- Home
- A-Z Publications
- Publications
Publications
Wettability of Shale–brine–H2 System and H2-brine Interfacial Tension for Assessment of the Sealing Capacities of Shale Formations During Underground Hydrogen Storage
Jul 2022
Publication
Replacement of fossil fuels with clean hydrogen has been recognized as the most feasible approach of implementing CO2-free hydrogen economy globally. However large-scale storage of hydrogen is a critical component of hydrogen economy value chain because hydrogen is the lightest molecule and has moderately low volumetric energy content. To achieve successful storage of buoyant hydrogen at the subsurface and convenient withdrawal during the period of critical energy demand the integrity of the underground storage rock and overlying seal (caprock) must be assured. Presently there is paucity of information on hydrogen wettability of shale and the interfacial properties of H2/brine system. In this research contact angles of shale/H2/brine system and hydrogen/brine interfacial tension (IFT) were measured using Krüss drop shape analyzer (DSA 100) at 50 ◦C and varying pressure (14.7–1000 psi). A modified form of sessile drop approach was used for the contact angles measurement whereas the H2- brine IFT was measured through the pendant drop method. H2-brine IFT values decreased slightly with increasing pressure ranging between 63.68◦ at 14.7 psia and 51.29◦ at 1000 psia. The Eagle-ford shale with moderate total organic carbon (TOC) of 3.83% attained fully hydrogen-wet (contact angle of 99.9◦ ) and intermediate-wet condition (contact angle of 89.7◦ ) at 14.7 psi and 200 psi respectively. Likewise the Wolf-camp shale with low TOC (0.30%) attained weakly water-wet conditions with contact angles of 58.8◦ and 62.9◦ at 14.7 psi and 200 psi respectively. The maximum height of hydrogen that can be securely trapped by the Wolf-camp shale was approximately 325 meters whereas the value was merely 100 meters for the Eagle-ford shale. Results of this study will aid in assessment of hydrogen storage capacity of organic-rich shale (adsorption trapping) as well as evaluation of the sealing potentials of low TOC shale (caprock) during underground hydrogen storage.
Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study
Jul 2020
Publication
The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF) where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2) could result in almost fossil-free steel production and Sweden could achieve a 10% reduction in total CO2 emissions. Finally (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI) could lead to decarbonization of the steel industry outside Sweden assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.
The Role of LNG in the Transition Toward Low- and Zero-carbon Shipping
Apr 2021
Publication
Due to its much lower air pollution and potential greenhouse gas (GHG) emissions benefits liquefied natural gas (LNG) is frequently discussed as a fuel pathway towards greener maritime transport. While LNG’s air quality improvements are undeniable there is debate within the sector as to what extent LNG may be able to contribute to decarbonizing shipping. This report “The Role of LNG in the Transition Toward Low- and Zero-Carbon Shipping” considers the potential of LNG to play either a transitional role in which existing LNG infrastructure and vessels could continue to be used with compatible zero-carbon bunker fuels after 2030 or a temporary one in which LNG would be rapidly supplanted by zero-carbon alternatives from 2030. Over concerns about methane leakage which could diminish or even offset any GHG benefits associated with LNG and additional capital expenditures the risk of stranded assets as well as a technology lock-in the report concludes that LNG is unlikely to play a significant role in decarbonizing maritime transport. Instead the research finds that LNG is likely to only be used in niche shipping applications or in its non-liquefied form as a feedstock to kickstart the production of zero-carbon bunker fuels when used in conjunction with carbon capture and storage technology. The research further suggests that new public policy in support of LNG as a bunker fuel should be avoided existing policy support should be reconsidered and methane emissions should be regulated.
Everything About Hydrogen Podcast: Taking Hydrogen off the Grid
Jun 2022
Publication
On this episode of Everything About Hydrogen we chat with Andrew Cunningham Founder and Director at GeoPura. GeoPura is enabling the production transport and use of zero-emissions fuels with innovative and commercially viable technology to decarbonise the global economy. As the world transitions away from fossils fuels there is an increasing need for reliable clean electricity. If global power demand continues to grow as expected the electricity grid system will need support from renewable energy sources such as hydrogen and fuel cell power generator. GeoPura seeks to address exactly that kind of need.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Decarbonizing Steel and Industrial Manufacturing
May 2022
Publication
H2 Green Steel was founded in 2020 with the aim to build a large-scale green steel production in northern Sweden. H2 Green Steel is on a mission to undertake the global steel industry’s greatest ever technological shift. By 2024 H2 Green Steel will be in production at their Boden site and by 2030 will produce five million tonnes of green steel annually. Vargas co-founder and a major shareholder in Northvolt is also H2 Green Steel’s founder and largest shareholder. The EAH team speaks with Kajsa Ryttberg-Wallgren head of the Hydrogen Business Unit at H2 Green Steel.
The podcast can be found on their website
The podcast can be found on their website
Dynamic Investigation and Optimization of a Solar‐Based Unit for Power and Green Hydrogen Production: A Case Study of the Greek Island, Kythnos
Nov 2022
Publication
The aim of the present work is the analysis of a solar‐driven unit that is located on the non‐interconnected island of Kythnos Greece that can produce electricity and green hydrogen. More specifically solar energy is exploited by parabolic trough collectors and the produced heat is stored in a thermal energy storage tank. Additionally an organic Rankine unit is incorporated to generate electricity which contributes to covering the island’s demand in a clean and renewable way. When the power cannot be absorbed by the local grid it can be provided to a water electrolyzer; therefore the excess electricity is stored in the form of hydrogen. The produced hydrogen amount is compressed afterward stored in tanks and then finally can be utilized as a fuel to meet other important needs such as powering vehicles or ferries. The installation is simulated parametrically and optimized on dynamic conditions in terms of energy exergy and finance. According to the results considering a base electrical load of 75 kW the annual energy and exergy efficiencies are found at 14.52% and 15.48% respectively while the payback period of the system is deter‐ mined at 6.73 years and the net present value is equal to EUR 1073384.
Construction of Natural Gas Energy-measuring System in China: A Discussion
Feb 2022
Publication
During the 13th Five-Year Plan China's natural gas industry developed rapidly and a diversified supply and marketing pattern was formed including domestic conventional gas unconventional gas (shale gas tight sandstone gas coalbed methane etc.) coal-based synthetic natural gas imported LNG and imported pipeline gas. The gross calorific value of gas sources ranged from 34 MJ/m3 to 43 MJ/m3 and the maximum difference of calorific value between different gas sources exceeded 20%. On May 24th 2019 the National Development and Reform Commission and other three ministries/commissions jointly issued the Supervision Regulation on the Fair Access of Oil and Gas Pipeline Network Facilities and required that a natural gas energy measuring and pricing system shall be established within 24 months from the implementation date of this Regulation. In order to speed up the construction of China's natural gas energy measuring system this paper summarizes domestic achievements in the construction of natural gas energy measuring system from the aspects of value traceability and energy measurement standard and analyzes natural gas flowrate measurement technology calorific value determination technology value traceability localization intelligentization and application technology of key energy measurement equipment natural gas pipeline network energy balancing technology based on big data analysis multi-source quality tracking and monitoring technology and energy measurement standard system the need of new energy detection and measurement technology and put forward strategy for the development of natural gas measuring in China. And the following research results are obtained. First China's natural gas energy measuring system can basically meet the requirements of implementing natural gas energy measurement but it still falls behind the international leading level in terms of calibration and application of high-level flowmeter (such as 0.5 class) high-accuracy gas reference material level of calorific value reference equipment and measurement standard system and needs to be further improved. Second it is necessary for China to speed up the research and application of the localization and intelligentization technologies of key energy measurement equipment. Third natural gas pipeline network shall be equipped with measurement check method energy balancing system based on big data analysis and multi-source quality tracking and monitoring system so that the energy transmission loss index of natural gas pipeline network can be superior to the international leading level (0.10%). Fourth to realize the large-scale application of hydrogen energy and bio-energy and the mixed transportation of hydrogen bio-methane and natural gas it is necessary to carry out research on new technology and standardization of hydrogen/bio-methane blended natural gas detection and measurement.
Techno-economic Evaluation of Medium Scale Power to Hydrogen to Combined Heat and Power Generation Systems
Jun 2022
Publication
The European Hydrogen Strategy and the new « Fit for 55 » package indicate the urgent need for the alignment of policy with the European Green Deal and European Union (EU) climate law for the decarbonization of the energy system and the use of hydrogen towards 2030 and 2050. The increasing carbon prices in EU Emission Trading System (ETS) as well as the lack of dispatchable thermal power generation as part of the Coal exit are expected to enhance the role of Combined Heat and Power (CHP) in the future energy system. In the present work the use of renewable hydrogen for the decarbonization of CHP plants is investigated for various fossil fuel substitution ratios and the impact of the overall efficiency the reduction of direct emissions and the carbon footprint of heat and power generation are reported. The analysis provides insights on efficient and decarbonized cogeneration linking the power with the heat sector via renewable hydrogen production and use. The levelized cost of hydrogen production as well as the levelized cost of electricity in the power to hydrogen to combined heat and power system are analyzed for various natural gas substitution scenarios as well as current and future projections of EU ETS carbon prices.
Explosive Phase Transition in LH2
Sep 2021
Publication
This paper describes two models for analysing and simulating the physical effects of explosive phase transition of liquid hydrogen (LH2) also known as cold BLEVE. The present work is based on theoretical and experimental work for liquefied CO2. A Rankine Hugoniot analysis for evaporation waves that was previously developed for CO2 is now extended to LH2. A CFD-method for simulating two-phase flow with mass transfer between the phases is presented and compared with the Rankine Hugoniot analysis results. The Rankine Hugoniot method uses real fluid equations of state suited for LH2 while the CFD method uses linear equations of state suited for shock capturing methods. The results show that there will be a blast from a catastrophic rupture of an LH2 vessel and that the blast waves will experience a slow decay due to the large positive pressure phase.
Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools
Jul 2020
Publication
Driven by concerns regarding the sustainability of aviation and the continued growth of air traffic increasing interest is given to emerging aircraft technologies. Although new technologies such as battery-electric propulsion systems have the potential to minimise in-flight emissions and noise environmental burdens are possibly shifted to other stages of the aircraft’s life cycle and new socio-economic challenges may arise. Therefore a life-cycle-oriented sustainability assessment is required to identify these hotspots and problem shifts and to derive recommendations for action for aircraft development at an early stage. This paper proposes a framework for the modelling and assessment of future aircraft technologies and provides an overview of the challenges and available methods and tools in this field. A structured search and screening process is used to determine which aspects of the proposed framework are already addressed in the scientific literature and in which areas research is still needed. For this purpose a total of 66 related articles are identified and systematically analysed. Firstly an overview of statistics of papers dealing with life-cycle-oriented analysis of conventional and emerging aircraft propulsion systems is given classifying them according to the technologies considered the sustainability dimensions and indicators investigated and the assessment methods applied. Secondly a detailed analysis of the articles is conducted to derive answers to the defined research questions. It illustrates that the assessment of environmental aspects of alternative fuels is a dominating research theme while novel approaches that integrate socio-economic aspects and broaden the scope to battery-powered fuel-cell-based or hybrid-electric aircraft are emerging. It also provides insights by what extent future aviation technologies can contribute to more sustainable and energy-efficient aviation. The findings underline the need to harmonise existing methods into an integrated modelling and assessment approach that considers the specifics of upcoming technological developments in aviation.
Everything About Hydrogen Podcast: So, What's the Big Deal with Hydrogen?
Aug 2019
Publication
This episode is a whistle-stop tour of the hydrogen world. The team explore why hydrogen is making a resurgence as an energy carrier how decarbonising the existing hydrogen market is a huge opportunity and how fuel cells fit into the story.
The podcast can be found on their website
The podcast can be found on their website
Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy
Jan 2023
Publication
Hydrogen can be considered an innovative fuel that will revolutionize the energy sector and enable even more complete use of the potential of renewable sources. The aim of the paper is to present the challenges faced by companies and economies that will produce and use hydrogen. Thanks to the use of hydrogen in the energy transport and construction sectors it will be possible to achieve climate neutrality by 2050. By 2050 global demand for hydrogen will increase to 614 million metric tons a year and thanks to the use of hydrogen in energy transport and construction it will be possible to achieve climate neutrality. Depending on the method of hydrogen production the processes used and the final effects several groups can be distinguished marked with different colors. It is in this area of obtaining friendly hydrogen that innovative possibilities for its production open up. The costs of hydrogen production are also affected by network fees national tax systems availability and prices of carbon capture utilization and storage installations energy consumption rates by electrolyzers and transport methods. It is planned that 1 kg of hydrogen will cost USD 1. The study used the desk research method which made it possible to analyze a huge amount of descriptive data and numerical data.
Hydrogen as Energy Carrier: Techno-economic Assessment of Decentralized Hydrogen Production in Germany
Jun 2021
Publication
Political and scientific discussions on changing German energy supply mix and challenges of such energy transition are already well established. At the supply level energy storage seems to be the biggest challenge ahead for such transition. Hydrogen could be one of the solutions for future energy transition if it is produced using renewable energy resources. In order to analyze the future role of hydrogen its economic performance analysis is inevitable. This has been done in this research for a case study site in Cologne. The potential of hydrogen production with the use of solar electricity powered electrolyzers (alkaline and proton exchange membrane (PEM)) has been analyzed. Both grid connected and off grid modes of solar hydrogen production are considered. Economic performance results are presented for six scenarios. Hydrogen produced with the grid connected solar photovoltaics system coupled with alkaline electrolyzers was found the cheapest with the levelized cost of hydrogen (LCOH) at 6.23 V/kg. These costs are comparable with the current hydrogen price at commercial refueling station in Cologne. On the other hand the LCOH of off grid systems with both alkaline and PEM electrolyzers is expensive as expected the most expensive LCOH among six scenarios reached to 57.61 V/kg.
Hydrogen Refueling Stations and Carbon Emission Reduction of Coastal Expressways: A Deployment Model and Multi-Scenario Analysis
Jul 2022
Publication
Hydrogen is considered to the ultimate solution to achieve carbon emission reduction due to its wide sources and high calorific value as well as non-polluting renewable and storable advantages. This paper starts from the coastal areas uses offshore wind power hydrogen production as the hydrogen source and focuses on the combination of hydrogen supply chain network design and hydrogen expressway hydrogen refueling station layout optimization. It proposes a comprehensive mathematical model of hydrogen supply chain network based on cost analysis which determined the optimal size and location of hydrogen refueling stations on hydrogen expressways in coastal areas. Under the multi-scenario and multi-case optimization results the location of the hydrogen refueling station can effectively cover the road sections of each case and the unit hydrogen cost of the hydrogen supply chain network is between 11.8 and 15.0 USD/kgH2 . Meanwhile it was found that the transportation distance and the number of hydrogen sources play a decisive role on the cost of hydrogen in the supply chain network and the location of hydrogen sources have a decisive influence on the location of hydrogen refueling stations. In addition carbon emission reduction results of hydrogen supply chain network show that the carbon emission reduction per unit hydrogen production is 15.51 kgCO2/kgH2 at the production side. The CO2 emission can be reduced by 68.3 kgCO2/km and 6.35 kgCO2/kgH2 per unit mileage and per unit hydrogen demand at the application side respectively. The layout planning utilization of hydrogen energy expressway has a positive impact on energy saving and emission reduction.
A Study of Hydrogen Embrittlement of SA-372 J Class High Pressure Hydrogen Storage Seamless Cylinder (≥100 MPA)
Nov 2022
Publication
The spinning process will lead to changes in the micro-structure and mechanical properties of the materials in different positions of the high-pressure hydrogen storage cylinder which will show different hydrogen embrittlement resistance in the high-pressure hydrogen environment. In order to fully study the safety of hydrogen storage in large-volume seamless steel cylinders this chapter associates the influence of the forming process with the deterioration of a high-pressure hydrogen cylinder (≥100 MPa). The anti-hydrogen embrittlement of SA-372 grade J steel at different locations of the formed cylinders was studied experimentally in three cylinders. The hydrogen embrittlement experiments were carried out according to method A of ISO 11114-4:2005. The relationship between tensile strength microstructure and hydrogen embrittlement is analyzed which provides comprehensive and reliable data for the safety of hydrogen storage and transmission.
A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis
Mar 2022
Publication
New energy vehicles (NEVs) especially electric vehicles (EVs) address the important task of reducing the greenhouse effect. It is particularly important to measure the environmental efficiency of new energy vehicles and the life cycle analysis (LCA) model provides a comprehensive evaluation method of environmental efficiency. To provide researchers with knowledge regarding the research trends of LCA in NEVs a total of 282 related studies were counted from the Web of Science database and analyzed regarding their research contents research preferences and research trends. The conclusion drawn from this research is that the stages of energy resource extraction and collection carrier production and energy transportation maintenance and replacement are not considered to be research links. The stages of material equipment and car transportation and operation equipment settling and forms of use need to be considered in future research. Hydrogen fuel cell electric vehicles (HFCEVs) vehicle type classification the water footprint battery recovery and reuse and battery aging are the focus of further research and comprehensive evaluation combined with more evaluation methods is the direction needed for the optimization of LCA. According to the results of this study regarding EV and hybrid power vehicles (including plug-in hybrid electric vehicles (PHEV) fuel-cell electric vehicles (FCEV) hybrid electric vehicles (HEV) and extended range electric vehicles (EREV)) well-to-wheel (WTW) average carbon dioxide (CO2 ) emissions have been less than those in the same period of gasoline internal combustion engine vehicles (GICEV). However EV and hybrid electric vehicle production CO2 emissions have been greater than those during the same period of GICEV and the total CO2 emissions of EV have been less than during the same period of GICEV.
A Comparative Study for H2 –CH4 Mixture Wettability in Sandstone Porous Rocks Relevant to Underground Hydrogen Storage
Mar 2022
Publication
Characterizing the wettability of hydrogen (H2 )–methane (CH4 ) mixtures in subsurface reservoirs is the first step towards understanding containment and transport properties for underground hydrogen storage (UHS). In this study we investigate the static contact angles of H2 –CH4 mixtures in contact with brine and Bentheimer sandstone rock using a captive-bubble cell device at different pressures temperatures and brine salinity values. It is found that under the studied conditions H2 and CH4 show comparable wettability behaviour with contact angles ranging between [25◦–45◦ ]; and consequently their mixtures behave similar to the pure gas systems independent of composition pressure temperature and salinity. For the system at rest the acting buoyancy and surface forces allow for theoretical sensitivity analysis for the captive-bubble cell approach to characterize the wettability. Moreover it is theoretically validated that under similar Bond numbers and similar bubble sizes the contact angles of H2 and CH4 bubbles and their mixtures are indeed comparable. Consequently in large-scale subsurface storage systems where buoyancy and capillary are the main acting forces H2 CH4 and their mixtures will have similar wettability characteristics.
A Global Review of the Hydrogen Energy Eco-System
Feb 2023
Publication
Climate change primarily caused by the greenhouse gases emitted as a result of the consumption of carbon-based fossil fuels is considered one of the biggest challenges that humanity has ever faced. Moreover the Ukrainian crisis in 2022 has complicated the global energy and food status quo more than ever. The permanency of this multifaceted fragility implies the need for increased efforts to have energy independence and requires long-term solutions without fossil fuels through the use of clean zero-carbon renewables energies. Hydrogen technologies have a strong potential to emerge as an energy eco-system in its production-storage-distribution-utilization stages with its synergistic integration with solar-wind-hydraulic-nuclear and other zero-carbon clean renewable energy resources and with the existing energy infrastructure. In this paper we provide a global review of hydrogen energy need related policies practices and state of the art for hydrogen production transportation storage and utilization.
Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation
Aug 2022
Publication
The transition of residential communities to renewable energy sources is one of the first steps for the decarbonization of the energy sector the reduction of CO2 emissions and the mitigation of global climate change. This study provides information for the development of a microgrid supplied by wind and solar energy which meets the hourly energy demand of a community of 10000 houses in the North Texas region; hydrogen is used as the energy storage medium. The results are presented for two cases: (a) when the renewable energy sources supply only the electricity demand of the community and (b) when these sources provide the electricity as well as the heating needs (for space heating and hot water) of the community. The results show that such a community can be decarbonized with combinations of wind and solar installations. The energy storage requirements are between 2.7 m3 per household and 2.2 m3 per household. There is significant dissipation in the storage–regeneration processes—close to 30% of the current annual electricity demand. The entire decarbonization (electricity and heat) of this community will result in approximately 87500 tons of CO2 emissions avoidance.
The Evolution and Structure of Ignited High-pressure Cryogenic Hydrogen Jets
Jun 2022
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen at cryogenic conditions. Understanding the potential hazard arising from leaks in high-pressure cryogenic storage is needed to improve hydrogen safety. The manuscript reports a series of numerical simulations with detailed chemistry for the transient evolution of ignited high-pressure cryogenic hydrogen jets. The study aims to gain insight of the ignition processes flame structures and dynamics associated with the transient flame evolution. Numerical simulations were firstly conducted for an unignited jet released under the same cryogenic temperature of 80 K and pressure of 200 bar as the considered ignited jets. The predicted hydrogen concentrations were found to be in good agreement with the experimental measurements. The results informed the subsequent simulations of the ignited jets involving four different ignition locations. The predicted time series snapshots of temperature hydrogen mass fraction and the flame index are analyzed to study the transient evolution and structure of the flame. The results show that a diffusion combustion layer is developed along the outer boundary of the jet and a side diffusion flame is formed for the near-field ignition. For the far-field ignition an envelope flame is observed. The flame structure contains a diffusion flame on the outer edge and a premixed flame inside the jet. Due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions localized spontaneous ignition and transient flame extinguishment are observed. The predictions also captured the experimentally observed deflagration waves in the far-field ignited jets.
Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea
Sep 2022
Publication
South Korea has a plan to realize a hydrogen economy and it is essential to establish a main hydrogen pipeline for hydrogen transport. This study develops a cost estimation model applicable to the construction of hydrogen pipelines and conducts an economic analysis to evaluate various scenarios for hydrogen pipeline construction. As a result the cost of modifying an existing natural gas to a hydrogen pipeline is the lowest however there are issues with the safety of the modified hydrogen pipes from natural gas and the necessity of the existing natural gas pipelines. In the case of a short-distance hydrogen pipeline the cost is about 1.8 times that of the existing natural gas pipeline modification but it is considered a transitional scenario before the construction of the main hydrogen pipeline nationwide. Lastly in the case of long-distance main hydrogen pipeline construction it takes about 3.7 times as much cost as natural gas pipeline modification however it has the advantage of being the ultimate hydrogen pipeline network. In this study various hydrogen pipeline establishment scenarios ware compared. These results are expected to be utilized to establish plans for building hydrogen pipelines and to evaluate their economic feasibility.
Mathematical Modeling of Unstable Transport in Underground Hydrogen Storage
Apr 2015
Publication
Within the framework of energy transition hydrogen has a great potential as a clean energy carrier. The conversion of electricity into hydrogen for storage and transport is an efficient technological solution capable of significantly reducing the problem of energy shortage. Underground hydrogen storage (UHS) is the best solution to store the large amount of excess electrical energy arising from the excessive over-production of electricity with the objective of balancing the irregular and intermittent energy production typical of renewable sources such as windmills or solar. Earlier studies have demonstrated that UHS should be qualitatively identical to the underground storage of natural gas. Much later however it was revealed that UHS is bound to incur peculiar difficulties as the stored hydrogen is likely to be used by the microorganisms present in the rocks for their metabolism which may cause significant losses of hydrogen. This paper demonstrates that besides microbial activities the hydrodynamic behavior of UHS is very unique and different from that of a natural gas storage.
Hydrogen as an Energy Vector to Optimize the Energy Exploitation of a Self-consumption Solar Photovoltaic Facility in a Dwelling House
Nov 2019
Publication
Solar photovoltaic (PV) plants coupled with storage for domestic self-consumption purposes seem to be a promising technology in the next years as PV costs have decreased significantly and national regulations in many countries promote their installation in order to relax the energy requirements of power distribution grids. However electrochemical storage systems are still unaffordable for many domestic users and thus the advantages of self-consumption PV systems are reduced. Thus in this work the adoption of hydrogen systems as energy vectors between a PV plant and the energy user is proposed. As a preliminary study in this work the design of a PV and hydrogen-production self-consumption plant for a single dwelling is described. Then a technical and economic feasibility study conducted by modeling the facility within the Homer Energy Pro energy systems analysis tool is reported. The proposed system will be able to provide back not only electrical energy but also thermal energy through a fuel cell or refined water covering the fundamental needs of the householders (electricity heat or cooling and water). Results show that although the proposed system effectively increases the energy local use of the PV production and reduces significantly the energy injections or demands into/from the power grid avoiding power grid congestions and increasing the nano-grid resilience operation and maintenance costs may reduce its economic attractiveness for a single dwelling.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Research on Motor Rotor Loss of High-Speed Air Compressor in the Application of Hydrogen Fuel Cell Vehicle
Feb 2023
Publication
As an important component of hydrogen fuel cell vehicles the air compressor with an air foil bearing rotates at tens of thousands of revolutions per minute. The heat generation concentration problem caused by the high-speed motor loss seriously affects the safe and normal operation of the motor so it is very important to clarify the loss distribution of the high-speed motor and adopt a targeted loss reduction design for air compressor heat dissipation. In this paper for an air compressor with a foil bearing with a rated speed of 80000 rpm an empirical formula and a three-dimensional transient magnetic field finite element model are used to model and calculate the air friction loss stator core loss winding loss and permanent magnet eddy current loss. The accuracy of the analytical calculation method is verified by torque test experiments under different revolutions and the average simulation accuracy can reach 91.1%. Then the distribution of the air friction loss stator core loss winding loss and eddy current loss of the air compressor motor at different revolutions is obtained by using this method. The results show that the proposed method can effectively calculate the motor rotor loss of a high-speed air compressor with air foil bearing. Although the motor efficiency increases with the increase in motor speed the absolute value of loss also increases with the increase in motor speed. Stator core loss and air friction loss are the main sources of loss accounting for 55.64% and 29% of the total motor loss respectively. The electromagnetic loss of winding the eddy current and other alloys account for a relatively small proportion which is 15% in total. The conclusions obtained in this paper can effectively guide calculations of motor loss the motor heat dissipation design of a high-speed air compressor with an air foil bearing.
Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)
Aug 2022
Publication
In order to decarbonize the rail industry the development of innovative locomotives with the ability to use multiple energy sources constituting hybrid powertrains plays a central role in transitioning from conventional diesel trains. In this paper four configurations based on suitable combinations of fuel cells and/or batteries are designed to replace or supplement a diesel/overhead line powertrain on a real passenger train (the Hitachi Blues) tested on an existing regional track the Catanzaro Lido–Reggio Calabria line (Italy) managed by Trenitalia SpA. (Italy). The configurations (namely battery–electrified line full-battery fuel cell–battery–electrified line and fuel cell–battery) are first sized with the intention of completing a round trip then integrated on board with diesel engine replacement in mind and finally occupy a portion of the passenger area within two locomotives. The achieved performance is thoroughly examined in terms of fuel cell efficiency (greater than 47%) hydrogen consumption (less than 72 kg) braking energy recovery (approximately 300 kWh) and battery interval SOC.
Distinct facets to enhance the process of hydrogen production via methanol steam reforming—A review
Jan 2022
Publication
Methanol steam reforming manifests great potential for generating hydrogen owing to its lower reaction temperature (200–300 °C) and higher hydrogen/carbon ratio comparing with ethanol and methane reforming. In this case methanol steam reforming is applied in various renewable energy systems to assist the energy conversion and improve the system efficiency. The performance of methanol steam reforming reaction strongly depends on the catalysts and reactor structure. In this paper the development of the copper-based the noble metal–based and the nanomaterial catalysts were summarized by analyzing the effects of different modification methods which indicates that cutting the cost and simplifying the manufacturing process are the future goal of catalyst modification. Moreover the reaction mechanism of different catalyst type was discussed. For the reactor performance conventional miniature micro and membrane reactors were discussed and compared where conventional reactor with high CO tolerance is more suitable for industrial application while membrane reactor with high H2 purity and compact structure is ideal for fuel cell technology. The integration of the methanol steam reforming system into renewable power systems was reviewed as well. Methanol steam reforming technology is of great potential in exhaust heat recovery cogeneration system and other renewable energy field where more comprehensive research should be performed.
Storage Batteries in Photovoltaic-electrochemical Device for Solar Hydrogen Production
Aug 2021
Publication
Hydrogen produced by water electrolysis and electrochemical batteries are widely considered as primary routes for the long- and short-term storage of photovoltaic (PV) energy. At the same time fast power ramps and idle periods in PV power generation may cause degradation of water splitting electrochemical (EC) cells. Implementation of batteries in PV-EC systems is a viable option for smoothening out intermittence of PV power. Notably the spreading of PV energy over the diurnal cycle reduces power of the EC cell and thus its overpotential loss. We study these potential advantages theoretically and experimentally for a simple parallel connected combination of PV EC and battery cells (PV-EC-B) operated without power management electronics. We show feasibility of the unaided operation of PV-EC-B device in a relevant duty cycle and explore how PV-EC-B system can operate at higher solar-to-hydrogen efficiency than the equivalent reference PV-EC system despite the losses caused by the battery.
Numerical Modeling for Rapid Charging of Hydrogen Gas Vessel in Fuel Cell Vehicle
Feb 2023
Publication
As a fuel for power generation high-pressure hydrogen gas is widely used for transportation and its efficient storage promotes the development of fuel cell vehicles (FCVs). However as the filling process takes such a short time the maximum temperature in the storage tank usually undergoes a rapid increase which has become a thorny problem and poses great technical challenges to the steady operation of hydrogen FCVs. For security reasons SAE J2601/ISO 15869 regulates a maximum temperature limit of 85 ◦C in the specifications for refillable hydrogen tanks. In this paper a two-dimensional axisymmetric and a three-dimensional numerical model for fast charging of Type III 35 MPa and 70 MPa hydrogen vehicle cylinders are proposed in order to effectively evaluate the temperature rise within vehicle tanks. A modified standard k-ε turbulence model is utilized to simulate hydrogen gas charging. The equation of state for hydrogen gas is adopted with the thermodynamic properties taken from the National Institute of Standards and Technology (NIST) database taking into account the impact of hydrogen gas’ compressibility. To validate the numerical model three groups of hydrogen rapid refueling experimental data are chosen. After a detailed comparison it is found that the simulated results calculated by the developed numerical model are in good agreement with the experimental results with average temperature differences at the end time of 2.56 K 4.08 K and 4.3 K. The present study provides a foundation for in-depth investigations on the structural mechanics analysis of hydrogen gas vessels during fast refueling and may supply some technical guidance on the design of charging experiments.
Exploring the Australian Public's Response to Hydrogen
Sep 2021
Publication
Over the past three years there has been a rapid increase in discussions across the different levels of Australia's governments about the role that hydrogen might play in helping the world transition to a low carbon future. While those working in the energy industry are aware of the opportunities and challenges that lay ahead the general public is less engaged. However we know from the introduction of previous technologies that public attitudes towards technologies including whether they view them to be safe can severely impact overall acceptance. Understanding how the public perceives hydrogen both for domestic and export use and the potential benefits it brings to Australia is critical for the industry to progress. In this paper we present the initial findings of a national survey of the Australian public conducted in March 2021 which builds on the results of a previous survey conducted in 2018. The 2021 respondents were drawn from all Australian states and territories (n=3020) and quotas were used to ensure adequate representation of age groups and gender. Overall the respondents have favorable views about using hydrogen for energy in Australia with caveats about production-related environmental impacts and issues such as safety. While there has been a slight increase in support for hydrogen as a possible solution for energy and environmental challenges since the 2018 survey the effect size is very small. This suggests that while hydrogen discussions have increased at a policy level little has been done to improve public understanding of hydrogen in communication strategies will be needed as the Australian hydrogen industry continues to develop and gain more widespread media attention.
Economic Operation Strategy of Integrated Hydrogen Energy System Considering the Uncertainty of PV Power Output
Jan 2023
Publication
To address the negative influence caused by power randomness of distributed PV output on energy system’s economic operation in this work an economic operation strategy considering the uncertainty features of PV output has been designed and applied on an integrated hydrogen energy system. First the thermal system operation model and the thermoelectric output control model are precisely built for the integrated hydrogen energy system and the hydrogen-based fuel cell respectively. Then referring to the PV output prediction data the uncertainty of light intensity variation is analyzed to correct the PV output prediction curve. Finally a cost–benefit model for the optimal economic operation of the integrated hydrogen energy system including PV hydrogen fuel cell and cogeneration unit is designed with an objective function of achieving an optimal economic operation of the multi-energy coupling devices. The simulation tests validate that considering the influence of PV output uncertainty on hydrogen fuel cell output can make the system operation more reasonable which ensures the economic and reliable operation of hydrogen energy systems.
Everything About Hydrogen Podcast: Hydrogen on a Global Scale
Aug 2022
Publication
On today’s episode of Everything About Hydrogen we are speaking with Dan Sadler Vice President for UK Low Carbon Solutions at Equinor. Equinor is of course a giant in the global energy sector and is taking a prominent role in the development of the international hydrogen economy with high-profile investments in a number of large-scale production projects in major markets such as the UK. Dan has spent the better part of a decade focused on how to leverage hydrogen’s potential as a fuel for the energy transition and we are excited to have him with us to discuss how Equinor is deploying hydrogen technologies and how he and Equinor expect hydrogen to play a role in a decarbonized energy future.
The podcast can be found on their website.
The podcast can be found on their website.
Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area
Sep 2022
Publication
Facing the challenge that the single-motor electric drive powertrain cannot meet the continuous uphill requirements in the cold mountainous area of the 2022 Beijing Winter Olympics the manuscript adopted a dual-motor coupling technology. Then according to the operating characteristics and performance indicators of the fuel cell (FC)–traction battery hybrid power system the structure design and parameter matching of the vehicle power system architecture were carried out to improve the vehicle’s dynamic performance. Furthermore considering the extremely cold conditions in the Winter Olympics competition area and the poor low-temperature tolerance of core components of fuel cell electric vehicles (FCEV) under extremely cold conditions such as the reduced capacity and service life of traction batteries caused by the rapid deterioration of charging and discharging characteristics the manuscript proposed a fuzzy logic control-based energy management strategy (EMS) optimization method for the proton exchange membrane fuel cell (PEMFC) to reduce the power fluctuation hydrogen consumption and battery charging/discharging times and at the same time to ensure the hybrid power system meets the varying demand under different conditions. In addition the performance of the proposed approach was investigated and validated in an intercity coach in real-world driving conditions. The experimental results show that the proposed powertrain with an optimal control strategy successfully alleviated the fluctuation of vehicle power demand reduced the battery charging/discharging times of traction battery and improved the energy efficiency by 20.7%. The research results of this manuscript are of great significance for the future promotion and application of fuel cell electric coaches in all climate environments especially in an extremely cold mountain area.
Economic Optima for Buffers in Direct Reduction Steelmaking Under Increasing Shares of Renewable Hydrogen
Oct 2021
Publication
While current climate targets demand substantial reductions in greenhouse gas (GHG) emissions the potentials to further reduce carbon dioxide emissions in traditional primary steel-making are limited. One possible solution that is receiving increasing attention is the direct reduction (DR) technology operated either with renewable hydrogen (H2) from electrolysis or with conventional natural gas (NG). DR technology makes it possible to decouple steel and hydrogen production by temporarily using overcapacities to produce and store intermediary products during periods of low renewable electricity prices or by switching between H2 and NG. This paper aims to explore the impact of this decoupling on overall costs and the corresponding dimensioning of production and storage capacities. An optimization model is developed to determine the least-cost operation based on perfect-foresight. This model can determine the minimum costs for optimal production and storage capacities under various assumptions considering fluctuating H2 and NG prices and increasing H2 shares. The model is applied to a case study for Germany and covers the current situation the medium term until 2030 and the long term until 2050. Under the assumptions made the role of using direct reduced iron (DRI) storage as a buffer seems less relevant. DRI mainly serves as long-term storage for several weeks similar to usual balancing storage capacities. Storing H2 on the contrary is used for short-term fluctuations and could balance H2 demand in the hourly range until 2050. From an economic perspective DRI production using NG tends to be cheaper than using H2 in the short term and potential savings from the flexible operation with storages are small at first. However in the long term until 2050 NG and H2 could achieve similar total costs if buffers are used. Otherwise temporarily occurring electricity price spikes imply substantial increases in total costs if high shares of H2 need to be achieved.
Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain
Sep 2022
Publication
The electrification of final energy uses is a key strategy to reach the desired scenario with zero greenhouse gas emissions. Many of them can be electrified with more or less difficulty but there is a part that is difficult to electrify at a competitive cost: heavy road transport maritime and air transport and some industrial processes are some examples. For this reason the possibility of using other energy vectors rather than electricity should be explored. Hydrogen can be considered a real alternative especially considering that this transition should not be carried out immediately because initially the electrification would be carried out in those energy uses that are considered most feasible for this conversion. The Canary Islands’ government is making considerable efforts to promote a carbon-free energy mix starting with renewable energy for electricity generation. Still in the early–mid 2030s it will be necessary to substitute heavy transport fossil fuel. For this purpose HOMER software was used to analyze the feasibility of hydrogen production using surplus electricity produced by the future electricity system. The results of previous research on the optimal generation MIX for Grand Canary Island based exclusively on renewable sources were used. This previous research considers three possible scenarios where electricity surplus is in the range of 2.3–4.9 TWh/year. Several optimized scenarios using demand-side management techniques were also studied. Therefore based on the electricity surpluses of these scenarios the optimization of hydrogen production and storage systems was carried out always covering at least the final hydrogen demand of the island. As a result it is concluded that it would be possible to produce 3.5 × 104 to 7.68 × 104 t of H2/year. In these scenarios 3.15 × 105 to 6.91 × 105 t of water per year would be required and there could be a potential production of 2.8 × 105 to 6.14 × 105 t of O2 per year.
Recent Progress in Ammonia Fuel Cells and their Potential Applications
Nov 2020
Publication
Conventional technologies are largely powered by fossil fuel exploitation and have ultimately led to extensive environmental concerns. Hydrogen is an excellent carbon-free energy carrier but its storage and long-distance transportation remain big challenges. Ammonia however is a promising indirect hydrogen storage medium that has well-established storage and transportation links to make it an accessible fuel source. Moreover the notion of ‘green ammonia’ synthesised from renewable energy sources is an emerging topic that may open significant markets and provide a pathway to decarbonise a variety of applications reliant on fossil fuels. Herein a comparative study based on the chosen design working principles advantages and disadvantages of direct ammonia fuel cells is summarised. This work aims to review the most recent advances in ammonia fuel cells and demonstrates how close this technology type is to integration with future applications. At present several challenges such as material selection NOx formation CO2 tolerance limited power densities and long-term stability must still be overcome and are also addressed within the contents of this review
Challenges and Outlines of Steelmaking toward the Year 2030 and Beyond—Indian Perspective
Oct 2021
Publication
In FY-20 India’s steel production was 109 MT and it is the second-largest steel producer on the planet after China. India’s per capita consumption of steel was around 75 kg which has risen from 59 kg in FY-14. Despite the increase in consumption it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore direct reduced iron (DRI) and scrap. To achieve the level of 250 MT steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling increasing pulverized coal injection and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2 -lean iron production technologies are discussed. In addition the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.
New Liquid Chemical Hydrogen Storage Technology
Aug 2022
Publication
The liquid chemical hydrogen storage technology has great potentials for high-density hydrogen storage and transportation at ambient temperature and pressure. However its commercial applications highly rely on the high-performance heterogeneous dehydrogenation catalysts owing to the dehydrogenation difficulty of chemical hydrogen storage materials. In recent years the chemists and materials scientists found that the supported metal nanoparticles (MNPs) can exhibit high catalytic activity selectivity and stability for the dehydrogenation of chemical hydrogen storage materials which will clear the way for the commercial application of liquid chemical hydrogen storage technology. This review has summarized the recent important research progress in the MNP-catalyzed liquid chemical hydrogen storage technology including formic acid dehydrogenation hydrazine hydrate dehydrogenation and ammonia borane dehydrogenation discussed the urgent challenges in the key field and pointed out the future research trends.
The Hydrogen Fuel Cell Battery: Replacing the Combustion Engine in Heavy Vehicles
Nov 2022
Publication
This opinion piece describes how the optimal integration of hydrogen-fuel-cell with battery in a heavy highly-utilised vehicle can extend vehicle range while cutting refuelling time and reducing cost compared to a pure battery electric vehicle.
Experiment and Numerical Study of the Combustion Behavior of Hydrogen-blended Natural Gas in Swirl Burners
Oct 2022
Publication
Hydrogen production from renewable energy is gaining increasing attention to enhance energy consumption structure and foster a more eco-friendly and sustainable society. At the same time mixing hydrogen with natural gas and supplying it to civilians is one of the best ways to reduce carbon emissions and increase the reliability of technology while reducing the costs of storing and transporting hydrogen. Even though numerous researchers have conducted experimental and simulation studies on hydrogen-doped natural gas most of these studies have focused on the effects of hydrogen-doped ratio equivalence ratio and fuel combustion mode. The impact of burner structure on hydrogen-enriched natural gas has not received much attention. Compared with conventional direct-flow combustion swirl combustion can improve the mixing effect of the fuel mixture during combustion and the use of regions of reversed flow due to swirl can make the fuel burn more fully to achieve the reduction of pollutant emissions. Swirling flames are widely used in gas turbines and industrial furnaces because of their high stability. However the application of swirl combustion in domestic equipment is still in its infancy which deserves more researchers to explore and enhance the working conditions of domestic combustion equipment. In this paper a three-dimensional swirl burner model is utilized to examine the effect of swirl angle θ and swirl length L of the swirler on the combustion behavior of hydrogen-enriched natural gas in a swirl burner. The results indicate that the swirl angle θ and swirl length L play an essential role in the combustion of natural gas containing hydrogen. As the swirl angle θ increases the flame temperature decreases more slowly the combustion becomes more stable and the length of the flame is slightly increased. Simultaneously CO and NO emissions will gradually decrease and the combustion effect is enhanced when the swirl angle is 45◦. With increased swirl length L the flame length grows the high-temperature region expands and CO and NO emissions decrease. Meanwhile the change in swirl length has little effect on the increase of flame peak temperature when the fuel is thoroughly mixed. When the swirl length is 12 mm CO and NO emissions are lower and NO emissions are reduced by 36.11% compared to a swirl length of 6 mm. This work is a reference point for applying hydrogen-mixed natural gas in the swirl burner but it must be studied and optimized further in future research.
On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen
Sep 2022
Publication
Latin America is starting its energy transition. In Colombia with its abundant natural resources and fossil fuel reserves hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential besides allowing a more sustainable use of non-renewable resources would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios respectively which could supply up to 1.5% of the global H2 demand by 2050. However while feedstock availability is promising for blue H2 production carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050 and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture utilization and storage capacity implementation of a clear public policy and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.
Value of Green Hydrogen When Curtailed to Provide Grid Balancing Services
Aug 2022
Publication
This paper evaluates the potential of grid services in France Italy Norway and Spain to provide an alternative income for electrolysers producing hydrogen from wind power. Grid services are simulated with each country's data for 2017 for energy prices grid services and wind power profiles from relevant wind parks. A novel metric is presented the value of curtailed hydrogen which is independent from several highly uncertain parameters such as electrolyser cost or hydrogen market price. Results indicate that grid services can monetise the unused spare capacity of electrolyser plants improving their economy in the critical deployment phase. For most countries up-regulation yields a value of curtailed hydrogen above 6 V/kg over 3 times higher than the EU's 2030 price target (without incentives). However countries with large hydro power resources such as Norway yield far lower results below 2 V/kg. The value of curtailed hydrogen also decreases with hydrogen production corresponding to the cases of symmetric and down-regulation.
Review on the Status of the Research on Power‐to‐Gas Experimental Activities
Aug 2022
Publication
In recent years power‐to‐gas technologies have been gaining ground and are increasingly proving their reliability. The possibility of implementing long‐term energy storage and that of being able to capture and utilize carbon dioxide are currently too important to be ignored. However sys‐ tems of this type are not yet experiencing extensive realization in practice. In this study an overview of the experimental research projects and the research and development activities that are currently part of the power‐to‐gas research line is presented. By means of a bibliographical and sitographical analysis it was possible to identify the characteristics of these projects and their distinctive points. In addition the main research targets distinguishing these projects are presented. This provides an insight into the research direction in this regard where a certain technological maturity has been achieved and where there is still work to be done. The projects found and analyzed amount to 87 mostly at laboratory scale. From these what is most noticeable is that research is currently focusing heavily on improving system efficiency and integration between components.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles
Mar 2021
Publication
Nowadays we face a series of global challenges including the growing depletion of fossil energy environmental pollution and global warming. The replacement of coal petroleum and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2 ) energy is considered the ultimate energy in the 21st century because of its diverse sources cleanliness low carbon emission flexibility and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops H2 fuel supply especially H2 quality attracts increasing attention. Compared with H2 for industrial use the H2 purity requirements for fuel cells are not high. Still the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore we analyze the causes and developing trends for the changes in these standards in detail. On the other hand according to characteristics of H2 for fuel cell vehicles standard H2 purification technologies such as pressure swing adsorption (PSA) membrane separation and metal hydride separation were analyzed and the latest research progress was reviewed.
Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System
Aug 2023
Publication
The latest International Maritime Organization strategies aim to reduce 70% of the CO2 emissions and 50% of the Greenhouse Gas (GHG) emissions from maritime activities by 2050 compared to 2008 levels. The EU has set up goals to reduce GHG emissions by at least 55% by 2030 compared to 1990 and achieve net-zero GHG emissions by 2050. The UK aims to achieve more than 68% GHG emission reduction by 2030 and net-zero GHG emissions by 2050. There are many solutions under development to tackle the challenge of meeting the latest decarbonization strategies from the IMO EU and UK among which are hydrogen powered marine vessels. This paper presents a life cycle analysis study for hydrogen fuelled vessels by evaluating their performance in terms of environmental friendliness and economic feasibility. The LCA study will consider the gas emissions and costs during the life stages of the ships including the construction operation maintenance and recycling phases of the selected vessels. The results of the comparisons with the conventional version of the ships (driven by diesel generators) demonstrate the benefits of using hydrogen for marine transportation: over 80% emission reduction and around 60% life cycle cost savings. A sensitivity analysis shows that the prices of fuels and carbon credits can affect the life cycle cost and recommendations for low H2 price and high carbon credit in the future are provided to attract the industry to adopt the new fuel.
Systems-Based Safety Analysis for Hydrogen-Driven Autonomous Ships
Jun 2024
Publication
In the maritime domain hydrogen fuel cell propulsion and autonomous vessels are two important issues that are yet to be implemented together because of a few challenges. It is obvious that there are several individual safety studies on Maritime Autonomous Surface Ships and hydrogen storage as well as fuel cells based on various risk assessment tools but the combined safety studies that include hydrogen fuel cells on autonomous vessels with recent risk analysis methods are extremely limited. This research chooses the “System-Theoretic Process Analysis” (STPA) method which is a recent method for potential risk identification and mitigation. Both hydrogen and autonomous vessels are analyzed and assessed together with the STPA method. Results are not speculative but rather flexible compared to conventional systems. The study finds a total of 44 unsafe control actions (UCAs) evolved from human and central control unit controllers through STPA. Further the loss scenarios (LS) are identified that lead to those UCAs so that loss scenarios can be assessed and UCAs can be mitigated for safe operation. The objective of this study is to ensure adequate safety for hydrogen fuel cell propulsion on autonomous vessels.
A Systems-Level Study of Ammonia and Hydrogen for Maritime Transport
Aug 2023
Publication
An energy systems comparison of grid-electricity derived liquid hydrogen (LH2) and liquid ammonia (LNH3) is conducted to assess their relative potential in a low-carbon future. Under various voyage weather conditions their performance is analysed for use in cargo transport energy vectors for low-carbon electricity transport and fuel supply. The analysis relies on literature projections for technological development and grid decarbonisation towards 2050. Various voyages are investigated from regions such as North America (NA) Europe (E) and Latin America (LA) to regions projected to have a higher electricity and fuel grid carbon intensity (CI) (i.e. Asia Pacific Africa the Middle-East and the CIS). In terms of reducing the CI of electricity and fuel at the destination port use of LH2 is predicted to be favourable relative to LNH3 whereas LNH3 is favourable for low-carbon transport of cargo. As targeted by the International Maritime Organisation journeys of LNH3 cargo ships originating in NA E and LA achieve a reduction in volumetric energy efficiency design index (kg-CO2/m3 -km) of at least 70% relative to 2008 levels. The same targets can be met globally if LH2 is supplied to high CI regions for production of LNH3 for cargo transport. A future shipping system thus benefits from the use of both LH2 and LNH3 for different functions. However there are additional challenges associated with the use of LH2. Relative to LNH3 1.6 to 1.7 times the number of LH2 ships are required to deliver the same energy. Even when reliquefaction is employed their success is reliant on the avoidance of rough sea states (i.e. Beaufort Numbers >= 6) where fuel depletion rates during a voyage are impractical.
Exploring Decentralized Ammonia Synthesis for Hydrogen Storage and Transport: A Comprehensive CFD Investigation with Experimental Validation and Parametric Study
Sep 2023
Publication
Hydrogen energy plays a vital role in the transition towards a carbon-neutral society but faces challenges in storage and transport as well as in production due to fluctuations in renewable electricity generation. Ammonia (NH3 ) as a carbon-neutral hydrogen carrier offers a promising solution to the energy storage and transport problem. To realize its potential and support the development of a hydrogen economy exploring NH3 synthesis in a decentralized form that integrates with distributed hydrogen production systems is highly needed. In this study a computational fluid dynamics (CFD) model for the Ruthenium (Ru) catalysts-based Haber– Bosch reactor is developed. First a state-of-the-art kinetic model comprehensively describing the complex catalytic reaction is assessed for its sensitivity and applicability to temperature pressure and conversion. Then the kinetic model is integrated into the CFD model and its accuracy is verified through comparison with experimental data obtained from different Ru-based catalysts and operation conditions. Detailed CFD results for a given case are presented offering a visual understanding of thermal gradients and species distributions inside the reactor. Finally a CFD-based parametric study is performed to reveal the impacts of key operation parameters and optimize the NH3 synthesis reactor. The results show that the NH3 production rate is predominantly influenced by temperature with a two-fold difference observed for every 30 ◦C variation while pressure primarily affects the equilibrium. Additionally the affecting mechanism of space velocity is thoroughly discussed and the best value for efficient NH3 synthesis is found to be 180000 h−1. In conclusion the CFD model and simulation results provide valuable insights for the design and control of decentralized NH3 synthesis reactor and operation contributing to the advancement of sustainable energy technologies.
Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community
Oct 2023
Publication
Installations of decentralised renewable energy systems (RES) are becoming increasing popular as governments introduce ambitious energy policies to curb emissions and slow surging energy costs. This work presents a novel model for optimal sizing for a decentralised renewable generation and hybrid storage system to create a renewable energy community (REC) developed in Python. The model implements photovoltaic (PV) solar and wind turbines combined with a hybrid battery and regenerative hydrogen fuel cell (RHFC). The electrical service demand was derived using real usage data from a rural island case study location. Cost remuneration was managed with an REC virtual trading layer ensuring fair distribution among actors in accordance with the European RED(III) policy. A multi-objective genetic algorithm (GA) stochastically determines the system capacities such that the inherent trade-off relationship between project cost and decarbonisation can be observed. The optimal design resulted in a levelized cost of electricity (LCOE) of 0.15 EUR/kWh reducing costs by over 50% compared with typical EU grid power with a project internal rate of return (IRR) of 10.8% simple return of 9.6%/year and return on investment (ROI) of 9 years. The emissions output from grid-only use was reduced by 72% to 69 gCO2 e/kWh. Further research of lifetime economics and additional revenue streams in combination with this work could provide a useful tool for users to quickly design and prototype future decentralised REC systems.
Thermal Design and Heat Transfer Optimisation of a Liquid Organic Hydrogen Carrier Batch Reactor for Hydrogen Storage
Aug 2023
Publication
Liquid organic hydrogen carriers (LOHCs) are considered a promising hydrogen storage technology. Heat must be exchanged with an external medium such as a heat transfer fluid for the required chemical reactions to occur. Batch reactors are simple but useful solutions for small-scale storage applications which can be modelled with a lumped parameter approach adequately reproducing their dynamic performance. For such reactors power is consumed to circulate the external heat transfer fluid and stir the organic liquid inside the reactor and heat transfer performance and power consumption are two key parameters in reactor optimisation. Therefore with reference to the hydrogen release phase this paper describes a procedure to optimise the reactor thermal design based on a lumped-parameter model in terms of heat transfer performance and minimum power consumption. Two batch reactors are analysed: a conventional jacketed reactor with agitation nozzles and a half-pipe coil reactor. Heat transfer performance is evaluated by introducing a newly defined dimensionless parameter the Heat Transfer Ratio (HTR) whose value directly correlates to the heat rate required by the carrier's dehydrogenation reaction. The resulting model is a valid tool for adequately reproducing the hydrogen storage behaviour within dynamic models of complex and detailed energy systems.
Routes for Hydrogen Introduction in the Industrial Hard-to-Abate Sectors for Promoting Energy Transition
Aug 2023
Publication
This paper offers a set of comprehensive guidelines aimed at facilitating the widespread adoption of hydrogen in the industrial hard-to-abate sectors. The authors begin by conducting a detailed analysis of these sectors providing an overview of their unique characteristics and challenges. This paper delves into specific elements related to hydrogen technologies shedding light on their potential applications and discussing feasible implementation strategies. By exploring the strengths and limitations of each technology this paper offers valuable insights into its suitability for specific applications. Finally through a specific analysis focused on the steel sector the authors provide in-depth information on the potential benefits and challenges associated with hydrogen adoption in this context. By emphasizing the steel sector as a focal point the authors contribute to a more nuanced understanding of hydrogen’s role in decarbonizing industrial processes and inspire further exploration of its applications in other challenging sectors.
Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production
Sep 2023
Publication
This research investigated the suitability of air-to-water generator (AWG) technology to address one of the main concerns in green hydrogen production namely water supply. This study specifically addresses water quality and energy sustainability issues which are crucial research questions when AWG technology is intended for electrolysis. To this scope a reasoned summary of the main findings related to atmospheric water quality has been provided. Moreover several experimental chemical analyses specifically focused on meeting electrolysis process requirements on water produced using a real integrated AWG system equipped with certified materials for food contact were discussed. To assess the energy sustainability of AWGs in green hydrogen production a case study was presented regarding an electrolyzer plant intended to serve as energy storage for a 2 MW photovoltaic field on Iriomote Island. The integrated AWG used for the water quality analyses was studied in order to determine its performance in the specific island climate conditions. The production exceeded the needs of the electrolyzer; thus the overproduction was considered for the panels cleaning due to the high purity of the water. Due to such an operation the efficiency recovery was more than enough to cover the AWG energy consumption. This paper on the basis of the quantity results provides the first answers to the said research questions concerning water quality and energy consumption establishing the potential of AWG as a viable solution for addressing water scarcity and enhancing the sustainability of electrolysis processes in green hydrogen production.
A Holistic Framework for the Optimal Design and Operation of Electricity, Heating, Cooling and Hydrogen Technologies in Buildings
Jun 2024
Publication
In this work the Design and Operation of Integrated Technologies (DO-IT) framework is developed a comprehensive tool to support short- and long-term technology investment and operation decisions for integrated energy generation conversion and storage technologies in buildings. The novelty of this framework lies in two key aspects: firstly it integrates essential open-source modelling tools covering energy end uses in buildings technology performance and cost and energy system design optimisation into a unified and easily-reproducible framework. Secondly it introduces a novel optimisation tool with a concise and generic mathematical formulation capable of modelling multi-energy vector systems capturing interdependencies between different energy vectors and technologies. The model formulation which captures both short- and long-term energy storage facilitates the identification of smart design and operation strategies with low computational cost. Different building energy demand and price scenarios are investigated and the economic and energy benefits of using a holistic multi-energy-vector approach are quantified. Technology combinations under consideration include: (i) a photovoltaic-electric heat pump-battery system (ii) a photovoltaic-electric heat pump-battery-hot water cylinder system (iii) a photovoltaic-electrolyser‑hydrogen storage-fuel cell system and (iv) a system with all above technology options. Using a university building as a case study it is shown that the smart integration of electricity heating cooling and hydrogen generation and storage technologies results in a total system cost which is >25% lower than the scenario of only importing grid electricity and using a fuel oil boiler. The battery mitigates intra-day fluctuations in electricity demand and the hot-water cylinder allows for efficiently managing heat demand with a small heat pump. In order to avoid PV curtailment excess PV-generated electricity can also be stored in the form of green hydrogen providing a long-term energy storage solution spanning days weeks or even seasons. Results are useful for end-users investment decision makers and energy policy makers when selecting building-integrated low-carbon technologies and relevant policies.
Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure
Jun 2024
Publication
The seal and weight of the Type IV hydrogen storage vessel are the key problems restricting the safety and driving range of fuel cell vehicles. The boss as a metal medium connecting the inner liner of the Type IV hydrogen storage vessel with the external pipeline affects the sealing performance of the Type IV hydrogen storage vessel and there is no academic research on the weight of the boss. Therefore according to the force characteristics of the boss this paper divides the upper and lower areas (valve column and plate). The valve column with seal optimization and light weight is manufactured with a 3D printing additive while the plate bearing and transferring the internal pressure load is manufactured by forging. Firstly a two-dimensional axisymmetric simulation model of the sealing ring was established and the effects of different compression rates on its seal performance were analyzed. Then the size and position of the sealing groove were sampled simulated and optimized based on the Latin Hypercube method and the reliability of the optimal seal structure was verified by experiments. Finally the Solid Isotropic Material with Penalization (SIMP) topology method was used to optimize the weight of the boss with optimal sealing structure and the reconstructed model was checked and analyzed. The results show that the weight of the optimized boss is reduced by 9.6%.
A Technology Review of Decarbonization: Efficient Techniques for Producing Hydrogen as Fuel
Aug 2023
Publication
Climate change is obvious in many ways. The weather changes rapidly from day to day reaching high temperatures such as 28 ◦C one day and heavy rain the next with temperatures below 18 ◦C. There are also very strong storms caused by this phenomenon. The way the environment acts is different than the current epoch would predict indicating a long-term shift in weather and temperature patterns. The mean temperature of earth is rising due to the greenhouse effect that is caused by human activity and mostly by the burning of fossil fuel emitting CO2 and other pollutant gasses. Nowadays every country is trying to lower CO2 emissions from everyday human activities a movement called “decarbonization”. Since the 18th century there has been a great deal of research carried out on possible alternatives to fossil fuels. Some of the work was just to discover ways to power heaters or automotive vehicle but there is a great deal of work remaining to complete regarding this issue after discovering the greenhouse effect and its impact on the planet’s climate in order to eliminate it by using fuel whose combustion emissions are more environmentally friendly. In the present work many discoveries will be presented that use hydrogen (H2 ) or hydroxy (H-OH) as fuel. The main reason for this is the emission of pure water after combustion but the most interesting part is the approach every scientist uses to create the fuel gas from water.
Study Progress on the Pipeline Transportation Safety of Hydrogen-blended Natural Gas
Oct 2023
Publication
The core of carbon neutrality is the energy structure adjustment and economic structure transformation. Hydrogen energy as a kind of clean energy with great potential has provided important support for the implementation of the carbon peaking and carbon neutrality goals of China. How to achieve the large-range safe and reliable transportation of hydrogen energy with good economic benefits remains the key to limiting the development of hydrogen energy. Using the existing natural gas pipeline network can save many infrastructure construction costs to transport hydrogen-blended natural gas. However due to great differences in the physical and chemical properties of hydrogen and natural gas the transportation of hydrogen-blended natural gas will bring safety risks to the pipeline network operation to a certain extent. In this paper the influences of pipeline transportation of hydrogen-blended natural gas on existing pipelines and parts along the pipelines are analyzed from two aspects of pipe compatibility and hydrogen blending ratio and the safety of pipeline transportation of hydrogen-blended natural gas is summarized from two aspects of leakage and accumulation as well as combustion and explosion. In addition the integrity management of hydrogen-blended natural gas pipelines and the existing relevant standards and specifications are reviewed. This paper points out the shortcomings of current hydrogen-blended natural gas pipeline transportation and gives some relevant suggestions. Hopefully this work can provide a useful reference for developing a hydrogen-blended natural gas pipeline transportation system.
LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures
Sep 2023
Publication
Fuel cell electric vehicles are a promising solution for reducing the environmental impacts of the automotive sector; however there are still some key points to address in finding the most efficient and less impactful implementation of this technology. In this work three electrical architectures of fuel cell electric vehicles were modeled and compared in terms of the environmental impacts of their manufacturing and use phases. The three architectures differ in terms of the number and position of the DC/DC converters connecting the battery and the fuel cell to the electric motor. The life cycle assessment methodology was employed to compute and compare the impacts of the three vehicles. A model of the production of the main components of vehicles and fuel cell stacks as well as of the production of hydrogen fuel was constructed and the impacts were calculated using the program SimaPro. Eleven impact categories were considered when adopting the ReCiPe 2016 midpoint method and the EF (adapted) method was exploited for a final comparison. The results highlighted the importance of the converters and their influence on fuel consumption which was identified as the main factor in the comparison of the environmental impacts of the vehicle.
Assessing Opportunities and Weaknesses of Green Hydrogen Transport via LOHC through a Detailed Techno-economic Analysis
Aug 2023
Publication
In the transition towards a more sustainable energy system hydrogen is seen as the key low-emission energy source. However the limited H2 volumetric density hinders its transportation. To overcome this issue liquid organic hydrogen carriers (LOHCs) molecules that can be hydrogenated and upon arrival dehydrogenated for H2 release have been proposed as hydrogen transport media. Considering toluene and dibenzyltoluene as representative carriers this work offers a systematic methodology for the analysis and the comparison of LOHCs in view of identifying cost-drivers of the overall value-chain. A detailed Aspen Plus process simulation is provided for hydrogenation and dehydrogenation sections. Simulation results are used as input data for the economic assessment. The process economics reveals that dehydrogenation is the most impactful cost-item together with the carrier initial loading the latter related to the LOHC transport distance. The choice of the most suitable molecule as H2 carrier ultimately is a trade-off between its hydrogenation enthalpy and cost.
Model-based Economic Analysis of Off-grid Wind/Hydrogen Systems
Sep 2023
Publication
Hydrogen has emerged in the context of large-scale renewable uptake and deep decarbonization. However the high cost of splitting water into hydrogen using renewable energy hinders the development of green hydrogen. Here we provide a cost analysis of hydrogen from off-grid wind. It is found that the current cost evaluation can be improved by examining the operational details of electrolysis. Instead of using low-resolution wind-speed data and linear electrolysis models we generate 5-min resolution wind data and utilize detailed electrolysis models that can describe the safe working range startup time and efficiency variation. Economic assessments are performed over 112 locations in seven countries to demonstrate the influence of operational models. It is shown that over-simplified models lead to less reliable results and the relative error can be 63.65% at most. Further studies have shown the global picture of producing green hydrogen. Based on the improved model we find that the levelized cost of hydrogen ranges from 1.66$/kg to 13.61$/kg. The wind-based hydrogen is cost-competitive in areas with abundant resources and lower investment cost such as China and Denmark. However it is still costly in most of the studied cases. An optimal sizing strategy or involving a battery as electricity storage can further reduce the hydrogen cost the effectiveness of which is location-specific. The sizing strategies of electrolyzers differ by country and rely on the specific wind resource. In contrast the sizing of batteries presents similar trends. Smaller batteries are preferred in almost all the investigated cases.
Evaluation of Hydrogen Addition on Combustion and Emission Characteristics of Dual-Fuel Diesel Engines with Different Compression Ratios
Sep 2023
Publication
In this paper a computational fluid dynamics (CFD) model was established and verified on the basis of experimental results and then the effect of hydrogenation addition on combustion and emission characteristics of a diesel–hydrogen dual-fuel engine fueled with hydrogenation addition (0% 5% and 10%) under different hydrogenation energy shares (HESs) and compression ratios (CRs) were investigated using CONVERGE3.0 software. And this work assumed that the hydrogen and air were premixed uniformly. The correctness of the simulation model was verified by experimental data. The values of HES are in the range of 0% 5% 10% and 15%. And the values of CR are in the range of 14 16 18 and 20. The results of this study showed that the addition of hydrogen to diesel fuel has a significant effect on the combustion characteristics and the emission characteristics of diesel engines. When the HES was 15% the in-cylinder pressure increased by 10.54%. The in-cylinder temperature increased by 15.11%. When the CR was 20 the in-cylinder pressure and the in-cylinder temperature increased by 66.10% and 13.09% respectively. In all cases HC CO CO2 and soot emissions decreased as the HES increased. But NOx emission increased.
Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety
Sep 2023
Publication
Hydrogen vehicles encompassing fuel cell electric vehicles (FCEVs) are pivotal within the UK’s energy landscape as it pursues the goal of net-zero emissions by 2050. By markedly diminishing dependence on fossil fuels FCEVs including hydrogen vehicles wield substantial influence in shaping the circular economy (CE). Their impact extends to optimizing resource utilization enabling zero-emission mobility facilitating the integration of renewable energy sources supplying adaptable energy storage solutions and interconnecting diverse sectors. The widespread adoption of hydrogen vehicles accelerates the UK’s transformative journey towards a sustainable CE. However to fully harness the benefits of this transition a robust investigation and implementation of safety measures concerning hydrogen vehicle (HV) use are indispensable. Therefore this study takes a holistic approach integrating quantitative risk assessment (QRA) and an adaptive decision-making trial and evaluation laboratory (DEMATEL) framework as pragmatic instruments. These methodologies ensure both the secure deployment and operational excellence of HVs. The findings underscore that the root causes of HV failures encompass extreme environments material defects fuel cell damage delivery system impairment and storage system deterioration. Furthermore critical driving factors for effective safety intervention revolve around cultivating a safety culture robust education/training and sound maintenance scheduling. Addressing these factors is pivotal for creating an environment conducive to mitigating safety and risk concerns. Given the intricacies of conducting comprehensive hydrogen QRAs due to the absence of specific reliability data this study dedicates attention to rectifying this gap. A sensitivity analysis encompassing a range of values is meticulously conducted to affirm the strength and reliability of our approach. This robust analysis yields precise dependable outcomes. Consequently decision-makers are equipped to discern pivotal underlying factors precipitating potential HV failures. With this discernment they can tailor safety interventions that lay the groundwork for sustainable resilient and secure HV operations. Our study navigates the intersection of HVs safety and sustainability amplifying their importance within the CE paradigm. Using the careful amalgamation of QRA and DEMATEL methodologies we chart a course towards empowering decision-makers with the insights to steer the hydrogen vehicle domain to safer horizons while ushering in an era of transformative eco-conscious mobility.
Designing Off-grid Green Hydrogen Plants Using Dynamic Polymer Electrolyte Membrane Electrolyzers to Minimize the Hydrogen Production Cost
Oct 2023
Publication
Hydrogen produced from electrolysis is an attractive carbon-free fuel and feedstock but potential benefits depend on the carbon intensity of electricity production. This study uses technoeconomic modeling to analyze the benefits of producing zero-carbon hydrogen through dynamically operated polymer electrolyte membrane electrolyzers connected to photovoltaic and wind variable renewable energy (VRE) sources. Dynamic operation is considered for current densities between 0 and 6 A cm2 and compared to a constant current density of 2 A cm2 for different combinations of VRE to electrolysis (VRE:E) capacity ratios and compositions of photovoltaic and wind energy in four locations across the United States. For optimal VRE:E and wind:photovoltaic capacity ratios dynamic operation is found to reduce the levelized cost of hydrogen by 5%–9% while increasing hydrogen production by 134%–173% and decreasing excess electrical power by 82%–95%. The framework herein may be used to determine the optimal VRE:E capacity and VRE mix for dynamically operated green hydrogen systems.
H21 Phase 2 Technical Summary Report
Jul 2023
Publication
The H21 Phase 2 research will provide vital evidence both towards the hydrogen village trial and potential town scale pilots and to the Government which is aiming to make a decision about the use of hydrogen for home heating by 2026.
The key objectives of the H21 Phase 2 NIC project were to further develop the evidence base supporting conversion of the natural gas distribution network to 100% hydrogen. The key principles of H21 NIC Phase 2 were to:
→ Confirm how we can manage and operate the network safely through an appraisal of existing network equipment procedures and network modelling tools.
→ Validate network operations on a purpose-built below 7 barg network as well as an existing unoccupied buried network and provide a platform to publicise and demonstrate a hydrogen network in action.
→ Develop a combined distribution network and downstream Quantitative Risk Assessment (QRA) for 100% hydrogen by further developing the work undertaken on the H21 Phase 1 QRA and the Hy4Heat ‘downstream of ECV’ QRA.
→ Continue to understand how consumers could be engaged with ahead of a conversion. This programme was split into four phases detailed below:
→ Phase 2a – Appraisal of Network 0-7 bar Operations
→ Phase 2b – Unoccupied Network Trials
→ Phase 2c – Combined QRA
→ Phase 2d – Social Sciences
The project with the support of the HSE’s Science & Research Centre (HSE S&RC) and DNV successfully undertook a programme of work to review the NGN below 7 barg network operating procedures. The project implemented testing and demonstrations on the Phase 2a Microgrid at DNV Spadeadam and Phase 2b Unoccupied Trial site in South Bank on a repurposed NGN network to provide and demonstrate the supporting evidence for the required changes to procedures. Details of the outputs of the HSE S&RC procedure review and the evidence collected by DNV from the testing and demonstration projects is provided in detail in this technical summary report.
Due to the differences in gas characteristics between hydrogen and natural gas changes will be required to some of the operational and maintenance procedures the evidence of which is provided in this report. The Gas Distribution Networks (GDNs) will need to review the findings from this project when implementing the required changes to their operational and maintenance procedures.
The key objectives of the H21 Phase 2 NIC project were to further develop the evidence base supporting conversion of the natural gas distribution network to 100% hydrogen. The key principles of H21 NIC Phase 2 were to:
→ Confirm how we can manage and operate the network safely through an appraisal of existing network equipment procedures and network modelling tools.
→ Validate network operations on a purpose-built below 7 barg network as well as an existing unoccupied buried network and provide a platform to publicise and demonstrate a hydrogen network in action.
→ Develop a combined distribution network and downstream Quantitative Risk Assessment (QRA) for 100% hydrogen by further developing the work undertaken on the H21 Phase 1 QRA and the Hy4Heat ‘downstream of ECV’ QRA.
→ Continue to understand how consumers could be engaged with ahead of a conversion. This programme was split into four phases detailed below:
→ Phase 2a – Appraisal of Network 0-7 bar Operations
→ Phase 2b – Unoccupied Network Trials
→ Phase 2c – Combined QRA
→ Phase 2d – Social Sciences
The project with the support of the HSE’s Science & Research Centre (HSE S&RC) and DNV successfully undertook a programme of work to review the NGN below 7 barg network operating procedures. The project implemented testing and demonstrations on the Phase 2a Microgrid at DNV Spadeadam and Phase 2b Unoccupied Trial site in South Bank on a repurposed NGN network to provide and demonstrate the supporting evidence for the required changes to procedures. Details of the outputs of the HSE S&RC procedure review and the evidence collected by DNV from the testing and demonstration projects is provided in detail in this technical summary report.
Due to the differences in gas characteristics between hydrogen and natural gas changes will be required to some of the operational and maintenance procedures the evidence of which is provided in this report. The Gas Distribution Networks (GDNs) will need to review the findings from this project when implementing the required changes to their operational and maintenance procedures.
Assessment of Hydrogen Gas Turbine-fuel Cell Powerplant for Rotorcraft
Jul 2023
Publication
Conventional turboshaft engines are high power density movers suffering from low efficiency at part power operation and producing significant emissions. This paper presents a design exploration and feasibility assessment of a hybrid hydrogen-fueled powerplant for Urban Air Mobility (UAM) rotorcraft. A multi-disciplinary approach is devised comprising models for rotorcraft performance tank and subsystems sizing and engine performance. The respective trade-offs between payload-range and mission level performance are quantified for kerosene-fueled and hybrid hydrogen tilt-rotor variants. The effects of gas turbine scaling and fuel cell pressurization are evaluated for different hybridization degrees. Gas turbine scaling with hybridization (towards the fuel cell) results in up to 21% benefit in energy consumption relative to the non-scaled case with the benefits being more pronounced at high hybridization degrees. Pressurizing the fuel cell has shown significant potential as cell efficiency can increase up to 10% when pressurized to 6 bar which translates to a 6% increase in overall efficiency. The results indicate that current fuel cells (1 kW/kg) combined with current hydrogen tank technology severely limit the payload range capability of the tilt-rotor. However for advanced fuel cell technology (2.5 kW/kg) and low ranges hybrid powerplant show the potential to reduce energy consumption and reduce emissions footprint.
Research Progress on Gas Supply System of Proton Exchange Membrane Fuel Cells
Jun 2024
Publication
Proton exchange membrane fuel cells (PEMFCs) are attracting attention for their green energy-saving and high-efficiency advantages becoming one of the future development trends of renewable energy utilization. However there are still deficiencies in the gas supply system control strategy that plays a crucial role in PEMFCs which limits the rapid development and application of PEMFCs. This paper provides a comprehensive and in-depth review of the PEMFC air delivery system (ADS) and hydrogen delivery system (HDS) operations. For the ADS the advantages and disadvantages of the oxygen excess ratio (OER) oxygen pressure and their decoupling control strategies are systematically described by the following three aspects: single control hybrid control and intelligent algorithm control. Additionally the optimization strategies of the flow field or flow channel for oxygen supply speeds and distribution uniformity are compared and analyzed. For the HDS a systematic review of hydrogen recirculation control strategies purge strategies and hydrogen flow control strategies is conducted. These strategies contribute a lot to improving hydrogen utilization rates. Furthermore hydrogen supply pressure is summarized from the aspects of hybrid control and intelligent algorithm control. It is hoped to provide guidance or a reference for research on the HDS as well as the ADS control strategy and optimization strategy
Feasibility of Green Hydrogen-Based Synthetic Fuel as a Carbon Utilization Option: An Economic Analysis
Sep 2023
Publication
Singapore has committed to achieving net zero emissions by 2050 which requires the pursuit of multiple decarbonization pathways. CO2 utilization methods such as fuel production may provide a fast interim solution for carbon abatement. This paper evaluates the feasibility of green hydrogen-based synthetic fuel (synfuel) production as a method for utilizing captured CO2. We consider several scenarios: a baseline scenario with no changes local production of synfuel with hydrogen imports and overseas production of synfuel with CO2 exports. This paper aims to determine a CO2 price for synfuel production evaluate the economic viability of local versus overseas production and investigate the effect of different cost parameters on economic viability. Using the current literature we estimate the associated production and transport costs under each scenario. We introduce a CO2 utilization price (CUP) that estimates the price of utilizing captured CO2 to produce synfuel and an adjusted CO2 utilization price (CCUP) that takes into account the avoided emissions from crude oil-based fuel production. We find that overseas production is more economically viable compared to local production with the best case CCUP bounds giving a range of 142–148 $/tCO2 in 2050 if CO2 transport and fuel shipping costs are low. This is primarily due to the high cost of hydrogen feedstock especially the transport cost which can offset the combined costs of CO2 transport and fuel shipping. In general we find that any increase in the hydrogen feedstock cost can significantly affect the CCUP for local production. Sensitivity analysis reveals that hydrogen transport cost has a significant impact on the viability of local production and if this cost is reduced significantly local production can be cheaper than overseas production. The same is true if the economies of scale for local production is significantly better than overseas production. A significantly lower carbon capture cost can also the reduce the CCUP significantly.
The Market Introduction of Hydrogen Focussing on Bus Refueling
Dec 2023
Publication
Public transport plays a prominent role with respect to mitigating transport-related environmental effects by improving passenger transport efficiency and the quality of life in cities. Batteries and fuel cells are at the forefront of the technological shift to zero-emission powertrains. Within the scope of the German-funded project BIC H2 corresponding systems analysis research focuses on the market introduction of fuel cell–electric buses in the Rhine–Ruhr Metropolitan Region through 2035. This study presents the related methods and major outcomes of this techno-economic research which spans spatially-resolved hydrogen demand modeling of all relevant sectors to hydrogen refueling stations and upstream infrastructure modeling to scenario-based analyses. The latter builds upon an empirical study supporting the development of the Hydrogen Roadmap of the State of North Rhine–Westphalia (NRW). Our results show that the demand in NRW alone is expected to account for one third of total German hydrogen use. Hydrogen bus refueling could substantially support market introduction during its early phases. In the long term however hydrogen demand in industry is significantly higher compared to that in the transport sector. Furthermore spatial analysis identifies regions with pronounced hydrogen demands that could therefore be candidates for initial infrastructure investments. With the Cologne area showing the highest hydrogen demand levels such regions can offer particularly high infrastructure utilization e.g. for bus refueling. On the infrastructure side trailers for transporting gaseous hydrogen to refueling stations are the most favorable option through 2035. Pipelines would be the preferred solution soon after 2035 due to increased hydrogen demand. If effectively deployed converted natural gas pipelines would be the most cost-effective option even earlier.
Modelling Large-scale Hydrogen Uptake in the Mexican Refinery and Power Sectors
Sep 2023
Publication
Due to the emissions reduction commitments that Mexico compromised in the Paris Agreement several clean fuel and renewable energy technologies need to penetrate the market to accomplish the environmental goals. Therefore there is a need to develop achievable and realistic policies for such technologies to ease the decision-making on national energy strategies. Several countries are starting to develop large-scale green hydrogen production projects to reduce the carbon footprint of the multiple sectors within the country. The conversion sectors namely power and refinery are fundamental sectors to decarbonise due to their energy supply role. Nowadays the highest energy consumables of the country are hydrocarbons (more than 90%) causing a particular challenge for deep decarbonisation. The purpose of this study is to use a multi-regional energy system model of Mexico to analyse a decarbonisation scenario in line with the latest National Energy System Development Program. Results show that if the country wants to succeed in reducing 22% of its GHG emissions and 51% of its short-lived climate pollutants emissions green hydrogen could play a role in power generation in regions with higher energy demand growth rates. These results show regarding the power sector that H2 could represent 13.8 GW or 5.1% of the total installed capacity by 2050 while for the refinery sector H2 could reach a capacity of 157 PJ/y which is around 31.8% of the total share and it is mainly driven by the increasing demands of the transport industry and power sectors. Nevertheless as oil would still represent the largest energy commodity CCS technologies would have to be deployed for new and retrofitted refinery facilities.
Dispersion, Ignition and Combustion Characteristics of Low-pressure Hydrogen-Methane Blends
Sep 2023
Publication
In this paper we study the dispersion ignition and flame characteristics of blended jets of hydrogen and methane (as a proxy for natural gas) at near-atmospheric pressure for a fixed volumetric flow rate which mimics the scenario of a small-scale unintended leak. A reduction in flame height is observed with increasing hydrogen concentration. A laser is tightly focused to generate a spark with sufficient energy to ignite the fuel. The light-up boundary defined as the delineating location at which a spark ignites into a jet flame or extinguishes is determined as a contour. The light-up boundary increases in both width and length as the hydrogen content increases up to 75% hydrogen at which point the axial ignition boundary decreases slightly for pure hydrogen relative to 75% hydrogen. Ignition probability a key parameter regarding safety is computed at various axial locations and is also shown to be higher near the nozzle as well as non-zero at further downstream locations as the hydrogen content in the blend increases. Planar laser Raman scattering is used in separate experiments to determine the concentration of both fuel species. Mean fuel concentrations well below the lower flammability limit are both within the light-up boundary and have non-zero ignition probabilities.
Semi-Solid Forging Process of Aluminium Alloy Connecting Rods for the Hydrogen Internal Combustion Engine
Jun 2024
Publication
As an important piece of equipment for hydrogen energy application the hydrogen internal combustion engine is helpful for the realization of zero carbon emissions where the aluminum connecting rod is one of the key core components. A semi-solid forging forming process for the 7075 aluminum alloy connecting rod is proposed in this work. The influence of process parameters such as the forging ratio sustaining temperature and duration time on the microstructures of the semi-solid blank is experimentally investigated. The macroscopic morphology metallographic structure and physical properties of the connecting-rod parts are analyzed. Reasonable process parameters for preparing the semi-solid blank are obtained from the experimental results. Under the reasonable parameters the average grain size is 41.48~42.57 µm and the average shape factor is 0.80~0.81. The yield strength and tensile strength improvement ratio of the connecting rod produced by the proposed process are 47.07% and 20.89% respectively.
Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case
Oct 2023
Publication
For lignite intense regions such as the case of Western Macedonia (WM) the production and utilization of green hydrogen is one of the most viable ways to achieve near zero emissions in sectors like transport chemicals heat and energy production synthetic fuels etc. However the implementation of each technology that is available to a respective sector differs significantly in terms of readiness and the current installation scale of each technology. The goal of this study is the provision of a transition roadmap for a decarbonized future for the WM region through utilizing green hydrogen. The technologies which can take part in this transition are presented along with the implementation purpose of each technology and the reasonable extension that each technology could be adopted in the present context. The WM region’s limited capacity for green hydrogen production leads to certain integration scenarios with regards to the required hydrogen electrolyzer capacities and required power whereas an environmental assessment is also presented for each scenario.
Socio-technical Imaginaries of Climate-neutral Aviation
May 2024
Publication
Limiting global warming to 1.5 ◦C is crucial to prevent the worst effects of climate change. This entails also the decarbonization of the aviation sector which is considered to be a “hard-to-abate” sector and thus requires special attention regarding its sustainability transition. However transition pathways to a potentially climateneutral aviation sector are unclear with different stakeholders having diverse imaginations of the sector's future. This paper aims to analyze socio-technical imaginaries of climate-neutral aviation as different perceptions of various stakeholders on this issue have not been sufficiently explored so far. In that sense this work contributes to the current scientific debate on socio-technical imaginaries of energy transitions for the first time studying the case of the aviation sector. Drawing on six decarbonization reports composed by different interest groups (e.g. industry academia and environmental associations) three imaginaries were explored following the process of a thematic analysis: rethinking travel and behavioral change (travel innovation) radical modernization and technological progress (fleet innovation) and transition to alternative fuels and renewable energy sources (fuel innovation). The results reveal how different and partly conflicting socio-technical imaginaries are co-produced and how the emergence and enforceability of these imaginaries is influenced by the situatedness of their creators indicating that the sustainability transition of aviation also raises political issues. Essentially as socio-technical imaginaries act as a driver for change policymakers should acknowledge the existence of alternative and counter-hegemonic visions created by actors from civil society settings to take an inclusive and equitable approach to implementing pathways towards climate-neutral aviation.
Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia
Oct 2023
Publication
About 95% of current hydrogen production uses technologies involving primary fossil resources. A minor part is synthesized by low-carbon and close-to-zero-carbon-footprint methods using RESs. The significant expansion of low-carbon hydrogen energy is considered to be a part of the “green transition” policies taking over in technologically leading countries. Projects of hydrogen synthesis from natural gas with carbon capture for subsequent export to European and Asian regions poor in natural resources are considered promising by fossil-rich countries. Quality changes in natural resource use and gas grids will include (1) previously developed scientific groundwork and production facilities for hydrogen energy to stimulate the use of existing natural gas grids for hydrogen energy transport projects; (2) existing infrastructure for gas filling stations in China and Russia to allow the expansion of hydrogen-fuel-cell vehicles (HFCVs) using typical “mini-plant” projects of hydrogen synthesis using methane conversion technology; (3) feasibility testing for different hydrogen synthesis plants at medium and large scales using fossil resources (primarily natural gas) water and atomic energy. The results of this study will help focus on the primary tasks for quality changes in natural resource and gas grid use. Investments made and planned in hydrogen energy are assessed.
Topology and Control of Fuel Cell Generation Converters
Jun 2023
Publication
Fuel cell power generation is one of the important ways of utilizing hydrogen energy which has good prospects for development. However fuel cell volt-ampere characteristics are nonlinear the output voltage is low and the fluctuation range is large and a power electronic converter matching its characteristics is required to achieve efficient and stable work. Based on the analysis of the fuel cell’s characteristic mechanism maximum power point tracking algorithm fuel cell converter characteristics application and converter control strategy the paper summarizes the general principles of the topology of fuel cell converters. In addition based on the development status of new energy hydrogen energy is organically combined with other new energy sources and the concept of 100% absorption system of new energy with green hydrogen as the main body is proposed to provide a reference for the development of hydrogen energy.
Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology
Apr 2024
Publication
Solid-state hydrogen storage technology has emerged as a disruptive solution to the “last mile” challenge in large-scale hydrogen energy applications garnering significant global research attention. This paper systematically reviews the Chinese research progress in solid-state hydrogen storage material systems thermodynamic mechanisms and system integration. It also quantitatively assesses the market potential of solid-state hydrogen storage across four major application scenarios: on-board hydrogen storage hydrogen refueling stations backup power supplies and power grid peak shaving. Furthermore it analyzes the bottlenecks and challenges in industrialization related to key materials testing standards and innovation platforms. While acknowledging that the cost and performance of solid-state hydrogen storage are not yet fully competitive the paper highlights its unique advantages of high safety energy density and potentially lower costs showing promise in new energy vehicles and distributed energy fields. Breakthroughs in new hydrogen storage materials like magnesium-based and vanadium-based materials coupled with improved standards specifications and innovation mechanisms are expected to propel solid-state hydrogen storage into a mainstream technology within 10–15 years with a market scale exceeding USD 14.3 billion. To accelerate the leapfrog development of China’s solid-state hydrogen storage industry increased investment in basic research focused efforts on key core technologies and streamlining the industry chain from materials to systems are recommended. This includes addressing challenges in passenger vehicles commercial vehicles and hydrogen refueling stations and building a collaborative innovation ecosystem involving government industry academia research finance and intermediary entities to support the achievement of carbon peak and neutrality goals and foster a clean low-carbon safe and efficient modern energy system.
On the Design and Optimization of Distributed Energy Resources for Sustainable Grid-integrated Microgrid in Ethiopia
Apr 2023
Publication
This paper presents a study that focuses on alleviating the impacts of grid outages in Ethiopia. To deal with grid outages most industrial customers utilize backup diesel generators (DG) which are environmentally unfriendly and economically not viable. Grid integration of hybrid renewable energy systems (HRES) might be a possible solution to enhance grid reliability and reduce environmental and economic impacts of utilizing DG. In this study an optimization of grid integrated HRES is carried out for different dispatch and control strategies. The optimal power supply option is determined by performing comparative analysis of the different configurations of grid integrated HRES. The result of the study shows that grid integrated HRES consisting of photovoltaic and wind turbine as renewable energy sources and battery and hydrogen as hybrid energy storage systems is found to be the optimal system to supply the load demand. From the hydrogen produced on-site the FC generator and FCEVs consume 143 620 kg/yr of hydrogen which is equivalent to 394 955 kg/yr gasoline fuel consumption. This corresponds to saving 1 184 865 kg/yr of CO2 emissions and 605 703 $/yr revenue. Besides this system yields 547 035.4 $/yr revenue by injecting excess electricity to the grid. The study clearly shows the economic and environmental viability of this new technology for implementation.
Cushion Gas in Hydrogen Storage—A Costly CAPEX or a Valuable Resource for Energy Crises?
Dec 2022
Publication
The geological storage of hydrogen is a seasonal energy storage solution and the storage capacity of saline aquifers is most appropriately defined by quantifying the amount of hydrogen that can be injected and reproduced over a relevant time period. Cushion gas stored in the reservoir to support the production of the working gas is a CAPEX which should be reduced to decrease implementation cost for gas storage. The cushion gas to working gas ratio provides a sufficiently accurate reflection of the storage efficiency with higher ratios equating to larger initial investments. This paper investigates how technical measures such as well configurations and adjustments to the operational size and schedule can reduce this ratio and the outcomes can inform optimisation strategies for hydrogen storage operations. Using a simplified open saline aquifer reservoir model hydrogen storage is simulated with a single injection and production well. The results show that the injection process is more sensitive to technical measures than the production process; a shorter perforation and a smaller well diameter increases the required cushion gas for the injection process but has little impact on the production. If the storage operation capacity is expanded and the working gas volume increased the required cushion gas to working gas ratio increases for injection reducing the efficiency of the injection process. When the reservoir pressure has more time to equilibrate less cushion gas is required. It is shown that cushion gas plays an important role in storage operations and that the tested optimisation strategies impart only minor effects on the production process however there is significant need for careful optimisation of the injection process. It is suggested that the recoverable part of the cushion gas could be seen as a strategic gas reserve which can be produced during an energy crisis. In this scenario the recoverable cushion gas could be owned by the state and the upfront costs for gas storage to the operator would be reduced making the implementation of more gas storage and the onset of hydrogen storage more attractive to investors.
Green Steel: Synergies between the Australian Iron Ore Industry and the Production of Green Industry
May 2023
Publication
Green steel produced using renewable energy and hydrogen presents a promising avenue to decarbonize steel manufacturing and expand the hydrogen industry. Australia endowed with abundant renewable resources and iron ore deposits is ideally placed to support this global effort. This paper's two-step analytical approach offers the first comprehensive assessment of Australia's potential to develop green steel as a value-added export commodity. The Economic Fairways modelling reveals a strong alignment between prospective hydrogen hubs and current and future iron ore operations enabling shared infrastructure development and first-mover advantages. By employing a site-based system optimization that integrates both wind and solar power sources the cost of producing green steel could decrease significantly to around AU$900 per tonne by 2030 and AU$750 per tonne by 2050. Moreover replacing 1% of global steel production would require 35 GW of well-optimized wind and solar photovoltaics 11 GW of hydrogen electrolysers and 1000 square kilometres of land. Sensitivity analysis further indicates that iron ore prices would exert a long-term influence on green steel prices. Overall this study highlights the opportunities and challenges facing the Australian iron ore industry in contributing to the decarbonization of the global steel sector underscoring the crucial role of government support in driving the growth and development of the green steel industry.
Impacts of Green Energy Expansion and Gas Import Reduction on South Korea’s Economic Growth: A System Dynamics Approach
Jun 2023
Publication
South Korea ranking ninth among the largest energy consumers and seventh in carbon dioxide emissions from 2016 to 2021 faces challenges in energy security and climate change mitigation. The primary challenge lies in transitioning from fossil fuel dependency to a more sustainable and diversified energy portfolio while meeting the growing energy demand for continued economic growth. This necessitates fostering innovation and investment in the green energy sector. This study examines the potential impact of green energy expansion (through integrating renewable energy and hydrogen production) and gas import reduction on South Korea’s economic growth using a system dynamics approach. The findings indicate that increasing investment in green energy can result in significant growth rates ranging from 7% to 35% between 2025 and 2040. Under the expansion renewable energy scenario (A) suggests steady but sustainable economic growth in the long term while the gas import reduction scenario (B) displays a potential for rapid economic growth in the short term with possible instability in the long term. The total production in Scenario B is USD 2.7 trillion in 2025 and will increase to USD 4.8 trillion by 2040. Scenario C which combines the effects of both Scenarios A and B results in consistently high economic growth rates over time and a substantial increase in total production by 2035–2040 from 20% to 46%. These findings are critical for policymakers in South Korea as they strive for sustainable economic growth and transition to renewable energy.
Corrosion of Structural Components of Proton Exchange Membrane Water Electrolyzer Anodes: A Review
Dec 2022
Publication
Proton exchange membrane (PEM) water electrolysis is one of the low temperature processes for producing green hydrogen when coupled with renewable energy sources. Although this technology has already reached a certain level of maturity and is being implemented at industrial scale its high capital expenditures deriving from the utilization of expensive corrosion-resistant materials limit its economic competitiveness compared to the widespread fossil fuel-based hydrogen production such as steam reforming. In particular the structural elements like bipolar plates (BPP) and porous transports layers (PTL) are essentially made of titanium protected by precious metal layers in order to withstand the harsh oxidizing conditions in the anode compartment. This review provides an analysis of literature on structural element degradation on the oxygen side of PEM water electrolyzers from the early investigations to the recent developments involving novel anti-corrosion coatings that protect more cost-effective BPP and PTL materials like stainless steels.
Multi-port Coordination: Unlocking Flexibility and Hydrogen Opportunities in Green Energy Networks
Mar 2024
Publication
Seaports are responsible for consuming a large amount of energy and producing a sizeable amount of environmental emissions. However optimal coordination and cooperation present an opportunity to transform this challenge into an opportunity by enabling flexibility in their generation and load units. This paper introduces a coordination framework for exploiting flexibility across multiple ports. The proposed method fosters cooperation between ports in achieving lower environmental emissions while leveraging flexibility to increase their revenue. This platform allows ports to participate in providing flexibility for the energy grid through the introduction of a green port-to-grid concept while optimising their cooperation. Furthermore the proximity to offshore wind farms is considered an opportunity for the ports to investigate their role in harnessing green hydrogen. The proposed method explores the hydrogen storage capability of ports as an opportunity for increasing the techno-economic benefits particularly through coupling them with offshore wind farms. Compared to existing literature the proposed method enjoys a comprehensive logistics-electric model for the ports a novel coordination framework for multi-port flexibility and the potentials of hydrogen storage for the ports. These unique features position this paper a valuable reference for research and industry by demonstrating realistic cooperation among ports in the energy network. The simulation results confirm the effectiveness of the proposed port flexibility coordination from both environmental and economic perspectives.
Techno-economic Analysis of On-site Blue Hydrogen Production Based on Vacuum Pressure Adsorption: Practical Application to Real-world Hydrogen Refueling Stations
Feb 2023
Publication
Although climate change can be efficiently curbed by shifting to low-carbon (blue) hydrogen as an energy carrier to achieve carbon neutrality current hydrogen production mainly proceeds via the gray pathway i.e. generates large amounts of CO2 as a byproduct. To address the need for cleaner hydrogen production we herein propose novel CO2 capture processes based on the integration of vacuum pressure swing adsorption into a gray hydrogen production process and perform retrofitting to a blue hydrogen production process for on-site hydrogen refueling stations. Techno-economic analysis reveals that the implementation of the proposed capture processes allows one to significantly reduce CO2 emission while preserving thermal efficiency and the economic feasibility of this implementation in different scenarios is determined by computing the levelized cost of hydrogen. As a result blue hydrogen is shown to hold great promise for the realization of sustainable energy usage and the net-zero transition.
Evaluating Hydrogen Gas Transport in Pipelines: Current State of Numerical and Experimental Methodologies
Apr 2024
Publication
This review article provides a comprehensive overview of the fundamentals modelling approaches experimental studies and challenges associated with hydrogen gas flow in pipelines. It elucidates key aspects of hydrogen gas flow including density compressibility factor and other relevant properties crucial for understanding its behavior in pipelines. Equations of state are discussed in detail highlighting their importance in accurately modeling hydrogen gas flow. In the subsequent sections one-dimensional and three-dimensional modelling techniques for gas distribution networks and localized flow involving critical components are explored. Emphasis is placed on transient flow friction losses and leakage characteristics shedding light on the complexities of hydrogen pipeline transportation. Experimental studies investigating hydrogen pipeline transportation dynamics are outlined focusing on the impact of leakage on surrounding environments and safety parameters. The challenges and solutions associated with repurposing natural gas pipelines for hydrogen transport are discussed along with the influence of pipeline material on hydrogen transportation. Identified research gaps underscore the need for further investigation into areas such as transient flow behavior leakage mitigation strategies and the development of advanced modelling techniques. Future perspectives address the growing demand for hydrogen as a clean energy carrier and the evolving landscape of hydrogen-based energy systems.
Novel Carbon-neutral Hydrogen Production Process of Steam Methane Reforming Integrated with Desalination Wastewater-based CO2 Utilization
Nov 2022
Publication
Steam methane reforming (SMR) process is facing serious greenhouse effect problems because of the significant CO2 emissions. To reduce pollution caused by gaseous emissions desalination wastewater can be used because it contains highly concentrated useful mineral ions such as Ca2+ Mg2+ and Na+ which react with carbonate ions. This study proposes a novel SMR process for carbon-neutral hydrogen production integrated with desalination wastewater-based CO2 utilization. A process model for the design of a novel SMR process is proposed; it comprises the following steps: (1) SMR process for hydrogen production; and (2) desalination wastewater recovery for CO2 utilization. In the process model the CO2 from the SMR process was captured using the Na+ ion and the captured ionic CO2 was carbonated using the Ca2+ and Mg2+ ions in desalination wastewater. The levelized cost of hydrogen (LCOH) was assessed to demonstrate the economic feasibility of the proposed process. Therefore 94.5 % of the CO2 from the SMR process was captured and the conversion of MgCO3 and CaCO3 was determined to be 60 % and 99 % respectively. In addition the CO2 emission via the proposed process was determined to be 0.016 kgCO2/kgH2 and the LCOH was calculated to be 2.6 USD/kgH2.
A Review of Alternative Processes for Green Hydrogen Production Focused on Generating Hydrogen from Biomass
Apr 2024
Publication
Hydrogen plays a leading role in achieving a future with net zero greenhouse gas emissions. The present challenge is producing green hydrogen to cover the fuel demands of transportation and industry to gain independence from fossil fuels. This review’s goal is to critically demonstrate the existing methods of biomass treatment and assess their ability to scale up. Biomass is an excellent hydrogen carrier and biomass-derived processes are the main target for hydrogen production as they provide an innovative pathway to green hydrogen production. Comparing the existing processes thermochemical treatment is found to be far more evolved than biological or electrochemical treatment especially with regard to scaling prospects.
Low-carbon Economic Dispatch of Hydrogen-containing Integrated Energy System Considering Stepped Demand Response
Apr 2024
Publication
Vigorously developing an integrated energy system (IES) centered on the utilization of hydrogen energy is a crucial strategy to achieve the goal of carbon peaking and carbon neutrality. During the energy conversion process a hydrogen storage system releases a large amount of heat. By integrating a heat recovery mechanism we have developed a sophisticated hydrogen energy utilization model that accommodates multiple operational conditions and maximizes heat recovery thereby enhancing the efficiency of energy use on the supply side. To harness the potential of load-side response an integrated demand response (IDR) model accounting for price and incentives is established and a ladder-type subsidy incentive mechanism is proposed to deeply unlock load-side response capacity. Considering system economics and low carbon an IES source-load coordinated optimal scheduling model is proposed optimizing source-load coordinated operation for optimally integrated economy factoring in reward and punishment ladder-type carbon trading. Demonstrations reveal that the proposed methodology not only improves the efficiency of energy utilization but also minimizes wind energy wastage activates consumer engagement and reduces both system costs and carbon emissions thus proving the effectiveness of our optimization approach.
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
U.S. National Clean Hydrogen Strategy and Roadmap
Jun 2023
Publication
The U.S. National Clean Hydrogen Strategy and Roadmap explores opportunities for clean hydrogen to contribute to national decarbonization goals across multiple sectors of the economy. It provides a snapshot of hydrogen production transport storage and use in the United States today and presents a strategic framework for achieving large-scale production and use of clean hydrogen examining scenarios for 2030 2040 and 2050.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
Ammonia, Methane and Hydrogen for Gas Turbines
Aug 2015
Publication
Ammonia has been identified as a sustainable fuel for transport and power applications. Similar to hydrogen ammonia is a synthetic product that can be obtained either from fossil fuels biomass or other renewable sources. Since the 1960’s considerable research has taken place to develop systems capable of burning the material in gas turbines. However it is not until recently that interest in ammonia has regained some momentum in the energy agenda as it is a carbon free carrier and offers an energy density higher than compressed hydrogen. . Therefore this work examines combustion stability and emissions from gaseous ammonia blended with methane or hydrogen in gas turbines. Experiments were carried out in a High Pressure Combustion Rig under atmospheric conditions employing a bespoke generic swirl burner. OH* Chemiluminescense was used for all trials to determine reactivity of the radical. Emissions were measured and correlated to equilibrium calculations using GASEQ. Results show that efficient combustion can be achieved with high power but at very narrow equivalence ratios using both hydrogen and methane blends. Moreover low concentrations of OH radicals are observed at high hydrogen content probably as a consequence of the high NH2 production.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Report on the Usable Technologies for Calibrating Gas Meters with Renewable Gases and Currently Available Flow Standards Suitable for Use with Methane, Crude Biogas, Hydrogen and Mixtures of these gases
Mar 2021
Publication
The main goal stated at the Paris agreement is to limit the global temperature rise well below 2 °C above pre-industrial levels. Limiting the increase of global average temperature to 1.5 °C is striven since risks and impacts of the climate change would be reduced drastically. To face these challenges the European Green Deal was invented by the European Commission. The “Green Deal” is a growth strategy which aims to transform the economy of the EU into a resource-efficient modern and competitive one [1-1 1-2]. Figure 1: The key elements of the European Green Deal [1-2] In this context the European Commission proposed that the amount of renewable energy within the EU’s overall energy mix should reach 20 % by 2020 and therefore producing energy by solar and wind plants become even more important. For example the cumulative installed wind farm capacity increased from 117.3 GW in 2013 to a total capacity of 182.163 GW in 2018 within the EU [1-4-1-6]. Due to the fluctuations in energy produced by wind farms storage of electricity is crucial. One possibility for storage is the production of hydrogen via electrolysis using renewable energy sources like wind farms. The hydrogen is then either directly added to the gas distribution grid or is converted to methane with external CO or CO2 which is then added to the gas distribution grid as a substitute [1-4]. Increasing the knowledge about the impact of renewable gases on available gas meters in terms of accuracy and durability is the main object of the EMPIR NEWGASMET project. Therefore in activity A3.1.1 a literature study was performed to provide information on which technologies can be used to calibrate gas meters when using renewable gases.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the open-source software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030–2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250–265 e/tCO2 will be necessary for renewable fuels to become competitive.
The ATHENA Framework: Analysis and Design of a Strategic Hydrogen Refuelling Infrastructure
Apr 2023
Publication
With the pressured timescale in determining effective and viable net zero solutions within the transport sector it is important to understand the extent of implementing a new refuelling infrastructure for alternative fuel such as hydrogen. The proposed ATHENA framework entails three components which encapsulates the demand data analysis an optimisation model in determining the minimal cost hydrogen refuelling infrastructure design and an agent-based model simulating the operational system. As a case study the ATHENA framework is applied to Northern England focusing on the design of a hydrogen refuelling infrastructure for heavy goods vehicles. Analysis is performed in calibrating parameters and investigating different scenarios within the optimisation and agent-based simulation models. For this case study the system optimality is limited by the feasible number of tube trailer deliveries per day which suggests an opportunity for alternative delivery methods.
Green Hydrogen-Based Direct Reduction for Low-Carbon Steelmaking
May 2020
Publication
The European steel industry aims at a CO2 reduction of 80–95% by 2050 ensuring that Europe will meet the requirements of the Paris Agreement. As the reduction potentials of the current steelmaking routes are low the transfer toward breakthrough-technologies is essential to reach these goals. Hydrogen-based steelmaking is one approach to realize CO2-lean steelmaking. Therefore the natural gas (NG)-based direct reduction (DR) acts as a basis for the first step of this transition. The high flexibility of this route allows the gradual addition of hydrogen and in a long-term view runs the process with pure hydrogen. Model-based calculations are performed to assess the possibilities for injecting hydrogen. Therefore NG- and hydrogen-based DR models are developed to create new process know-how and enable an evaluation of these processes in terms of energy demand CO2-reduction potentials and so on. The examinations show that the hydrogen-based route offers a huge potential for green steelmaking which is strongly depending on the carbon footprint of the electricity used for the production of hydrogen. Only if the carbon intensity is less than about 120 g CO2 kWh1 the hydrogen-based process emits less CO2 than the NG-based DR process.
Insights into Decision-making for Offshore Green Hydrogen Infrastructure Developments
Apr 2023
Publication
Green hydrogen is a key element that has the potential to play a critical role in the global pursuit of a resilient and sustainable future. However like other energy production methods hydrogen comes with challenges including high costs and safety concerns across its entire value chain. To overcome these low-cost productions are required along with a promised market. Offshore renewables have an enormous potential to facilitate green hydrogen production on a large scale. Their plummeting cost technological advances and rising cost of carbon pave a pathway where green hydrogen can be cost-competitive against fossil-fuel-based hydrogen. Offshore industries including oil and gas aquaculture and shipping are looking for cleaner energy solutions to decarbonize their systems/operations and can serve as a substantial market. Offshore industrial nexus moreover can assist the production storage and transmission of green hydrogen through infrastructure sharing and logistical support. The development of offshore green hydrogen production facilities is in its infancy and requires a deeper insight into the key elements that govern decision-making during their life-cycle. This includes the parameters that reflect the performance of hydrogen technology with technical socio-political financial and environmental considerations. Therefore this study provides critical insight into the influential factors discovered through a comprehensive analysis that governs the development of an offshore green hydrogen system. Insights are also fed into the requirements for modelling and analysis of these factors considering the synergy of hydrogen production with the offshore industries coastal hydrogen hub and onshore energy demand. The results of this critical review will assist the researchers and developers in establishing and executing an effective framework for offshore site selection in largely uncertain and hazardous ocean environments. Overall the study will facilitate the stakeholders and researchers in developing decision-making tools to ensure sustainable and safe offshore green hydrogen facilities.
Leakage and Diffusion Characteristics of Underground Hydrogen Pipeline
Jun 2023
Publication
Soil corrosion and hydrogen embrittlement are the main factors of hydrogen pipeline failure. The gas escapes diffuses and accumulating in the soil and entering the atmosphere when leak occurs. The mechanism of gas diffusion in buried pipelines is very complicated. Mastering the evolution law of hydrogen leakage diffusion is conducive to quickly locating the leakage point and reducing the loss. The leakage model of the underground hydrogen pipeline is established in this paper. Effect of leakage hole soil type pipeline pressure pipeline diameter on hydrogen leakage diffusion were investigated. The results show that when the hydrogen pipeline leaks the hydrogen concentration increases with the increase of leakage time showing a symmetrical distribution trend. With the pipeline pressure increase hydrogen leakage speed is accelerated and longitudinal diffusion gradually becomes the dominant direction. With the leakage diameter increases hydrogen leakage per unit of time increases sharply. Hydrogen diffuses more easily in sandy soil and diffusion speed concentration and range are higher than that in clay soil. The research content provides a reference and basis for the detection and evaluation of buried hydrogen pipeline leakage.
Hydrogen Energy Planning with Water Considerations: A SWITCH Model Enhancement for Sustainable Deployment
Apr 2024
Publication
This study presents an enhancement to the Switch optimization model for hydrogen energy planning by integrating the capability to consider the construction and operation of hydrogen electrolysis plants and the operation of water distribution systems. This integration was achieved through the addition of two new modules and their effectiveness is demonstrated through their application in a case study for Durham region. The study highlights the significance of incorporating water distribution systems into energy planning demonstrating how optimal locations for hydrogen plants can significantly influence water and power demand as well as alter the total operating costs. The enhanced Switch model showcases its improved capability to assist policymakers and stakeholders in transitioning towards a sustainable energy future.
Laboratory Determination of Hydrogen/methane Dispersion in Rock Cores for Underground Hydrogen Storage
Apr 2024
Publication
Underground hydrogen storage in saline aquifers is a promising way to store large amounts of energy. Utilization of gas cushion enhances the deliverability of the storage and increases the volume of recovery gas. The key factor for the cushion characterization is cushion gas and storage gas mixing which can be used for simulation of mixing zone evolution. In this work coreflooding setup utilizing Raman spectroscopy is built and used for dispersion coefficient determination. Berea sandstone rock core is used as a test sample for setup validation and core entry/exit effects estimation. Dispersion for hydrogen and methane as displacing fluids is determined for 4 locations perspective for hydrogen storage in Poland is found. Reservoir structures most suitable for pure hydrogen or hydrogen/methane blend storage are selected.
The Roles of Nuclear Energy in Hydrogen Production
Dec 2021
Publication
Fossil resources are unevenly distributed on the earth and are finite primary energy which is widely used in the fields of industry transportation and power generation etc.<br/>Primary energies that can replace fossil resources include renewable energy and nuclear energy. Hydrogen has the potential to be secondary energy that can be widely used in industry for various purposes. Nuclear energy can be used for producing hydrogen; it is becoming more important to convert this primary energies into hydrogen. This paper describes the roles of nuclear energy as a primary energy in hydrogen production from the viewpoint of the basics of energy form conversion.
No more items...