Laboratory Determination of Hydrogen/methane Dispersion in Rock Cores for Underground Hydrogen Storage
Abstract
Underground hydrogen storage in saline aquifers is a promising way to store large amounts of energy. Utilization of gas cushion enhances the deliverability of the storage and increases the volume of recovery gas. The key factor for the cushion characterization is cushion gas and storage gas mixing which can be used for simulation of mixing zone evolution. In this work coreflooding setup utilizing Raman spectroscopy is built and used for dispersion coefficient determination. Berea sandstone rock core is used as a test sample for setup validation and core entry/exit effects estimation. Dispersion for hydrogen and methane as displacing fluids is determined for 4 locations perspective for hydrogen storage in Poland is found. Reservoir structures most suitable for pure hydrogen or hydrogen/methane blend storage are selected.