysis. This work follows a similar analysis as the scientific justification provided in NFPA 2 for exposure distances from bulk gaseous hydrogen storage systems but for liquid hydrogen. Validated physical models from Sandia’s HyRAM software are used to calculate distances to a flammable concentration for an unignited release the distance to critical heat flux values and the visible flame length for an ignited release and the overpressure that would occur for a delayed ignition of a liquid hydrogen leak. Revised exposure distances for bulk liquid hydrogen systems are calculated. These distances are related to the maximum allowable working pressure of the tank and the line size as compared to the current exposure distances which are based on system volume. For most systems the exposure distances calculated are smaller than the current distances for Group 1 they are similar for Group 2 while they increase for some Group 3 exposures. These distances could enable smaller footprints for infrastructure that includes bulk liquid hydrogen storage tanks especially when using firewalls to mitigate Group 3 hazards and exposure distances. This analysis is being refined as additional information on leak frequencies is incorporated and changes have been proposed to the 2023 edition of NFPA 2.
Recent Development of Biomass Gasification for H2 Rich Gas Production
Mar 2022
Publication
Biomass gasification for hydrogen (H2) production provides outstanding advantages in terms of renewable energy resources carbon neutral high efficiency and environmental benefits. However the factors influencing H2 production from biomass gasification are complex which makes determining the optimal operating conditions challenging. Biomass gasification also poses challenges owing to the high associated tar content and low gas yield which need to be overcome. This review summarizes the influence of the gasification parameters on H2 production. Catalytic gasification technology and some of the latest catalysts such as composites and special structure catalysts are also summarized herein based on the requirements of high-purity H2 production. Moreover novel technologies such as staged gasification chemical looping gasification and adsorption-enhanced reforming for producing H2 rich gas are introduced. Finally the challenges and prospects associated with biomass gasification for H2 production are presented.
Hydrogen Fuel for Future Mobility: Challenges and Future Aspects
Jul 2022
Publication
Nowadays the combustion of fossil fuels for transportation has a major negative impact on the environment. All nations are concerned with environmental safety and the regulation of pollution motivating researchers across the world to find an alternate transportation fuel. The transition of the transportation sector towards sustainability for environmental safety can be achieved by the manifestation and commercialization of clean hydrogen fuel. Hydrogen fuel for sustainable mobility has its own effectiveness in terms of its generation and refueling processes. As the fuel requirement of vehicles cannot be anticipated because it depends on its utilization choosing hydrogen refueling and onboard generation can be a point of major concern. This review article describes the present status of hydrogen fuel utilization with a particular focus on the transportation industry. The advantages of onboard hydrogen generation and refueling hydrogen for internal combustion are discussed. In terms of performance affordability and lifetime onboard hydrogen-generating subsystems must compete with what automobile manufacturers and consumers have seen in modern vehicles to date. In internal combustion engines hydrogen has various benefits in terms of combustive properties but it needs a careful engine design to avoid anomalous combustion which is a major difficulty with hydrogen engines. Automobile makers and buyers will not invest in fuel cell technology until the technologies that make up the various components of a fuel cell automobile have advanced to acceptable levels of cost performance reliability durability and safety. Above all a substantial advancement in the fuel cell stack is required.
Climate Change Impacts of E-fuels for Aviation in Europe Under Present-day Conditions and Future Policy Scenarios
Jan 2023
Publication
‘E-fuels’ or ‘synthetic fuels’ are hydrocarbon fuels synthesized from hydrogen (H2) and carbon dioxide (CO2) where H2 can be produced via electrolysis of water or steam reforming of natural gas and CO2 is captured from the combustion of a fossil or biogenic source or directly from the atmosphere. E-fuels are drop-in substitutes for fossil fuels but their climate change mitigation benefits are largely unclear. This study evaluates the climate change impacts of e-fuels for aviation by combining different sources of CO2 and H2 up to 2050 under two contrasting policy scenarios. The analysis includes different climate metrics and the effects of near-term climate forcers which are particularly relevant for the aviation sector. Results are produced for European average conditions and for Poland and Norway two countries with high and low emission intensity from their electricity production mix. E-fuels can either have higher or lower climate change impacts than fossil fuels depending on multiple factors such as in order of importance the electricity mix the origin of CO2 the technology for H2 production and the electrolyzer efficiency. The climate benefits are generally higher for e-fuels produced from CO2 of biogenic origin while e-fuels produced from CO2 from direct air capture or fossil fuel combustion require countries with clean electricity to outperform fossil fuels. Synthetic fuels produced from H2 derived from natural gas have higher impacts than fossil fuels even when coupled with carbon capture and storage if CO2 is sourced from fossil fuels or the atmosphere. Climate change impacts of e-fuels improve in the future and they can all achieve considerable climate change mitigation in 2050 relative to fossil jet fuel provided that strict climate policy measures are implemented to decarbonize the electricity sector. Under reduced policy efforts future climate impacts in 2050 of e-fuels from atmospheric or fossil CO2 are still higher than those of fossil jet fuels with an average European electricity mix. This study shows the conditions to maximize the climate change mitigation benefits of e-fuels which essentially depend on progressive decarbonization of the electricity sector and on reduced use of CO2 sourced from fossil fuels.
Gas Turbine Enclosures: Determining Ventilation Safety Criteria using Hydrogen Explosion Modelling
Sep 2021
Publication
Dilution ventilation is the current basis of safety following a flammable gas leak within a gas turbine enclosure and compliance requirements are defined for methane fuels in ISO 21789. These requirements currently define a safety criteria of a maximum flammable gas cloud size within an enclosure. The requirements are based on methane explosion tests conducted during a HSE Joint Industry Project which identified typical pressures associated with a range of gas cloud sizes. The industry standard approach is to assess the ventilation performance of specific enclosure designs against these requirements using CFD modelling. Gas turbine manufacturers are increasingly considering introducing hydrogen/methane fuel mixtures and looking towards operating with hydrogen alone. It is therefore important to review the applicability of current safety standards for these new fuels as the pressure resulting from a hydrogen explosion is expected to be significantly higher than that from a methane explosion. In this paper we replicate the previous methane explosion tests for hydrogen and hydrogen/methane fuel mixtures using the explosion modelling tool FLACS CFD. The results are used to propose updated limiting safety criteria for hydrogen fuels to support ventilation CFD analysis for specific enclosure designs. It is found that significantly smaller gas cloud sizes are likely to be acceptable for gas turbines fueled by hydrogen however significantly more hydrogen than methane is required per unit volume to generate a stoichiometric cloud (as hydrogen has a lower stoichiometric air fuel ratio than methane). This effect results in the total quantity of gas in the enclosure (and as such detectability of the gas) being broadly similar when operating gas turbines on hydrogen when compared to methane.
Double Compression-Expansion Engine (DCEE) Fueled with Hydrogen: Preliminary Computational Assessment
Jan 2022
Publication
Hydrogen (H2 ) is currently a highly attractive fuel for internal combustion engines (ICEs) owing to the prospects of potentially near-zero emissions. However the production emissions and cost of H2 fuel necessitate substantial improvements in ICE thermal efficiency. This work aims to investigate a potential implementation of H2 combustion in a highly efficient double compression-expansion engine (DCEE). DICI nonpremixed H2 combustion mode is used for its superior characteristics as concluded in previous studies. The analysis is performed using a 1D GT-Power software package where different variants of the DICI H2 and diesel combustion cycles obtained experimentally and numerically (3D CFD) are imposed in the combustion cylinder of the DCEE. The results show that the low jet momentum free jet mixing dominated variants of the DICI H2 combustion concept are preferred owing to the lower heat transfer losses and relaxed requirements on the fuel injection system. Insulation of the expander and removal of the intercooling improve the engine efficiency by 1.3 and 0.5 %-points respectively but the latter leads to elevated temperatures in the high-pressure tank which makes the selection of its materials harder but allows the use of cheaper oxidation catalysts. The results also show that the DCEE performance is insensitive to combustion cylinder temperatures making it potentially suitable for other high-octane fuels such as methane methanol ammonia etc. Finally a brake thermal efficiency of 56 % is achieved with H2 combustion around 1 %-point higher than with diesel. Further efficiency improvements are also possible with a fully optimized H2 combustion system.
Improving the Economics of Fossil-free Steelmaking via Co-production of Methanol
Mar 2022
Publication
Steelmaking is responsible for 7% of the global net emissions of carbon dioxide and heavily reducing emissions from currently dominating steelmaking processes is difficult and costly. Recently new steelmaking processes based on the reduction of iron ore with hydrogen (H2) produced via water electrolysis have been suggested. If the electricity input to such processes is fossil-free near-zero carbon dioxide emissions steelmaking is achievable. However the high electricity demand of electrolysis is a significant implementation barrier. A H2 storage may alleviate this via allowing a larger share of H2 to be produced at low electricity prices. However accurately forecasting the dynamics of electricity markets is challenging. This increases the risk of investment in a H2 storage. Here we evaluate a novel methanol-based H2 storage concept for a H2-based steelmaking process that also allows for the coproduction of methanol. During electricity price peaks the methanol can be reformed to produce H2 for the steelmaking process. During prolonged periods of low electricity prices excess methanol can be produced and sold off thus improving the prospects of storage profitability. We use historical electricity prices and a process model to evaluate methanol-fossil-free steel co-production schemes. Methanol coproduction has the potential to improve the economics of H2 supply to a fossil-free steelmaking process by up to an average of 0.40 €/kg H2 across considered scenarios equivalent to a reduction in H2 production electricity costs of 25.0%
Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings
Jun 2020
Publication
The search for new fuels to supersede fossil fuels has been intensified these recent decades. Among these fuels hydrogen has attracted much interest due to its advantages mainly cleanliness and availability. It can be produced from various raw materials (e.g. water biomass) using many resources mainly water electrolysis and natural gas reforming. However water electrolysis combined with renewable energy sources is the cleanest way to produce hydrogen while reducing greenhouse gases. Besides hydrogen can be used by fuel cells for producing both electrical and thermal energy. The aim of this work was towards efficient integration of this system into energy efficient buildings. The system is comprised of a photovoltaic system hydrogen electrolyzer and proton exchange membrane fuel cell operating as a cogeneration system to provide the building with both electricity and thermal energy. The system’s modeling simulations and experimentations were first conducted over a short-run period to assess the system’s performance. Reported results show the models’ accuracy in analyzing the system’s performance. We then used the developed models for long-run testing of the hybrid system. Accordingly the system’s electrical efficiency was almost 32%. Its overall efficiency reached 64.5% when taking into account both produced electricity and thermal energy.
Research on Multi-Objective Energy Management of Renewable Energy Power Plant with Electrolytic Hydrogen Production
Mar 2024
Publication
This study focuses on a renewable energy power plant equipped with electrolytic hydrogen production system aiming to optimize energy management to smooth renewable energy generation fluctuations participate in peak shaving auxiliary services and increase the absorption space for renewable energy. A multi-objective energy management model and corresponding algorithms were developed incorporating considerations of cost pricing and the operational constraints of a renewable energy generating unit and electrolytic hydrogen production system. By introducing uncertain programming the uncertainty issues associated with renewable energy output were successfully addressed and an improved particle swarm optimization algorithm was employed for solving. A simulation system established on the Matlab platform verified the effectiveness of the model and algorithms demonstrating that this approach can effectively meet the demands of the electricity market while enhancing the utilization rate of renewable energies.
Quantitative Risk Analysis of Scaled-up Hydrogen Facilities
Sep 2021
Publication
Development of hydrogen facilities such as hydrogen refuelling stations (HRS) at scale is a fine balance between economy and safety where an optimal solution would both prevent showstoppers due to cost of increased safety measures and prevent showstoppers due to hydrogen accidents. A detailed Quantitative Risk Analysis (QRA) methodology is presented where the aim is to establish the total risk of the facility and use it to find the right level of safety features such as blast walls and layout. With upscaled hydrogen facilities comes larger area footprints and more potential leak points. These effects will cause increased possible consequence in terms of vapour cloud explosions and increased leak frequencies. Both effects contributing negative to the total risk of the hydrogen facility. At the same time as the number of such facilities is increasing rapidly the frequency of incidents can also increase. A risk-based approach is employed where inherently safe solutions is investigated and cost efficient and acceptable solutions can be established. The present QRA uses well established tools such as SAFETI FLACS and Express which are fitted for hydrogen risks. By using the established Explosion Risk Analysis tool Express the explosion risk inside the station can be found. By using CFD tools actively one can point at physical risk drivers such as equipment layout that can minimize gas cloud build-up on the station. The explosion simulations are further used to find the effects of e.g. blast wall on the pressures affecting on people on the other side of the wall. This is used together with the results from the SAFETI analysis to develop risk contours around the facility. Current standardized safety distances are discussed by considering the effects of scaling and risk drivers on the safety distances. The methodology can be used to develop certain requirement for how hydrogen facilities should be built inherently safe and in cost-efficient ways.
H21 Phase 2: Personal Protective Equipment
Dec 2020
Publication
This report is a detailed discussion related to safety shoes heat and flame personal protective equipment (PPE) and breathing apparatus (respiratory protective equipment RPE) required for working with natural gas (NG) and hydrogen (H2). This work was undertaken by HSE Science Division (SD) as part of Phase 2a of the H21 project. This report should be read alongside all the other relevant reports generated as part of this project. Recommendations made in this report are focused solely on the provision and use of PPE and should not be considered independently of recommendations made in the other relevant reports.<br/>Understanding the similarities and difference of PPE required for NG and H2 enables a deeper understanding of how the transition from NG to 100% H2 might change the way the gas distribution network is operated and managed.
Development of Dispensing Hardware for Safe Fueling of Heavy Duty Vehicles
Sep 2021
Publication
The development of safe dispensing equipment for the fueling of heavy duty (HD) vehicles is critical to the expansion of this newly and quickly expanding market. This paper discusses the development of a HD dispenser and nozzles assembly (nozzle hose breakaway) for these new larger vehicles where flow rates are more than double compared to light duty (LD) vehicles. This equipment must operate at nominal pressures of 700 bar -40o C gas temperature and average flow rate of 5-10 kg/min at a high throughput commercial hydrogen fueling station without leaking hydrogen. The project surveyed HD vehicle manufacturers station developers and component suppliers to determine the basic specifications of the dispensing equipment and nozzle assembly. The team also examined existing codes and standards to determine necessary changes to accommodate HD components. From this information the team developed a set of specifications which will be used to design the dispensing equipment. In order to meet these goals the team performed computational fluid dynamic pressure modelling and temperature analysis in order to determine the necessary parameters to meet existing safety standards modified for HD fueling. The team also considered user operational and maintenance requirements such as freeze lock which has been an issue which prevents the removal of the nozzle from LD vehicles. The team also performed a failure mode and effects analysis (FMEA) to identify the possible failures in the design. The dispenser and nozzle assembly will be tested separately and then installed on an innovative HD fueling station which will use a HD vehicle simulator to test the entire system.
Demand Side Management Based Power-to-Heat and Power-to-Gas Optimization Strategies for PV and Wind Self-Consumption in a Residential Building Cluster
Oct 2021
Publication
The volatility of renewable energy sources (RES) poses a growing problem for operation of electricity grids. In contrary the necessary decarbonisation of sectors such as heat supply and transport requires a rapid expansion of RES. Load management in the context of power-to-heat systems can help to simultaneously couple the electricity and heat sectors and stabilise the electricity grid thus enabling a higher share of RES. In addition power-to-hydrogen offers the possibility of long-term energy storage options. Within this work we present a novel optimization approach for heat pump operation with the aim to counteract the volatility and enable a higher usage of RES. For this purpose a detailed simulation model of buildings and their energy supply systems is created calibrated and validated based on a plus energy settlement. Subsequently the potential of optimized operation is determined with regard to PV and small wind turbine self-consumption. In addition the potential of seasonal hydrogen storage is examined. The results show that on a daily basis a 33% reduction of electricity demand from grid is possible. However the average optimization potential is reduced significantly by prediction inaccuracy. The addition of a hydrogen system for seasonal energy storage basically eliminates the carbon dioxide emissions of the cluster. However this comes at high carbon dioxide prevention costs of 1.76 e kg−1 .
Examining the Role of Safety in Communication Concerning Emerging Hydrogen Technologies by Selected Groups of Stakeholders
Sep 2021
Publication
Governments and other stakeholders actively promote and facilitate the development and deployment of hydrogen and fuel cell technologies. Various strategy documents and energy forecasts outline the environmental and societal benefits of the prospective hydrogen economy. At the same time the safety related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to conventional fuels. Severe accidents can have major impact on the development of energy technologies. The stakes will increase significantly as the use of hydrogen shifts from controlled environments in industrial facilities to the public domain and as the transport-related consumption extends from passenger cars and buses to trains ships and airplanes. Widespread deployment of hydrogen as an energy carrier in society will require massive investments. This implies commercial and political commitment involvement and influence on research priorities and decision-making. The legacy from accidents and the messages communicated by influential stakeholders impact not only how the public perceives hydrogen technologies but also governmental policies the development of regulations codes and standards (RCS) and ultimately the measures adopted for preventing and mitigating accidents. This paper explores whether and how selected aspects of safety are considered when distinct groups of stakeholders frame the hydrogen economy. We assess to what extent the communication is consistent with the current state-of-the-art in hydrogen safety and the contemporary strength of knowledge in risk assessments for hydrogen systems. The approach adopted entails semi-quantitative text analysis and close reading to highlight variations between diverse groups of stakeholders. The results indicate a bias in the framing of the safety-related aspects of the hydrogen economy towards procedural organisational and societal measures of risk reduction at the expense of well-known challenges and knowledge gaps associated with the implications of fundamental safety-related properties of hydrogen.
Use of Sustainable Fuels in Aviation—A Review
Mar 2022
Publication
As the push for carbon-neutral transport continues the aviation sector is facing increasing pressure to reduce its carbon footprint. Furthermore commercial air traffic is expected to resume the continuous growth experienced until the pandemic highlighting the need for reduced emissions. The use of alternative fuels plays a key role in achieving future emission goals while also lowering the dependency on fossil fuels. The so-called sustainable aviation fuels (SAF) which encompass bio and synthetic fuels are currently the most viable option but hydrogen is also being considered as a long-term solution. The present paper reviews the production methods logistical and technological barriers and potential for future mass implementation of these alternative fuels. In general biofuels currently present higher technological readiness levels than other alternatives. Sustainable mass production faces critical feedstock-related challenges that synthetic fuels together with other solutions can overcome. All conventional fuel replacements though with different scopes will be important in meeting long-term goals. Government support will play an important role in accelerating and facilitating the transition towards sustainable aviation.
Future Electricity Series Part 3 - Power from Nuclear
Mar 2014
Publication
This independent cross-party report highlights the key role that political consensus can play in helping to reduce the costs of nuclear power in the UK as well as other low carbon technologies. This political consensus has never been more important than in this ‘defining decade’ for the power sector. The report highlights that an immediate challenge facing the UK’s new build programme is agreeing with the European Commission a regime for supporting new nuclear power. Changing the proposed support package would not be an impossible task if made necessary but maintaining broad political consensus and considering the implications of delay are also important. The State Aid process is an important opportunity for scrutiny with the report demonstrating that shareholders for Hinkley Point C could see bigger returns (19-21%) than those typically expected for PFI projects (12-15%). However it is too early to conclude on the value for money of the Hinkley Point C agreement. Both the negotiation process and the resulting investment contract are important but there has been little transparency over either so far and the negotiations were not competitive. The inquiry calls for more urgency and better coordination in seizing the opportunity to reuse the UK’s plutonium stockpile.
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
Numerical 1-D Simulations on Single-Cylinder Stationary Spark Ignition Engine using Micro-Emulsions, Gasoline, and Hydrogen in Dual Fuel Mode
Mar 2022
Publication
This work is contributing towards reducing the emissions from stationary spark ignition engine single cylinder by adopting the state of the Art Technology Hydrogen fuel and H2O based Emulsion fuel in dual fuel mode. In addition comparing its combustion emissions and performance with conventional 100% Gasoline fuel. This research work has been done on 1-D AVL Boost Simulation Software by using the single cylinder engine model setup. The main objectives of this research work is to comply with the strict emission rules Euro VII. This work predicted the overall combustion parameters NOx CO and HC emissions as well as several performance measures like power torque BSFC and BMEP of stationary spark ignition engine test rig. Since Hydrogen is zero carbon emission based fuel so it is not creating any carbon-based emissions and has shown to be the most efficient source of energy. Although Hydrogen fuel showed no carbon emissions but NOx emissions were slightly higher than micro-emulsion fuel. Since Hydrogen fuel burns at very high temperature so it produced slightly more NOx emissions. The NOx emissions were 20% higher than emulsion fuel and 10% higher than Gasoline 100% fuel. The H2O based emulsion fuel is also investigated which helped in reducing the emissions and improved the performance of single-cylinder stationary spark Gasoline+ Micro-Emulsion +Hydrogen fuel Lower CO HC and NOx Emissions Improved Power Torque Bsfc & Pressure Constant Speed & variable Load ignition test rig. The Brake power BSFC BMEP & Torque were also investigated power and showed greater improvement for emulsion fuel. At 60% load the Hydrogen fuel showed 50% increase in power as compared to emulsion fuel and 38% more power than Gasoline fuel. Exhaust emissions CO HC were compared for gasoline and emulsion fuel. The CO emissions are 18% lower for micro-emulsion as compared to Gasoline 100% and HC emissions are 12.5% lower than gasoline 100% fuel at 20% load.
Influence of Hydrogen on Grid Investments for Smart Microgrids
Mar 2022
Publication
Electrification of the heat network in buildings together with a rise in popularity of Electric Vehicles (EVs) will result in a need to make investments in the electrical energy infrastructure in order to prevent congestion. This paper discusses the influence of hydrogen in future smart microgrids on these investments. Moreover smart control strategies i.e. EV management and demand response programs are used in this paper to lower the peak of electrical energy demand resulting in the reduction of these investments. Performances of microgrid with different levels of hydrogen penetration are discussed. It is shown that an increase in the level of hydrogen in the microgrid will reduce the electric grid investments costs but is not economically more beneficial than using ‘green’ gas due to the higher total economic costs.
Preparation of Gas Standards for Quality Assurance of Hydrogen Fuel
May 2022
Publication
This study has developed traceable standards for evaluating impurities in hydrogen fuel according to ISO 14687. Impurities in raw H2 including sub mmol/mol levels of CO CO2 and CH4 were analyzed using multiple detectors while avoiding contamination. The gravimetric standards prepared included mixtures of the following nominal concentrations: 1 2 3e5 8e11 17e23 and 47e65 mmol/mol for CO2 CH4 and CO O2 N2 Ar and He respectively. The expanded uncertainty ranges were 0.8% for Ar N2 and He 1% for CH4 and CO and 2% for CO2 and O2. These standards were stable while that for CO varied by only 0.5% during a time span of three years. The prepared standards are useful for evaluating the compliance of H2 fuel in service stations with ISO 14687 quality requirements.
First Hydrogen Fuel Sampling from a Fuel Cell Hydrogen Electrical Vehicle–Validation of Hydrogen Fuel Sampling System to Investigate FCEV Performance
Aug 2022
Publication
Fuel cell electric vehicles (FCEV) are developing quickly from passenger vehicles to trucks or fork-lifts. Policymakers are supporting an ambitious strategy to deploy fuel cell electrical vehicles with infrastructure as hydrogen refueling stations (HRS) as the European Green deal for Europe. The hydrogen fuel quality according to international standard as ISO 14687 is critical to ensure the FCEV performance and that poor hydrogen quality may not cause FCEV loss of performance. However the sampling system is only available for nozzle sampling at HRS. If a FCEV may show a lack of performance there is currently no methodology to sample hydrogen fuel from a FCEV itself. It would support the investigation to determine if hydrogen fuel may have caused any performance loss. This article presents the first FCEV sampling system and its comparison with the hydrogen fuel sampling from the HRS nozzle (as requested by international standard ISO 14687). The results showed good agreement with the hydrogen fuel sample. The results demonstrate that the prototype developed provides representative samples from the FCEV and can be an alternative to determine hydrogen fuel quality. The prototype will require improvements and a larger sampling campaign.
No more items...