- Home
- A-Z Publications
- Publications
Publications
Initial Assessment of the Impact of Jet Flame Hazard from Hydrogen Cars in Road Tunnels and the Implication on Hydrogen Car Design
Sep 2007
Publication
Underground or partial underground tunnels form a very important part of modern road transportation systems. As the development of hydrogen cars advancing into the markets it is unavoidable in the near future that hydrogen cars would become the users of ordinary road tunnels. This paper discusses potential fire scenarios and fire hazards of hydrogen cars in road tunnels and implications on the fire safety measures and ventilation systems in existing tunnels. The information needed for carry out risk assessment of hydrogen cars in road tunnels are discussed. hydrogen has a low ignition energy and wide flammable range suggesting that leaks have a high probability of ignition and result hydrogen flame. CFD simulations of hydrogen fires in a full scale 5m by 5m square cross-section tunnel were carried out. The effect of the ventilation on controlling the back-layering and the downstream flame are discussed.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Ignition Limits For Combustion of Unintended Hydrogen Releases- Experimental and Theoretical Results
Sep 2009
Publication
The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead integration of probability density functions (PDFs) of local fuel concentration within the quiescent flammability limits termed the flammability factor (FF) was shown to provide a better representation of ignition probability (PI). Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration) did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the FF approach to the prediction of ignition in hydrogen leak scenarios. The PI within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The FF is obtained through direct integration of local PDFs. A model was developed to predict the FF using a presumed PDF with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite PDF. By comparing the computed FF with the measured PI we have validated the flammability factor approach for application to ignition of hydrogen jets.
A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies
Aug 2016
Publication
This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar) that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California) and high penetration rates of residential solar photovoltaics (PV) (Germany). Therefore Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.
Experimental Characterization and Modelling of Helium Dispersion in a ¼ - Scale Two-Car Residential Garage
Sep 2009
Publication
A series of experiments are described in which helium was released at a constant rate into a 1.5 m × 1.5 m × 0.75 m enclosure designed as a ¼-scale model of a two car garage. The purpose was to provide reference data sets for testing and validating computational fluid dynamics (CFD) models and to experimentally characterize the effects of a number of variables on the mixing behaviour within an enclosure and the exchange of helium with the surroundings. Helium was used as a surrogate for hydrogen and the total volume released was scaled as the amount that would be released by a typical hydrogen fuelled automobile with a full tank. Temporal profiles of helium were measured at seven vertical locations within the enclosure during and following one hour and four hour releases. Idealized vents in one wall sized to provide air exchange rates typical of actual garages were used. The effects of vent size number and location were investigated using three different vent combinations. The dependence on leak location was considered by releasing helium from three different points within the enclosure. It is shown that the National Institute of Standards and Technology (NIST) CFD code Fire Dynamics Simulator (FDS) provides time resolved predictions for helium concentrations that agree well with the experimental measurements.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
The Interaction of Hydrogen Jet Releases With Walls and Barriers
Sep 2009
Publication
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes (1) suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones.<br/>This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at protecting from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak. The work was primarily focused on compressed H2 storage for stationary fuel cell systems which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks and all releases were made were from storage at 200 bar.<br/>Overall conclusions on barrier performance were made based on the recorded measurements.
Experimental Study on a Hydrogen Stratification Induced by PARs Installed in a Containment
Oct 2020
Publication
Hydrogen can be produced in undesired ways such as a high temperature metal oxidation during an accident. In this case the hydrogen must be carefully managed. A hydrogen mitigation system (HMS) should be installed to protect a containment of a nuclear power plant (NPP) from hazards of hydrogen produced by an oxidation of the fuel cladding during a severe accident in an NPP. Among hydrogen removal devices passive auto-catalytic recombiners (PARs) are currently applied to many NPPs because of passive characteristics such as not requiring a power supply nor an operators’ manipulations. However they offer several disadvantages resulting in issues related to hydrogen control by PARs. One of the issues is a hydrogen stratification in which hydrogen is not well-mixed in a compartment due to the high temperature exhaust gas of PARs and accumulation in the lower part. Therefore experimental simulation on hydrogen stratification phenomenon by PARs is required. When the hydrogen stratification by PARs is observed in the experiment the verification and improvement of a PAR analysis model using the experimental results can be performed and the hydrogen removal characteristics by PARs installed in an NPP can be evaluated using the improved PAR model. View Full-Text
Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO2 Emissions Analysis
Apr 2022
Publication
A techno-economic analysis has been used to evaluate three processes for hydrogen production from advanced steam reforming (SR) of bio-oil as an alternative route to hydrogen with BECCS: conventional steam reforming (C-SR) C-SR with CO2 capture (C-SR-CCS) and sorption-enhanced chemical looping (SE-CLSR). The impacts of feed molar steam to carbon ratio (S/C) temperature pressure the use of hydrodesulphurisation pretreatment and plant production capacity were examined in an economic evaluation and direct CO2 emissions analysis. Bio-oil C-SR-CC or SE-CLSR may be feasible routes to hydrogen production with potential to provide negative emissions. SE-CLSR can improve process thermal efficiency compared to C-SR-CCS. At the feed molar steam to carbon ratio (S/C) of 2 the levelised cost of hydrogen (USD 3.8 to 4.6 per kg) and cost of carbon avoided are less than those of a C-SR process with amine-based CCS. However at higher S/C ratios SE-CLSR does not have a strong economic advantage and there is a need to better understand the viability of operating SE-CLSR of bio-oil at high temperatures (>850 ◦C) with a low S/C ratio (e.g. 2) and whether the SE-CLSR cycle can sustain low carbon deposition levels over a long operating period.
Vented Confined Explosions Involving Methane/Hydrogen Mixtures
Sep 2009
Publication
The EC funded Naturalhy project is assessing the potential for using the existing gas infrastructure for conveying hydrogen as a mixture with natural gas (methane). The hydrogen could then be removed at a point of use or the natural gas/hydrogen mixture could be burned in gas-fired appliances thereby providing reduced carbon emissions compared to natural gas. As part of the project the impact on the safety of the gas system resulting from the addition of hydrogen is being assessed. A release of a natural gas/hydrogen mixture within a vented enclosure (such as an industrial housing of plant and equipment) could result in a flammable mixture being formed and ignited. Due to the different properties of hydrogen the resulting explosion may be more severe for natural gas/hydrogen mixtures compared to natural gas. Therefore a series of large scale explosion experiments involving methane/hydrogen mixtures has been conducted in a 69.3 m3 enclosure in order to assess the effect of different hydrogen concentrations on the resulting explosion overpressures. The results showed that adding up to 20% by volume of hydrogen to the methane resulted in a small increase in explosion flame speeds and overpressures. However a significant increase was observed when 50% hydrogen was added. For the vented confined explosions studied it was also observed that the addition of obstacles within the enclosure representing congestion caused by equipment and pipework etc. increased flame speeds and overpressures above the levels measured in an empty enclosure. Predictions of the explosion overpressure and flame speed were also made using a modified version of the Shell Global Solutions model SCOPE. The modifications included changes to the burning velocity and other physical properties of methane/hydrogen mixtures. Comparisons with the experimental data showed generally good agreement.
Hydrogen Release and Atmospheric Dispersion- Experimental Studies and Comparison With Parametric Simulations
Sep 2009
Publication
In our society the use of hydrogen is continually growing and there will be a widespread installation of plants with high capacity storages in our towns as automotive refuelling stations. For this reason it is necessary to make accurate studies on the safety of these kinds of plants to protect our town inhabitants Moreover hydrogen is a highly flammable chemical that can be particularly dangerous in case of release since its mixing with air in the presence of an ignition source could lead to fires or explosions. Generally most simulation models whether or not concerned with fluid dynamics used in safety and risk studies are not validated for hydrogen use. This aspect may imply that the results of studies on safety cannot be too accurate and realistic. This paper introduces an experimental activity which was performed by the Department of Energetics of Politecnico of Torino with the collaboration of the University of Pisa. Accidental hydrogen release and dispersion were studied in order to acquire a set of experimental data to validate simulation models for such studies. At the laboratories of the Department of Mechanical Nuclear and Production Engineering of the University of Pisa a pilot plant called Hydrogen Pipe Break Test was built. The apparatus consisted of a 12 m3 tank which was fed by high pressure cylinders. A 50 m long pipe moved from the tank to an open space and at the far end of the pipe there was an automatic release system that could be operated by remote control. During the experimental activity data was acquired regarding hydrogen concentration as a function of distance from the release hole also lengthwise and vertically. In this paper some of the experimental data acquired during the activity have been compared with the integral models Effects and Phast. In the future experimental results will be used to calibrate a more sophisticated model to atmospheric dispersion studies.
The Effect of Electrolytic Hydrogenation on Mechanical Properties of T92 Steel Weldments under Different PWHT Conditions
Aug 2020
Publication
In the present work the effects of electrolytic hydrogen charging of T92 steel weldments on their room-temperature tensile properties were investigated. Two circumferential weldments between the T92 grade tubes were produced by gas tungsten arc welding using the matching Thermanit MTS 616 filler material. The produced weldments were individually subjected to considerably differing post-welding heat treatment (PWHT) procedures. The first-produced weldment was conventionally tempered (i.e. short-term annealed below the Ac1 critical transformation temperature of the T92 steel) whereas the second one was subjected to its full renormalization (i.e. appropriate reaustenitization well above the T92 steel Ac3 critical transformation temperature and subsequent air cooling) followed by its conventional subcritical tempering. From both weldments cylindrical tensile specimens of cross-weld configuration were machined. The room-temperature tensile tests were performed for the individual welds’ PWHT states in both hydrogen-free and electrolytically hydrogen-charged conditions. The results indicated higher hydrogen embrittlement susceptibility for the renormalized-and-tempered weldments compared to the conventionally tempered ones. The obtained findings were correlated with performed microstructural and fractographic observations.
Synthesis and Performance of Photocatalysts for Photocatalytic Hydrogen Production: Future Perspectives
Dec 2021
Publication
Photocatalysis for “green” hydrogen production is a technology of increasing importance that has been studied using both TiO2–based and heterojunction composite-based semiconductors. Different irradiation sources and reactor units can be considered for the enhancement of photocatalysis. Current approaches also consider the use of electron/hole scavengers organic species such as ethanol that are “available” in agricultural waste in communities around the world. Alternatively organic pollutants present in wastewaters can be used as organic scavengers reducing health and environmental concerns for plants animals and humans. Thus photocatalysis may help reduce the carbon footprint of energy production by generating H2 a friendly energy carrier and by minimizing water contamination. This review discusses the most up-to-date and important information on photocatalysis for hydrogen production providing a critical evaluation of: (1) The synthesis and characterization of semiconductor materials; (2) The design of photocatalytic reactors; (3) The reaction engineering of photocatalysis; (4) Photocatalysis energy efficiencies; and (5) The future opportunities for photocatalysis using artificial intelligence. Overall this review describes the state-of-the-art of TiO2–based and heterojunction composite-based semiconductors that produce H2 from aqueous systems demonstrating the viability of photocatalysis for “green” hydrogen production.
Effects of Surface on the Flammable Extent of Hydrogen Jets
Sep 2009
Publication
The effect of surfaces on the extent of high pressure horizontal unignited jets of hydrogen and methane is studied using CFD numerical simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm PRD from 100 barg and 700 barg storage units are presented for horizontal hydrogen and methane jets. To quantify the effect of a horizontal surface on the jet the jet exit is positioned at various heights above the ground ranging from 0.1 m to 10 m. Free jet simulations are performed for comparison purposes.
Health & Safety Laboratory - Gas Detection for Hydrogen Enriched Gas Distribution Networks
Jul 2019
Publication
The UK has committed to significantly reduce greenhouse gas emissions by 2050 to help address climate change. Decarbonising heating is a key part of this and using hydrogen (H2) as a replacement to natural gas (NG) can help in achieving this. The objective of current research including HyDeploy is to demonstrate that NG containing levels of H2 beyond those currently allowed of 0.1 vol% (1000 ppm) [1] can be distributed and utilised safely and efficiently. Initial projects such as HyDeploy are studying the effects of introducing up to 20 vol% H2 in NG but later projects are considering using up to 100 vol% H2.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Medium-Energy Synthesis Gases from Waste as an Energy Source for an Internal Combustion Engine
Dec 2021
Publication
The aim of the presented article is to analyse the influence of synthesis gas composition on the power economic and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3 ) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane hydrogen and carbon monoxide) as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically for the operating speed of the micro-cogeneration unit (1500 L/min) the decrease in power parameters was in the range of 7.1–23.5%; however the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6% which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.
A Review on Advanced Manufacturing for Hydrogen Storage Applications
Dec 2021
Publication
Hydrogen is a notoriously difficult substance to store yet has endless energy applications. Thus the study of long-term hydrogen storage and high-pressure bulk hydrogen storage have been the subject of much research in the last several years. To create a research path forward it is important to know what research has already been done and what is already known about hydrogen storage. In this review several approaches to hydrogen storage are addressed including high-pressure storage cryogenic liquid hydrogen storage and metal hydride absorption. Challenges and advantages are offered based on reported research findings. Since the project looks closely at advanced manufacturing techniques for the same are outlined as well. There are seven main categories into which most rapid prototyping styles fall. Each is briefly explained and illustrated as well as some generally accepted advantages and drawbacks to each style. An overview of hydrogen adsorption on metal hydrides carbon fibers and carbon nanotubes are presented. The hydrogen storage capacities of these materials are discussed as well as the differing conditions in which the adsorption was performed under. Concepts regarding storage shape and materials accompanied by smaller-scale advanced manufacturing options for hydrogen storage are also presented.
Analysis of Composite Hydrogen Storage Cylinders under Transient Thermal Loads
Sep 2007
Publication
In order to ensure safe operation of hydrogen storage cylinders under adverse conditions one should be able to predict the extremities under which these cylinders are capable of operating without failing catastrophically. It is therefore necessary to develop a comprehensive model which can predict the behavior and failure of composite storage cylinders when subjected to various types of loading conditions and operating environments. In the present work a finite element model has been developed to analyze composite hydrogen storage cylinders subjected to transient localized thermal loads and internal pressure. The composite cylinder consists of an aluminium liner that serves as a hydrogen gas permeation barrier. A filament-wound carbon/epoxy composite laminate placed over the liner provides the desired load bearing capacity. A glass/epoxy layer or other material is placed over the carbon/epoxy laminate to provide damage resistance for the carbon/epoxy laminates. A doubly curved composite shell element accounting for transverse shear deformation and geometric nonlinearity is used. A temperature dependent material model has been developed and implemented in ABAQUS using user subroutine. A failure model based on Hashin's failure theory is used to predict the various types of failure in the cylinder. A progressive damage model has also been implemented to account for reduction in modulus due to failure. A sublaminate model has been developed to save computational time and reduce the complications in the analysis. A numerical study is conducted to analyze a typical hydrogen storage cylinder and possible failure trends due to localized thermal loading and internal pressure is presented.
Risk Modelling of a Hydrogen Refuelling Station Using a Bayesian Network
Sep 2009
Publication
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling. Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.
A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost
Dec 2021
Publication
Decarbonization of the shipping sector is inevitable and can be made by transitioning into low‐ or zero‐carbon marine fuels. This paper reviews 22 potential pathways including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case “blue” alternative fuel produced from natural gas and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass (ii) fuel volume (iii) life cycle (Well‐To‐ Wake—WTW) energy intensity (iv) WTW cost (v) WTW greenhouse gas (GHG) emission and (vi) non‐GHG emissions estimated from the literature and ASPEN HYSYS modelling. From an energy perspective renewable electricity with battery technology is the most efficient route albeit still impractical for long‐distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency) which also happens to be the lowest cost solution although the long‐term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost availability and technology readiness level (TRL); however the non‐GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean‐up measures. Methanol from LNG needs CCS for decarbonization while methanol from biomass does not and also seems to be a good candidate in terms of energy financial cost and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.
Risk Quantification of Hydride Based Hydrogen Storage Systems for Automotive Applications
Sep 2009
Publication
For hydrogen fuelled vehicles to attain significant market penetration it is essential that any potential risks be controlled within acceptable levels. To achieve this goal on-board vehicle hydrogen storage systems should undergo risk analyses during early concept development and design phases. By so doing the process of eliminating safety-critical failure modes will help guide storage system development and be more efficient to implement than if undertaken after the design-freeze stage. The focus of this paper is the development of quantitative risk analyses of storage systems which use onboard reversible materials such as conventional AB5 metal hydrides the complex hydride NaAlH4 or other material candidates currently being researched. Collision of a vehicle having such a hydrogen storage system was selected as a dominant accident initiator and a probabilistic event tree model has been developed for this initiator. The event tree model contains a set of comprehensive mutually exclusive accident sequences. The event tree represents chronological ordering of key events that are postulated to occur sequentially in time during the accident progression. Each event may represent occurrence of a phenomenon (e.g. hydride chemical reaction and dust cloud explosion) or a hardware failure (e.g. hydride storage vessel rupture). Event tree branch probabilities can be quantified using fault tree models or basic events with probability distributions. A fault tree model for hydride dust cloud explosion is provided as an example. Failure probabilities assigned to the basic events in the fault tree can be estimated from test results published data or expert opinion elicitation. To account for variabilities in the probabilities assigned to fault tree basic events and hence to propagate uncertainties in event tree sequences Monte Carlo sampling and Latin Hypercube sampling were employed and the statistics of the results from both techniques were compared.
Catalysts for Hydrogen Removal: Kinetic Paradox and Functioning at High Concentration of Hydrogen
Sep 2009
Publication
Platinum metals dispersed on a porous carrier e.g. -Al2O3 are used as catalysts for removal of small amounts of hydrogen from the air where the excess of oxygen is significant.<br/>The recombination reaction of H2 and O2 on smooth platinum proceeds at a high rate only in gas mixes with an excess of hydrogen. When the concentration of oxygen exceeds that of hydrogen in terms of stoichiometric ratio the process slows down sharply and eventually stops completely. In research undertaken at the Karpov Institute of Physical Chemistry (Moscow) forty years ago the electrochemical mechanism of red-ox reactions was proposed as an explanation for this inhibition by excess oxygen. The results of ellipsometric analysis pointed to the formation of a protective monolayer of PtO molecules on the Pt surface in an oxygen-rich atmosphere. It was observed that the recombination reaction proceeds at a high rate with the use of a porous catalyst at any concentrations of reactant gases. The reason for that lies in the mechanism of the catalysis: the reaction proceeds at a certain depth in the porous body of the catalyst. Hydrogen which has higher mobility penetrates in larger quantity than oxygen thus creating there the stoichiometric excess. To test the proposed mechanism of recombination the catalytic reaction was studied ) with porous carriers of various thicknesses and b) with metal grids of various porosities covering the catalyst. The data obtained have confirmed unequivocally the earlier hypothesis of hydrogenation of a porous catalyst.<br/>Such insight has allowed the authors to develop more effective prototypes of catalyst for removal of hydrogen. In particular by using a porous grid cover to remove excess heat in the reaction zone of the catalyst plate we achieved a considerable expansion of the region of hydrogen concentrations where the catalyst is both effective and reliable.
Lagrangian Reaction-Diffusion Model for Predicting the Ignitability of Pressurized Hydrogen Releases
Sep 2009
Publication
Previous experiments demonstrated that the accidental release of high pressure hydrogen into air can lead to the possibility of spontaneous ignition. It is believed that this ignition is due to the heating of the mixing layer between hydrogen and air that is caused by the shock wave driven by the pressurized hydrogen during the release. Currently this problem is poorly understood and not amenable to direct numerical simulation. This is due to the presence of a wide range of scales between the sizes of the blast wave driven and the very thin mixing layer. The present study addresses this fundamental ignition problem and develops a solution framework in order to predict the ignition event for given hydrogen storage pressures and dimension of the release hole. In this problem only the mixing layer between the hydrogen and air is considered. This permits us to use much higher resolution than previous studies. This mixing layer at the jet head is advected as a Lagrangian fluid particle. The key physical processes in the problem are identified to be the mixing of the two gases at the mixing layer the initial heating by the shock wave and a cooling effect due to the expansion of the mixing layer. The results of the simulations indicate that for every storage pressure there exists a critical hole size below which ignition is prevented during the release process. Close inspection of the results indicate that this limit is due to the competition between the heating provided by the shock wave and the cooling due to expansion. Furthermore the results also indicate that the details of the mixing process do not play a significant role to leading order. The limiting ignition criteria were found to be well approximated by the Homogeneous Ignition Model of Cuenot and Poinsot supplemented by a heat loss term due to expansion. Therefore turbulent mixing occurring in reality is not likely to affect the ignition limits derived in the present study. Comparison with existing experiments showed very good agreement.
Unsteady Lumped-Parameter Modelling Of Hydrogen Combustion in The Presence of a Water Spray
Sep 2009
Publication
In case of severe accidents in Pressurized Water Reactors a great amount of hydrogen can be released the resulting heterogeneous gaseous mixture (hydrogen-air-steam) can be flammable or inert and the pressure effects could alter the confinement of the reactor. Water spray systems have been designed in order to reduce overpressures in the containment but the presence of water droplets could enhance flame propagation through turbulence or generate flammable mixtures since the steam present in the vessel could condense on the droplets and could not inert the mixture anymore. However beneficial effects would be heat sinks and homogenization of mixtures. On-going work is devoted to the modelling of the interaction between fine water droplets and a hydrogen-air flame. We present in this paper an unsteady Lumped Parameter model in detail with a special focus on hydrogen-air flame propagation in the presence of water droplets. The effects of the initial concentration of droplets steam and hydrogen concentrations on flame propagation are discussed in the paper and a comparison between this model and our previous steady Lumped-Parameter model highlights the features of the unsteady approach. This physical model can serve as a validation tool for a CFD modelling. The results will be further validated against experimental data.
Performance-Based Requirements for Hydrogen Detection Allocation and Actuation
Sep 2009
Publication
The hydrogen detection system is a key component of the hydrogen safety systems (HSS). Any HSS forms a second layer of protection for the assets under accidental conditions when a first layer of protection - passive protection systems (separation at “safe” distance natural ventilation) are inoperable or failed. In this report a performance-based risk-informed methodology for establishing of the explicit quantitative requirements for hydrogen detectors allocation and actuation is proposed. The main steps of the proposed methodology are described. It is suggested (as a first approximation) to use in a process of quantification of a hydrogen detection system performance (from safety viewpoint) a five-tiered hierarchy namely 1) safety goals 2) risk-informed safety objectives 3) performance goal and metrics 4) rational safety criteria 5) safety factors. Unresolved issues of the proposed methodology of Safety Performance Analysis for development of the risk-informed and performance based standards on the hydrogen detection systems are synopsized.<br/><br/>
CFD Simulations of Hydrogen Release and Dispersion Inside the Storage Room of a Hydrogen Refuelling Station Using the ADREA-HF Code
Sep 2007
Publication
The paper presents CFD simulations of high pressure hydrogen release and dispersion inside the storage room of realistic hydrogen refuelling station and comparison to experimental data. The experiments were those reported by Tanaka et al. (2005) carried out inside an enclosure 5 m wide 6 m long and 4 m high having 1 m high ventilation opening on all sidewalls (half or fully open) containing an array of 35 x 250 L cylinders. The scenarios investigated were 40 MPa storage pressure horizontal releases from the center of the room from one cylinder with orifices of diameters 0.8 1.6 and 8 mm. The release calculations were performed using GAJET integral code. The CFD dispersion simulations were performed using the ADREA-HF CFD code. The structure of the flow and the mixing patterns were also investigated by presenting the predicted hydrogen concentration field. Finally the effects of release parameters natural ventilation and wind conditions were analyzed too.
Hydrogen Effect on Fatigue and Fracture of Pipe Steels
Sep 2009
Publication
Transport by pipe is one the most usual way to carry liquid or gaseous energies from their extraction point until their final field sites. To limit explosion risk or escape to avoid pollution problems and human risks it is necessary to assess nocivity of defect promoting fracture. This need to know the mechanical properties of the pipes steels. Hydrogen is considered to day as a new energy vector and its transport in one of the key problems to extension of its use. Within the European project NATURALHY it has been proposed to transport a mixture of natural gas and hydrogen. 39 European partners have combined their efforts to assess the effects of hydrogen presence on the existing gas network. Key issues are durability of pipeline material integrity management safety aspects life cycle and socio-economic assessment and end-use. The work described in this paper was performed within the NATURALHY work package on ’Durability of pipeline material’. This study makes it possible to emphasize the hydrogen effect on mechanical properties of several pipe steels as X52 X70 or X100 in fatigue and fracture and in two different environments: air and hydrogen electrolytic.
Hydrogen Tank Filling Experiments at the JRC-IE Gastef Facility
Sep 2011
Publication
Storage of gases under pressure including hydrogen is a well-known technique. However the use in vehicles of hydrogen at pressures much higher than those applicable in natural gas cars still requires safety and performance studies with respect to the verification of the existing standards and regulations. The JRC-IE has developed a facility GasTeF for carrying out tests on full-scale high pressure vehicle’s tanks for hydrogen or natural gas. Typical tests performed in GasTeF are static permeation measurements of the storage system and hydrogen cycling in which tanks are fast filled and slowly emptied using hydrogen pressurised up to 70 MPa for at least 1000 times according to the requirements of the EU regulation on type-approval of hydrogen-powered motor vehicles. Moreover the temperature evolution of the gas inside and outside the tank is monitored using an ad-hoc designed thermocouples array system. This paper reports the first experimental results on the temperature distribution during hydrogen cycling tests.
Numerical Investigation of Hydrogen Dispersion into Air
Sep 2009
Publication
Computational fluid dynamics (CFD) is used to numerically solve the sudden release of hydrogen from a high pressure tank (up to 70MPa) into air. High pressure tanks increase the risk of failure of the joints and pipes connected to the tank which results in release of Hydrogen. The supersonic flow caused by high pressure ratio of reservoir to ambient generates a strong Mach disk. A three dimensional in-house code is developed to simulate the flow. High pressure Hydrogen requires a real gas law because it deviates from ideal gas law. Firstly Beattie-Bridgeman and Abel-Noble real gas equation of states are applied to simulate the release of hydrogen in hydrogen. Then Abel-Noble is implied to simulate the release of hydrogen in air. Beattie-Bridgeman has stability problems in the case of hydrogen in air. A transport equation is used to solve the concentration of Hydrogen-air mixture. The code is second order accurate in space and first order in time and uses a modified Van Leer limiter. The fast release of Hydrogen from a small rupture needs a very small mesh therefore parallel computation is applied to overcome memory problems and to decrease the solution time. The high pressure ratio of the reservoir to ambient causes a very fast release which is accurately modelled by the code and all the shocks and Mach disk happening are observed in the results. The results show that the difference between real gas and ideal gas models cannot be ignored.
Defect Assessment on Pipe Used For Transport of Mixture of Hydrogen and Natural Gas
Sep 2009
Publication
The present article indicates the change of mechanical properties of X52 gas pipe steel in presence of hydrogen and its consequence on defect assessment particularly on notch like defects. The purpose of this work is to determine if the transport of a mixture of natural gas and hydrogen in the actual existing European natural gas pipe network can be done with a reasonable low failure risk (i.e. a probability of failure less than 10-6). To evaluate this risk a deterministic defect assessment method has been established. This method is based on Failure Assessment Diagram and more precisely on a Modified Notch Failure Assessment Diagram (MNFAD) which has been proposed for this work. This MNFAD is coupled with the SINTAP failure curve and allows determining the safety factor associated with defect geometry loading conditions and material resistance. The work described in this paper was performed within the NATURALHY work package 3 on ’Durability of pipeline material’.
Shock Initiated Ignition for Hydrogen Mixtures of Different Concentrations
Sep 2011
Publication
The scenario of ignition of fuels by the passage of shock waves is relevant from the perspective of safety primarily because shock ignition potentially plays an important role in deflagration to detonation transition. Even in one dimension simulation of ignition between a contact surface or a flame and a shock moving into combustible mixture is difficult because of the singular nature of the initial conditions. Indeed initially as the shock starts moving away from the contact surface the region filled with shocked reactive mixture does not exist. In the current work the formulation is transformed using time and length over time as the independent variables. This transformation yields a finite domain from t = 0. In this paper the complete spatial and temporal ignition evolution of hydrogen combustible mixtures of different concentrations is studied numerically. Integration of the governing equations is performed using an Essentially Non-Oscillatory (ENO) algorithm in space and Runge-Kutta in time while the chemistry is modeled by a three-step chain-branching mechanism which appropriately mimics hydrogen combustion.
Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach
Jan 2022
Publication
Adoption of hydrogen energy as an alternative to fossil fuels could be a major step towards decarbonising and fulfilling the needs of the energy sector. Hydrogen can be an ideal alternative for many fields compared with other alternatives. However there are many potential environmental challenges that are not limited to production and distribution systems but they also focus on how hydrogen is used through fuel cells and combustion pathways. The use of hydrogen has received little attention in research and policy which may explain the widely claimed belief that nothing but water is released as a by-product when hydrogen energy is used. We adopt systems thinking and system dynamics approaches to construct a conceptual model for hydrogen energy with a special focus on the pathways of hydrogen use to assess the potential unintended consequences and possible interventions; to highlight the possible growth of hydrogen energy by 2050. The results indicate that the combustion pathway may increase the risk of the adoption of hydrogen as a combustion fuel as it produces NOx which is a key air pollutant that causes environmental deterioration which may limit the application of a combustion pathway if no intervention is made. The results indicate that the potential range of global hydrogen demand is rising ranging from 73 to 158 Mt in 2030 73 to 300 Mt in 2040 and 73 to 568 Mt in 2050 depending on the scenario presented.
Experimental Results and Comparison with Simulated Data of a Low Pressure Hydrogen Jet
Sep 2011
Publication
Experiments with a hydrogen jet were performed at two different pressures 96 psig (6.6 bars) and 237 psig (16.3 bars). The hydrogen leak was generated at two different hole sizes 1/16 inch (1.6 mm) and 1/32 inch (0.79 mm). The flammable shape of the plume was characterised by numerous measurements of the hydrogen concentration inside of the jet. The effect of the nearby horizontal surface on the shape of the plume was measured and compared with results of CFD numerical simulations. The paper will present results and an interpretation on the nature of the plume shape.
Pressure Limit of Hydrogen Spontaneous Ignition in a T-shaped Channel
Sep 2011
Publication
This paper describes a large eddy simulation model of hydrogen spontaneous ignition in a T-shaped channel filled with air following an inertial flat burst disk rupture. This is the first time when 3D simulations of the phenomenon are performed and reproduced experimental results by Golub et al. (2010). The eddy dissipation concept with a full hydrogen oxidation in air scheme is applied as a sub-grid scale combustion model to enable use of a comparatively coarse grid to undertake 3D simulations. The renormalization group theory is used for sub-grid scale turbulence modelling. Simulation results are compared against test data on hydrogen release into a T-shaped channel at pressure 1.2–2.9 MPa and helped to explain experimental observations. Transitional phenomena of hydrogen ignition and self-extinction at the lower pressure limit are simulated for a range of storage pressure. It is shown that there is no ignition at storage pressure of 1.35 MPa. Sudden release at pressure 1.65 MPa and 2.43 MPa has a localised spot ignition of a hydrogen-air mixture that quickly self-extinguishes. There is an ignition and development of combustion in a flammable mixture cocoon outside the T-shaped channel only at the highest simulated pressure of 2.9 MPa. Both simulated phenomena i.e. the initiation of chemical reactions followed by the extinction and the progressive development of combustion in the T-shape channel and outside have provided an insight into interpretation of the experimental data. The model can be used as a tool for hydrogen safety engineering in particular for development of innovative pressure relief devices with controlled ignition.
Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues
Mar 2013
Publication
The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest four deliver natural gas from Canada and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.
Hydrolysis Hydrogen Production Mechanism of Mg10Ni10Ce Alloy Surface Modified by SnO2 Nanotubes in Different Aqueous Systems
May 2020
Publication
(Mg-10wt.%Ni)-10wt.%Ce (Mg10Ni10Ce) was ball-milled with SnO2 nanotubes and Mg10Ni10Ce-xSnO2 (x=0 5 10 and 15wt.%) composites have been prepared. The phase compositions microstructures morphologies and hydrolysis H2 generation performance in different aqueous systems (distilled water tap water and simulated seawater) have been investigated and the corresponding hydrolysis mechanism of Mg10Ni10Ce and Mg10Ni10Ce-SnO2 has been proposed. Adding a small amount of SnO2 nanotubes can significantly enhance the hydrolysis reaction of Mg10Ni10Ce especially the initial hydrolysis kinetics and the final H2 generation yield. Unfortunately the Mg10Ni10Ce-xSnO2 hardly react with distilled water at room temperature. The hydrolysis reaction rate of Mg10Ni10Ce-5SnO2 composite in tap water is still very slow with only 17.3% generation yield after 1 hour at 303 K. Fortunately in simulated seawater (3.5wt.% NaCl solution) the hydrolytic H2 generation behavior of the Mg10Ni10Ce-5SnO2 composite has been greatly improved which can release as high as 468.6 mL/g H2 with about 60.9% generation yield within 30 s at 303 K. The Cl- destroys the passivation layer on Mg-Ni-Ce alloy surface and the added SnO2 nanotubes accelerate the hydrolysis reaction rate and enhance the H2 generation yield. The Mg10Ni10Ce-5SnO2 composite can rapidly generate a large amount of H2 in simulate seawater in a short time which is expected to be applied on portable H2 generators in the future.
Plasmonic Nickel Nanoparticles Decorated on to LaFeO3 Photocathode for Enhanced Solar Hydrogen Generation
Nov 2018
Publication
Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70–100 nm for Surface Plasmon Resonance (SPR) enhancement.
H21- Science and Research Centre - HSE Buxton Launch Video
Aug 2019
Publication
The site at the Health and Safety Executive’s Science and Research Centre in Buxton will carry out controlled tests to establish the critical safety evidence proving that a 100% hydrogen gas network is equally as safe as the natural gas grid heating our homes and businesses today. The results will be critical in determining if it is safe to convert millions of homes across the country from natural gas to hydrogen. H21 which is led by Northern Gas Networks (NGN) the gas distributor for the North of England in partnership with Cadent SGN and Wales & West Utilities HSE Science and Research Centre and DNV-GL is part of a number of gas industry projects designed to support conversion of the UK gas networks to carry 100% hydrogen. Currently about 30% of UK carbon emissions are from the heating of homes businesses and industry. H21 states that a large-scale conversion of the gas grid from natural gas to hydrogen is vital to meeting the Government’s Net Zero targets.
Earth Abundant Spinel for Hydrogen Production in a Chemical Looping Scheme at 550°C
Jun 2020
Publication
Operating chemical looping process at mid-temperatures (550-750 oC) presents exciting potential for the stable production of hydrogen. However the reactivity of oxygen carriers is compromised by the detrimental effect of the relatively low temperatures on the redox kinetics. Although the reactivity at mid-temperature can be improved by the addition of noble metals the high cost of these noble metal containing materials significantly hindered their scalable application. In the current work we propose to incorporate earth-abundant metals into the iron-based spinel for hydrogen production in a chemical looping scheme at mid-temperatures. Mn0.2Co0.4Fe2.4O4 shows a high hydrogen production rate at the average rate of ∼0.62 mmol.g-1.min-1 and a hydrogen yield of ∼9.29 mmol.g-1 with satisfactory stability over 20 cycles at 550 oC. The mechanism studies manifest that the enhanced hydrogen production performance is a result of the improved oxygen-ion conductivity to enhance reduction reaction and high reactivity of reduced samples with steam. The performance of the oxygen carriers in this work is comparable to those noble-metal containing materials enabling their potential for industrial applications.
Mathematical Modeling and Simulation of Hydrogen-fueled Solid Oxide Fuel Cell System for Micro-grid Applications - Effect of Failure and Degradation on Transient Performance
May 2020
Publication
We use a detailed solid oxide fuel cell (SOFC) model for micro-grid applications to analyze the effect of failure and degradation on system performance. Design and operational constraints on a component and system level are presented. A degrees of freedom analysis identifies controlled and manipulated system variables which are important for control. Experimental data are included to model complex degradation phenomena of the SOFC unit. Rather than using a constant value a spatially distributed degradation rate as function of temperature and current density is used that allows to study trajectory based performance deterioration. The SOFC unit is assumed to consist of multiple stacks. The failure scenario studied is the loss of one individual SOFC stack e.g. due to breakage of sealing or a series of fuel cells. Simulations reveal that degradation leads to significant drifts from the design operating point. Moreover failure of individual stacks may bring the still operating power generation unit into a regime where further failures and accelerated degradation is more likely. It is shown that system design dimensioning operation and control are strongly linked. Apart from specific quantitative results perhaps the main practical contribution are the collected constraints and the degrees of freedom analysis.
Integrated Ni-P-S Nanosheets Array as Superior Electrocatalysts for Hydrogen Generation
Jan 2017
Publication
Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems. Here we present the synthesis of integrated Ni-P-S nanosheets array including Ni2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction (HER) in a wide pH range. In alkaline media it can generate current densities of 10 20 and 100 mA cm−2 at low overpotentials of only −101.9 −142.0 and −207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation.
A New Sustainable Hydrogen Clean Energy Paradigm
Feb 2018
Publication
We analyze the feasibility of a novel hydrogen fuel cell electric generator to provide power with zero noise and emissions for myriad ground based applications. The hydrogen fuel cell electric generator utilizes a novel scalable apparatus that safely generates hydrogen (H2) on demand according to a novel method using a controlled chemical reaction between water (H2O) and sodium (Na) metal that yields hydrogen gas of sufficient purity for direct use in fuel cells without risk of contaminating sensitive catalysts. The sodium hydroxide (NaOH) byproduct of the hydrogen producing reaction is collected within the apparatus for later reprocessing by electrolysis to recover the Na reactant. The detailed analysis shows that the novel hydrogen fuel cell electric generator will be capable of meeting the clean power requirements for residential and commercial buildings including single family homes and light commercial establishments under a wide range of geographic and climatic conditions.
Innovation Insights Brief 2019: New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
Hydrogen and fuel cell technologies have experienced cycles of high expectations followed by impractical realities. This time around however falling renewable energy and fuel cell prices stringent climate change requirements and the discrete involvement of China are step changes. The combination of these factors is leading to realistic potential for hydrogen’s role in the Grand Transition.<br/>Having conducted exploratory interviews with leaders from all around the globe the World Energy Council is featuring eight use cases which illustrate hydrogen’s potential. These range from decarbonising hard-to-abate sectors such as heat industry and transport to supporting the integration of renewables and providing an energy storage solution.<br/>Dr Angela Wilkinson Secretary General and former Senior Director Scenarios and Business Insights: “Green and blue hydrogen can refresh those parts of the energy system transition that electrification cannot reach.”<br/>This Innovation Insights Brief is part of a series of publications by the World Energy Council focused on Innovation. In a fast-paced era of disruptive changes this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the other energy stakeholders and policy shapers.
Cost-competitive Green Hydrogen: How to Lower the Cost of Electrolysers?
Jan 2022
Publication
The higher cost of green hydrogen in comparison to its competitors is the most important barrier to its increased use. Although the cost of renewable electricity is considered to be the key obstacle challenges associated with electrolysers are another major issue that have important implications for the cost reduction of green hydrogen. This paper analyses the electrolysis process from technological economic and policy perspectives. It first provides a comparative analysis of the main existing electrolyser technologies and identifies key trade-offs in terms of cost scarcity of materials used technology readiness and the ability to operate in a flexible mode (which enables them to be coupled with variable renewables generation). The paper then identifies the main cost drivers for each of the most promising technologies and analyses the opportunities for cost reduction. It also draws upon the experience of solar and wind power generation technologies with respect to gradual cost reduction and evaluates development paths that each of the main electrolyser technology types could take in the future. Finally the paper elaborates on the policy mechanisms that could additionally foster cost reduction and the overall business development of electrolyser technologies.
The research paper can be found on their website
The research paper can be found on their website
Leakage-type-based Analysis of Accidents Involving Hydrogen Fueling Stations in Japan and USA
Aug 2016
Publication
To identify the safety issues associated with hydrogen fuelling stations incidents at such stations in Japan and the USA were analyzed considering the regulations in these countries. Leakage due to the damage and fracture of main bodies of apparatuses and pipes in Japan and the USA is mainly caused by design error that is poorly planned fatigue. Considering the present incidents in these countries adequate consideration of the usage environment in the design is very important. Leakage from flanges valves and seals in Japan is mainly caused by screw joints. If welded joints are to be used in hydrogen fuelling stations in Japan strength data for welded parts should be obtained and pipe thicknesses should be reduced. Leakage due to other factors e.g. external impact in Japan and the USA is mainly caused by human error. To realize self-serviced hydrogen fuelling stations safety measures should be developed to prevent human error by fuel cell vehicle users.
Sizing and Operation of a Pure Renewable Energy Based Electric System through Hydrogen
Nov 2021
Publication
Today in order to reduce the increase of the carbon dioxide emissions a large number of renewable energy resources (RES) are already implemented. Considering both the intermittency and uncertainty of the RES the energy storage system (ESS) is still needed for balancing and stabilizing the power system. Among different existing categories of ESS the hydrogen storage systems (HSS) have the highest energy density and are crucial for the RES integration. In addition RES are located in faraway regions and are often transmitted to the terminal consumption center through HVDC (high voltage direct current) due to its lower power loss. In this paper we present a power supply system that achieves low-carbon emissions through combined HSS and HVDC technology. First the combined HSS and the HVDC model are established. Secondly the rule-based strategy for operating the HSS microgrid is presented. Then an operating strategy for a typical network i.e. the pure RES generation station-HVDC transmission-microgrids is demonstrated. Finally the best sizing capacities for all components are found by the genetic algorithm. The results prove the efficiency of the presented sizing approach for a pure RES electric system.
Exploring Future Promising Technologies in Hydrogen Fuel Cell Transportation
Jan 2022
Publication
The purpose of this research was to derive promising technologies for the transport of hydrogen fuel cells thereby supporting the development of research and development policy and presenting directions for investment. We also provide researchers with information about technology that will lead the technology field in the future. Hydrogen energy as the core of carbon neutral and green energy is a major issue in changing the future industrial structure and national competitive advantage. In this study we derived promising technology at the core of future hydrogen fuel cell transportation using the published US patent and paper databases (DB). We first performed text mining and data preprocessing and then discovered promising technologies through generative topographic mapping analysis. We analyzed both the patent DB and treatise DB in parallel and compared the results. As a result two promising technologies were derived from the patent DB analysis and five were derived from the paper DB analysis.
Amorphous Iron-nickel Phosphide Nanocone Arrays as Efficient Bifunctional Electrodes for Overall Water Splitting
May 2020
Publication
The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte the optimal FeP-Ni electrode drives a current density of 10 mA/cm2 at an overpotential of 218 mV for the OER and 120 mV for the HER and can attain such current density for 25 h without performance regression. Moreover a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA/cm2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays which could expose more surface active sites facilitate electrolyte diffusion benefit charge transfer and also favourable bubble detachment behaviour. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.
H2FC SUPERGEN- Opportunities for Hydrogen and Fuel Cell Technologies to Contribute to Clean Growth in the UK
May 2020
Publication
Hydrogen is expected to have an important role in decarbonising several parts of the UK energy system. This white paper examines the opportunities for hydrogen and fuel cell technologies (H2FC) to contribute to clean growth in the UK.
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
- Creating separate national fuel cell and hydrogen strategies. These should take UK energy needs capabilities and export opportunities into account. There is a need to coordinate public R&D support and to manage the consequences if European funding and collaboration opportunities become unavailable due to Brexit.
- Creating a public–private “Hydrogen Partnership” to accelerate a shift to hydrogen energy systems in the UK and to stimulate opportunities for businesses.
- Putting in place infrastructure to underpin nascent fuel cell and hydrogen markets including a national refuelling station network and a green hydrogen standard scheme.
- Study what would constitute critical mass in the hydrogen and fuel cell sectors in terms of industry and academic capacity and the skills and knowledge base and consider how critical mass could be achieved most efficiently.
- Consider creating a “Hydrogen Institute” and an “Electrochemical Centre” to coordinate and underpin national innovation over the next decade.
Hazards of Liquid Hydrogen: Position paper
Jan 2010
Publication
In the long term the key to the development of a hydrogen economy is a full infrastructure to support it which include means for the delivery and storage of hydrogen at the point of use eg at hydrogen refuelling stations for vehicles. As an interim measure to allow the development of refuelling stations and rapid implementation of hydrogen distribution to them liquid hydrogen is considered the most efficient and cost effective means for transport and storage.
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
The Health and Safety Executive have commissioned the Health and Safety Laboratory to identify and address issues relating to bulk liquid hydrogen transport and storage and update/develop guidance for such facilities. This position paper the first part of the project assesses the features of the transport and storage aspects of the refuelling stations that are now being constructed in the UK compares them to existing guidance highlights gaps in the regulatory regime and identifies outstanding safety issues. The findings together with the results of experiments to improve our understanding of the behaviour of liquid hydrogen will inform the development of the guidance for refuelling facilities
link to Report
H2FC Supergen- The Role of Hydrogen and Fuel Cells in Future Energy Systems
Mar 2017
Publication
This White Paper has been commissioned by the UK Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub to examine the roles and potential benefits of hydrogen and fuel cell technologies in delivering energy security for the UK. The H2FC SUPERGEN Hub is an inclusive network encompassing the entire UK hydrogen and fuel cells research community with around 100 UK-based academics supported by key stakeholders from industry and government. It is funded by the UK EPSRC research council as part of the RCUK Energy Programme. This paper is the second of four that were published over the lifetime of the Hub with the others examining: (i) low-carbon heat; (iii) future energy systems; and (iv) economic impact.
- Fuel cells can contribute to UK energy system security both now and in the future.
- Hydrogen can be produced using a broad range of feedstocks and production processes including renewable electricity.
- Adopting hydrogen as an end-use fuel in the long term increases UK energy diversity.
Opportunity and Cost of Green Hydrogen in Kuwait: A Preliminary Assessment
Apr 2021
Publication
On April 7 2021 OIES with and the Kuwait Foundation for the Advancement of Sciences (KFAS) held the annual OIES-KFAS Workshop on Energy Transition Post-Pandemic in the Gulf. During the hydrogen session a paper titled “Opportunity and Cost of Green Hydrogen in Kuwait: A Preliminary Assessment” co-authored by Dr. Manal Shehabi was presented.
Like others states in the GCC Kuwait is seeking to explore hydrogen as part of its energy transition projects. The presentation highlights key technological opportunities for green hydrogen in Kuwait followed by a techno-economic assessments of producing it. Results of utilized hydrogen production model show that for production in 2032 average levelized cost of hydrogen (LCOH) is $3.23/kg using PEM technology & $4.41/kg using SOEC technology. Results indicate that green hydrogen in Kuwait is more competitive than in other regions but currently not competitive (>$1.5/kg) with oil coal and gas in absence of carbon taxes.
The research paper can be found on their website
Like others states in the GCC Kuwait is seeking to explore hydrogen as part of its energy transition projects. The presentation highlights key technological opportunities for green hydrogen in Kuwait followed by a techno-economic assessments of producing it. Results of utilized hydrogen production model show that for production in 2032 average levelized cost of hydrogen (LCOH) is $3.23/kg using PEM technology & $4.41/kg using SOEC technology. Results indicate that green hydrogen in Kuwait is more competitive than in other regions but currently not competitive (>$1.5/kg) with oil coal and gas in absence of carbon taxes.
The research paper can be found on their website
Conceptual Design of Pyrolytic Oil Upgrading Process Enhanced by Membrane-Integrated Hydrogen Production System
May 2019
Publication
Hydrotreatment is an efficient method for pyrolytic oil upgrading; however the trade-off between the operational cost on hydrogen consumption and process profit remains the major challenge for the process designs. In this study an integrated process of steam methane reforming and pyrolytic oil hydrotreating with gas separation system was proposed conceptually. The integrated process utilized steam methane reformer to produce raw syngas without further water–gas-shifting; with the aid of a membrane unit the hydrogen concentration in the syngas was adjusted which substituted the water–gas-shift reactor and improved the performance of hydrotreater on both conversion and hydrogen consumption. A simulation framework for unit operations was developed for process designs through which the dissipated flow in the packed-bed reactor along with membrane gas separation unit were modelled and calculated in the commercial process simulator. The evaluation results showed that the proposed process could achieve 63.7% conversion with 2.0 wt% hydrogen consumption; the evaluations of economics showed that the proposed process could achieve 70% higher net profit compared to the conventional plant indicating the potentials of the integrated pyrolytic oil upgrading process.
H2FC SUPERGEN- The Role of Hydrogen and Fuel Cells in Delivering Energy Security for the UK
Mar 2017
Publication
This White Paper has been commissioned by the UK Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub to examine the roles and potential benefits of hydrogen and fuel cell technologies within each sector of future energy systems and the transition infrastructure that is required to achieve these roles. The H2FC SUPERGEN Hub is an inclusive network encompassing the entire UK hydrogen and fuel cells research community with around 100 UK-based academics supported by key stakeholders from industry and government. It is funded by the UK EPSRC research council as part of the RCUK Energy Programme. This paper is the third of four that were published over the lifetime of the Hub with the others examining: (i) low-carbon heat; (ii) energy security; and (iv) economic impacts.
- Hydrogen and fuel cells are now being deployed commercially for mainstream applications.
- Hydrogen can play a major role alongside electricity in the low-carbon economy.
- Hydrogen technologies can support low-carbon electricity systems dominated by intermittent renewables and/or electric heating demand.
- The hydrogen economy is not necessary for hydrogen and fuel cells to flourish.
Numerical Investigation of Vented Hydrogen-air Deflagration in a Chamber
Oct 2015
Publication
This paper shows numerical investigation related to hydrogen-air deflagration venting. The aim of this study is to clarify the influence of concentration gradient on the pressure histories and peak pressures in a chamber. The numerical analysis target is a 27 m3 cubic chamber which has 2.6 m2 vent area on the sidewall. The vent opening pressure is set to be gauge 10 kPa. Two different conditions of the hydrogen concentration are assumed which are uniform and gradient. In the uniform case 15 20 25 30 and 35 vol.% concentrations are assumed. In the gradient case the concentration linearly increases from 0 vol.% (at the ground) to 30 40 50 60 70 vol.% (at the ceiling). The initial total mass of hydrogen inside the chamber is the same as the uniform case. Moreover three different ignition points are assumed: on the rear center and the front of the chamber relative to the vent. The deflagrations are initiated by a single ignition source. In most gradient cases the highest peak is lower than in the uniform case though the initial total mass of hydrogen inside the chamber is the same as in the uniform case. This is because the generated burned gas per time is smaller in the gradient case than in the uniform case. In 15 vol.% gradient case however the peak pressure gets higher than in the uniform case. This is because in 15 vol.% gradient case the burning velocity around the ignition point gets faster and the flame surface gets larger which induces larger amount of burned gas per time.
Simulation of the Combustion Process for a CI Hydrogen Engine in an Argon-oxygen Atmosphere
May 2018
Publication
Hydrogen combustion in a noble gas atmosphere increases the combustion chamber temperature and the high specific heat ratio of the gas increases the thermal efficiency. In this study nitrogen was replaced by argon as the intake air along with pure oxygen to supply the engine. The objectives of this study are to determine the effects of different engine parameters on combustion and to analyse the emissions from hydrogen combustion in an argon-oxygen atmosphere. This research was conducted through simulations using CONVERGE 2.2.0 software and the YANMAR engine NF19SK model was used to determine the basic parameters. Changing the injector location affects the pressure and temperature in the combustion chamber. With increasing compression ratio the pressure increases more rapidly than the temperature. However combustion at high compression ratios decreases the maximum heat release rate and increases the combustion duration. Hydrogen combustion at ambient temperatures below 1200 K follows the Arrhenius equation.
Fuel Cells and Hydrogen Technologies in Europe: Financial and Technology Outlook on the European Sector Ambition 2014-2020
Nov 2011
Publication
Sustainable secure and competitive energy supply and transport services are at the heart of the EU2020 strategy towards a low carbon and inclusive economy geared towards a reduction of 80% of CO2 emissions by 2050. This objective has been endorsed by the European Institutions and Member States. It is widely recognised that a technological shift and the deployment of new clean technologies are critical for a successful transition to such a new sustainable economy. Furthermore in addition to bringing a healthier environment and securing energy supply innovation will provide huge opportunities for the European economy. However this paradigm shift will not be purely driven by the market. A strong and determined commitment of public institutions and the private sector together are necessary to support the European political ambition. The period 2014-2020 will be critical to ensure that the necessary investments are realized to support the EU2020 vision. In terms of hydrogen and fuel cell technologies significant investments are required for (a) transportation for scaling up the car fleet and building up of refuelling infrastructure needs (b) hydrogen production technologies to integrate renewable intermittent power sources to the electrical grid (wind and solar) (c) stationary fuel cell applications with large demonstration projects in several European cities and (d) identified early markets (material handling vehicles back-up power systems) to allow for volume developments and decrease of system-costs.<br/>This Report summarizes the sector’s financial ambition to reach Europe’s objectives in 2020.
CFD Based Simulation of Hydrogen Release Through Elliptical Orifices
Sep 2013
Publication
Computational Fluid Dynamics (CFD) is applied to investigate the near exit jet behavior of high pressure hydrogen release into quiescent ambient air through different types of orifices. The size and geometry of the release hole can affect the possibility of auto-ignition. Therefore the effect of release geometry on the behavior and development of hydrogen jet issuing from non-axisymmetric (elliptical) and expanding orifices is investigated and compared with their equivalent circular orifices. A three-dimensional in-house code is developed using the MPI library for parallel computing to simulate the flow based on an inviscid approximation. Convection dominates viscous effects in strongly underexpanded supersonic jets in the vicinity of release exit justifying the use of the Euler equations. The transport (advection) equation is applied to calculate the concentration of hydrogen-air mixture. The Abel-Nobel equation of state is used because high pressure hydrogen flow deviates from the ideal gas assumption. This work effort is conducted to fulfill two objectives. First two types of circular and elliptic orifices with the same cross sectional area are simulated and the flow behavior of each case is studied and compared during the initial stage of release. Second the comparative study between expanding circular exit and its fixed counterpart is carried out. This evaluation is conducted for different sizes of nozzle with different aspect ratios.
New Insights into the Electrochemical Behaviour of Porous Carbon Electrodes for Supercapacitors
Aug 2018
Publication
Activated carbons with different surface chemistry and porous textures were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios which form reversibly under cathodic conditions. The influence of the specific surface area narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
High Pressure Hydrogen Tank Rupture: Blast Wave and Fireball
Oct 2015
Publication
In the present study the phenomena of blast wave and fireball generated by high pressure (35 MPa) hydrogen tank (72 l) rupture have been investigated numerically. The realizable k-ε turbulence model was applied. The simulation of the combustion process is based on the eddy dissipation model coupled with the one step chemical reaction mechanism. Simulation results are compared with experimental data from a stand-alone hydrogen fuel tank rapture following a bonfire test. The model allows the study of the interaction between combustion process and blast wave propagation. Simulation results (blast wave overpressure fireball shape and size) follow the trends observed in the experiment.
A Review on Underground Hydrogen Storage: Insight into Geological Sites, Influencing Factors and Future Outlook
Dec 2021
Publication
Without remorse fossil fuels have made a huge contribution to global development in all of its forms. However the recent scientific outlooks are currently shifting as more research is targeted towards promoting a carbon-free economy in addition to the use of electric power from renewable sources. While renewable energy sources may be a solution to the anthropogenic greenhouse gas (GHG) emissions from fossil fuel they are yet season-dependent faced with major atmospheric drawbacks which when combined with annually varying but steady energy demand results in renewable energy excesses or deficits. Therefore it is essential to devise a long-term storage medium to balance their intermittent demand and supply. Hydrogen (H2) as an energy vector has been suggested as a viable method of achieving the objectives of meeting the increasing global energy demand. However successful implementation of a full-scale H2 economy requires large-scale H2 storage (as H2 is highly compressible). As such storage of H2 in geological formations has been considered as a potential solution where it can be withdrawn again at the larger stage for utilization. Thus in this review we focus on the potential use of geological formations for large-scale underground hydrogen storage (UHS) where both conventional and non-conventional UHS options were examined in depth. Also insights into some of the probable sites and the related examined criteria for selection were highlighted. The hydrodynamics of UHS influencing factors (including solid fluid and solid–fluid interactions) are summarized exclusively. In addition the economics and reaction perspectives inherent to UHS have been examined. The findings of this study show that UHS like other storage systems is still in its infancy. Further research and development are needed to address the significant hurdles and research gaps found particularly in replaceable influencing parameters. As a result this study is a valuable resource for UHS researchers.
Interaction of Hydrogen Jets with Hot Surfaces
Sep 2017
Publication
The formation of hydrogen jets from pressurized sources and its ignition when hitting hot devices has been studied by many projects. The transient jets evolve with high turbulence depending on the configuration of the nozzle and especially the pressure in the hydrogen reservoir. In addition the length of the jets and the flames generated by ignition at a hot surface varies. Parameters to be varied were initial pressure of the source (2.5 10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (between 400 and 1000 K). The interaction of the hydrogen jets is visualized by high-speed cinematography techniques which allow analysing the jet characteristics. By combination of various methods of image processing the visibility of the phenomena on the videos taken at 15 000 fps was improved. In addition high-speed NIR spectroscopy was used to obtain temperature profiles of the expanding deflagrations. The jets ignite already above 450 K for conditions mainly from the tubular source at 40 MPa. In addition the propagation of the flame front depends on all three varied parameters: temperature of the hot surface pressure in the reservoir and distance between nozzle and hot surface. In most cases also upstream propagation occurs. A high turbulence seems to lead to the strong deflagrations. At high temperatures of the ignition sources the interaction leads to fast deflagration and speeds up- and downstream of the jet. The deflagration velocity is close to velocity of sound and emission of pressure waves occurs.
A Dual Zone Thermodynamic Model for Refueling Hydrogen Vehicles
Sep 2017
Publication
With the simple structure and quick refuelling process the compressed hydrogen storage system is currently widely used. However thermal effects during charging-discharging cycle may induce temperature change in storage tank which has significant impact on the performance of hydrogen storage and the safety of hydrogen storage tank. To address this issue we once propose a single zone lumped parameter model to obtain the analytical solution of hydrogen temperature and use the analytical solution to estimate the hydrogen temperature but the effect of the tank wall is ignored. For better description of the heat transfer characteristics of the tank wall a dual zone (hydrogen gas and tank wall) lumped parameter model will be considered for widely representation of the reference (experimental or simulated) data. Now we extend the single zone model to the dual zone model which uses two different temperatures for gas zone and wall zone. The dual zone model contains two coupled differential equations. To solve them and obtain the solution we use the method of decoupling the coupled differential equations and coupling the solutions of the decoupled differential equations. The steps of the method include: (1) Decoupling of coupled differential equations; (2) Solving decoupled differential equations; (3) Coupling of solutions of differential equations; (4) Solving coupled algebraic equations. Herein three cases are taken into consideration: constant inflow/outflow temperature variable inflow/outflow temperature and constant inflow temperature and variable outflow temperature. The corresponding approximate analytical solutions of hydrogen temperature and wall temperature can be obtained. The hydrogen pressure can be calculated from the hydrogen temperature and the hydrogen mass using the equation of state for ideal gas. Besides the two coupled differential equations can also be solved numerically and the simulated solution can also be obtained. This study will help to set up a formula based approach of refuelling protocol for gaseous hydrogen vehicles.
Hydrogen Combustion Experiments in a Vertical Semi-confined Channel
Sep 2017
Publication
Experiments in an obstructed semi-confined vertical combustion channel with a height of 6 m (cross-section 0.4 × 0.4 m) inside a safety vessel of the hydrogen test center HYKA at the Karlsruhe Institute of Technology (KIT) are reported. In the work homogeneous hydrogen-air-mixtures as well as mixtures with different well-defined H2-concentration gradients were ignited either at the top or at the bottom end of the channel. The combustion characteristics were recorded using pressure sensors and sensors for the detection of the flame front that were distributed along the complete channel length. In the tests slow subsonic and fast sonic deflagrations as well as detonations were observed and the conditions for the flame acceleration (FA) to speed of sound and deflagration-to-detonation transition (DDT) are compared with the results of similar experiments performed earlier in a larger semi-confined horizontal channel.
Helios- A New Method for Hydrogen Permeation Test
Sep 2013
Publication
Hydrogen induced cracking is still a severe and current threat for several industrial applications. With the aim of providing a simple and versatile device for hydrogen detection a new instrument was designed based on solid state sensor technology. New detection technique allows to execute hydrogen permeation measurement in short time and without material surface preparation. Thanks to this innovation HELIOS offers a concrete alternative to traditional experimental methods for laboratory permeability tests. In addition it is proposed as a new system for Non Destructive Testing of components in service in hydrogenating environment. Hydrogen flux monitoring is particularly relevant for risk mitigation of elements involved in hydrogen storage and transportation. Hydrogen permeation tests were performed by means of HELIOS instruments both on a plane membrane and on the wall of a gas cylinder. Results confirmed the extreme sensitivity of the detection system and its suitability to perform measurements even on non metallic materials by means of an easy-to-handle instrument.
Experimental Study of the Thermal Behaviour of Hydrogen Tanks During Hydrogen Cycling
Sep 2013
Publication
The thermal behaviour of several commercial hydrogen tanks has been studied during high pressure (70-84 MPa) hydrogen cycling. The temperature of the gas at different points inside the tank the temperature at the bosses and the tank outer wall temperature have been measured under different filling and emptying conditions. From the experimental results the effect of the filling rate (1.5-4 g/s) and the influence of the liner material in the thermal behaviour of the hydrogen tanks have been evaluated. Bosses thermal response under the different cycling conditions has also been investigated.
Large Eddy Simulations of Asymmetric Turbulent Hydrogen Jets Issuing from Realistic Pipe Geometries
Sep 2017
Publication
In the current study a Large Eddy Simulation strategy is applied to model the dispersion of compressible turbulent hydrogen jets issuing from realistic pipe geometries. The work is novel as it explores the effect of jet densities and Reynolds numbers on vertical buoyant jets as they emerge from the outer wall of a pipe through a round orifice perpendicular to the mean flow within the pipe. An efficient Godunov solver is used and coupled with Adaptive Mesh Refinement to provide high resolution solutions only in areas of interest. The numerical results are validated against physical experiments of air and helium which allows a degree of confidence in analysing the data obtained for hydrogen releases. The results show that the jets investigated are always asymmetric. Thus significant discrepancies exist when applying conventional round jet assumptions to determine statistical properties associated with gas leaks from pipelines.
Experimental Measurements, CFD Simulations and Model for a Helium Release in a Two Vents Enclosure
Sep 2017
Publication
The present work proposes improvements on a model developed by Linden to predict the concentration distribution in a 2 vented cavities. Recent developments on non constant entrainment coefficient from Carazzo et al as well as a non constant pressure distribution at the vents-the vents being vertical-are included in the Linden approach. This model is compared with experimental results from a parametric study on the influence of the height of the release source on the helium dispersion regimes inside a naturally ventilated 2 vents enclosure. The varying parameters of the study were mainly the height of the release the releasing flow rate and the geometry of the vents. At last Large Eddy Simulations of the flow and Particle Image Velocimetry measurements performed on a small 2 vented cavity are presented. The objective is to have a better understanding of the flow structure which is at the origin of the 2 layers concentration distribution described by Linden.
Modeling of Hydrogen Pressurization and Extraction in Cryogenic Pressure Vessels Due to Vacuum Insulation Failure
Sep 2017
Publication
We have analyzed vacuum insulation failure in an automotive cryogenic pressure vessel (also known as cryo-compressed vessel) storing hydrogen (H2). Vacuum insulation failure increases heat transfer into cryogenic vessels by about a factor of 100 potentially leading to rapid pressurization and venting to avoid exceeding maximum allowable working pressure (MAWP). H2 release to the environment may be dangerous if the vehicle is located in a closed space (e.g. a garage or tunnel) at the moment of insulation failure. We therefore consider utilization of the hydrogen in the vehicle fuel cell and electricity dissipation through operation of vehicle accessories or battery charging as an alternative to releasing hydrogen to the environment. We consider two strategies: initiating hydrogen extraction immediately after vacuum insulation failure or waiting until MAWP is reached before extraction. The results indicate that cryogenic pressure vessels have thermodynamic advantages that enable slowing down hydrogen release to moderate levels that can be consumed in the fuel cell and dissipated onboard the vehicle even in the worst case when the vacuum fails with a vessel storing hydrogen at maximum refuel density (70 g/L at 300 bar). The two proposed strategies are therefore feasible and the best alternative can be chosen based on economic and/or implementation constraints.
Numerical Investigation on the Self-ignition Behavior of High Pressure Hydrogen Released from the Tube
Sep 2017
Publication
This paper shows the numerical investigation on the self-ignition behavior of high pressure hydrogen released from the tube. The present study aims to clarify the effect of parameters on the behavior and duration of self-ignition outside the tube using two-dimensional axisymmetric numerical simulation with detailed chemistry. The parameters in this study are release pressure tube diameter and tube length. The strength of the spherical shock wave to keep chemical reaction and expansion are important factors for self ignited hydrogen jet to be sustained outside the tube. The trend of strength of spherical shock wave is enhanced by higher release pressure and larger tube diameter. The chemical reaction weakens due to expansion and the degree of expansion becomes larger as the spherical shock wave propagates. The characteristic time for the chemical reaction becomes shorter in higher release pressure larger tube diameter and longer tube diameter cases from the induction time under constant volume assumption. The self ignited hydrogen jet released from the tube is sustained up to the distance where the characteristic time for chemical reaction is shorter than the characteristic time for the flow to expand and higher release pressure larger tube diameter and longer tube length expand the distance where the tip flame can propagate downstream. For the seed flame which is the key for jet fire the larger amount of the ignited volume when the shock wave reaches the tube exit contributes to the formation and stability of the seed flame. The amount of the ignited volume tends to be larger in the longer tube length higher release pressure and larger tube diameter cases.
Safety Considerations and Approval Procedures for the Integration of Fuel Cells on Board of Ships
Sep 2009
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's hare of emissions to air is regarded to be significant and public concern lead to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce additional regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or main propulsion. The presentation summarizes the legal background in international shipping related to the use for gas as ship fuel and fuel cells. The focus of the presentation will be on the safety principles for the use of gas as fuel and fuel cells on board of ships and boats. The examples given show the successful integration of such systems on board of ships. Furthermore a short outlook will be given to the ongoing and planed projects for the use of fuel cells on board of ships.
RBD-fast Based Sensitivity and Uncertainty Analysis on a Computational Hydrogen Recombiner Test Case
Sep 2017
Publication
Deflagration-to-Detonation Transition Ratio (DDTR) is an important parameter in measuring the hazard of hydrogen detonation at given thermodynamic conditions. It’s among the major tasks to evaluate DDTR in the study of hydrogen safety in a nuclear containment. With CFD tools detailed distribution of thermodynamic parameters at each instant can be simulated with considerable reliability. Then DDTR can be estimated using related CFD output. Forstochastic or epistemic reasons uncertainty always exists in input parameters during computations. This lack of accuracy can finally be reflected in the uncertainty of computation results e.g. DDTR in our consideration. The analysis of the influence of the input uncertainty is therefore a key step to understand the model’s response on the output and possibly to improve the accuracy. The increase of computational power makes it possible to perform statistics-based sensitivity and uncertainty (SU) analysis on CFD simulations. This paper aims at presenting some ideas on the procedure in safety analysis on hydrogen in nuclear containment. A hydrogen recombiner case is constructed and simulated with CFD method. DDTR at each instant is computed using a semi-empirical method. RBD-FAST based SU analysis is performed on the result.
Development of a Model Evaluation Protocol for CFD Analysis of Hydrogen Safety Issues – The SUSANA Project
Oct 2015
Publication
The “SUpport to SAfety aNAlysis of Hydrogen and Fuel Cell Technologies (SUSANA)” project aims to support stakeholders using Computational Fluid Dynamics (CFD) for safety engineering design and assessment of FCH systems and infrastructure through the development of a model evaluation protocol. The protocol covers all aspects of safety assessment modelling using CFD from release through dispersion to combustion (self-ignition fires deflagrations detonations and Deflagration to Detonation Transition - DDT) and not only aims to enable users to evaluate models but to inform them of the state of the art and best practices in numerical modelling. The paper gives an overview of the SUSANA project including the main stages of the model evaluation protocol and some results from the on-going benchmarking activities.
Clean Energy and Fuel Storage
Aug 2019
Publication
Clean energy and fuel storage is often required for both stationary and automotive applications. Some of the clean energy and fuel storage technologies currently under extensive research and development are hydrogen storage direct electric storage mechanical energy storage solar-thermal energy storage electrochemical (batteries and supercapacitors) and thermochemical storage. The gravimetric and volumetric storage capacity energy storage density power output operating temperature and pressure cycle life recyclability and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and on-board vehicular transportation. This Special Issue thus serves the need to promote exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to a practical and sustainable infrastructure.
Energy-efficient Conversion of Microalgae to Hydrogen and Power
Jun 2017
Publication
An integrated system for H2 production from microalgae and its storage is proposed employing enhanced process integration technology (EPI). EPI consists of two core technologies i.e. exergy recovery and process integration. The proposed system includes a supercritical water gasification H2 separation hydrogenation and combined cycle. Microalga Chlorella vulgaris is used as a material for evaluation. The produced syngas is separated to produce highly pure H2. Furthermore to store the produced H2 liquid organic H2 carrier of toluene-and-methylcyclohexane cycle is adopted. The remaining gas is used as fuel for combustion in combined cycle to generate electricity. The effects of fluidization velocity and gasification pressure to energy efficiency are evaluated. From process modelling and calculation it is shown that high total energy efficiency about 60% can be achieved. In addition about 40% of electricity generation efficiency can be realized.
Modelling Liquid Hydrogen Release and Spread on Water
Sep 2017
Publication
Consequence modelling of high potential risks of usage and transportation of cryogenic liquids yet requires substantial improvements. Among the cryogenics liquid hydrogen (LH2) needs especial treatments and a comprehensive understanding of spill and spread of liquid and dispersion of vapor. Even though many of recent works have shed lights on various incidents such as spread dispersion and explosion of the liquid over land less focus was given on spill and spread of LH2 onto water. The growing trend in ship transportation has enhanced risks such as ships’ accidental releases and terrorist attacks which may ultimately lead to the release of the cryogenic liquid onto water. The main goal of the current study is to present a computational fluid dynamic (CFD) approach using OpenFOAM to model release and spread of LH2 over water substrate and discuss previous approaches. It also includes empirical heat transfer equations due to boiling and computation of evaporation rate through an energy balance. The results of the proposed model will be potentially used within another coupled model that predicts gas dispersion]. This work presents a good practice approach to treat pool dynamics and appropriate correlations to identify heat flux from different sources. Furthermore some of the previous numerical approaches to redistribute or in some extend manipulate the LH2 pool dynamic are brought up for discussion and their pros and cons are explained. In the end the proposed model is validated by modelling LH2 spill experiment carried out in 1994 at the Research Centre Juelich in Germany.
Dynamic Load Analysis of Explosion in Inhomogeneous Hydrogen-air Mixtures
Sep 2017
Publication
This paper presents results from experiments on gas explosions in inhomogeneous hydrogen-air mixtures. The experimental channel is 3 m with a cross section of 100 mm by 100 mm and a 0.25 mm ID nozzle for hydrogen release into the channel. The channel is open in one end. Spectral analysis of the pressure in the channel is used to determine dynamic load factors for SDOF structures. The explosion pressures in the channel will fluctuate with several frequencies or modes and a theoretical high DLF is seen when the pressure frequencies and eigen frequencies of the structure matches.
Vented Hydrogen-air Deflagrations in Low Strength Equipment and Buildings
Sep 2013
Publication
This paper aims to improve prediction capability of the vent sizing correlation presented in the form of functional dependence of the dimensionless deflagration overpressure on the turbulent Bradley number similar to our previous studies. The correlation is essentially upgraded based on recent advancements in understanding and modelling of combustion phenomena relevant to hydrogen-air vented deflagrations and unique large-scale tests carried out by different research groups. The focus is on hydrogen-air deflagrations in low-strength equipment and buildings when the reduced pressure is accepted to be below 0.1 MPa. The combustion phenomena accounted for by the correlation include: turbulence generated by the flame front itself; leading point mechanism stemming from the preferential diffusion of hydrogen in air in stretched flames; growth of the fractal area of the turbulent flame surface; initial turbulence in the flammable mixture; as well as effects of enclosure aspect ratio and presence of obstacles. The correlation is validated against the widest range of experimental conditions available to date (76 experimental points). The validation covers a wide range of test conditions: different shape enclosures of volume up to 120 m3; initially quiescent and turbulent hydrogen-air mixtures; hydrogen concentration in air from 6% to 30% by volume; ignition source location at enclosure centre near and far from a vent; empty enclosures and enclosures with obstacles.
Sample Scale Testing Method to Prevent Collapse of Plastic Liners in Composite Pressure Vessels
Sep 2017
Publication
Type IV pressure vessels are commonly used for hydrogen on-board stationary or bulk storages. When pressurised hydrogen permeates through the materials and solves into them. Emptying then leads to a difference of pressure at the interface between composite and liner possibly leading to a permanent deformation of the plastic liner called “collapse” or “buckling”. This phenomenon has been studied through French funded project Colline allowing to better understand its initiation and long-term effects. This paper presents the methodology followed using permeation tests hydrogen decompression tests on samples and gas diffusion calculation in order to determine safe operating conditions such as maximum flow rate or residual pressure level.
Analysis of Out-of-spec Events During Refueling of On-board Hydrogen Tanks
Sep 2017
Publication
For refuelling on-board hydrogen tanks table-based or formula based protocols are commonly used. These protocols are designed to achieve a tank filling close to 100% SOC (State of Charge) in s safe way: without surpassing temperature (-40°C to 85°C) and pressure limits (125% Nominal Working Pressure NWP). The ambient temperature the initial pressure and the volume category of the (compressed hydrogen storage system CHSS are used as inputs to determine the final target pressure and the pressure ramp rate (which controls the filling duration). However abnormal out-of-spec events (e.g. misinformation of storage system status and characteristics of the storage tanks) may occur and result in a refuelling in which the safety boundaries are surpassed. In the present article the possible out of specification (out-of-spec) events in a refuelling station have been analyzed. The associated hazards when refuelling on-board hydrogen tanks have been studied. Experimental results of out-of-spec event tests performed on a type 3 tank are presented. The results show that on the type 3 tank the safety temperature limit of 85°C was only surpassed under a combination of events; e.g. an unnoticed stop of the cooling of the gas combined with a wrong input of ambient temperature at a very warm environment. On the other hand under certain events (e.g. cooling the gas below the target temperature) and in particular under cold environmental conditions the 100% SOC limit established in the fuelling protocols has been surpassed. Hydrogen safety on-board tanks refuelling protocols out-of-spec events.
Hydrogen - A Pipeline to the Future
Sep 2020
Publication
Scotland’s Achievements and Ambitions for Clean Hydrogen - a joint webinar between the Scottish Hydrogen and Fuel Cell Association and the Pipeline Industries Guild (Scottish branch).
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Safety Concept of a self-sustaining PEM Hydrogen Electrolyzer System
Sep 2013
Publication
Sustainable electricity generation is gaining importance across the globe against the backdrop of ever- diminishing resources and to achieve significant reductions in CO2 emissions. One of the challenges is storing excess energy generated from wind and solar power. Siemens developed an electrolysis system based on proton exchange membrane (PEM) technology enabling large volumes of energy to be stored through the conversion of electrical energy into hydrogen. In developing this new product range Siemens worked intensively on safe operation with a special focus on safety measures (primary secondary and tertiary). Indeed hydrogen is not only a rapidly diffusing gas with a wide range of flammability but frequent lack of information leads to insecurity among the public. Siemens PEM water electrolyzer operates at a working pressure of 50 bar / 5 MPa. The current product generation is being used for demonstration purposes and fits into a 30 ft. / 9.14 m container. Further industrialized product lines up to double-digit medium voltage ranges will be available on the market short- and mid-term. The system is designed to operate self-sustaining. Therefore special features such as back-up and fail-safe mode supported by remote monitoring and access have been implemented. This paper includes Siemens' approach to develop and implement a safety concept for the PEM water electrolyzer leading into the approval and certification by a Notified Body as well as the lessons learnt from test stand and field experience in this new application field
Energy Management Strategy of Hydrogen Fuel Cell/Battery/Ultracapacitor Hybrid Tractor Based on Efficiency Optimization
Dec 2022
Publication
With the application of new energy technology hybrid agricultural machinery has been developed. This article designs a hybrid tractor energy management method to solve the problem of high energy consumption caused by significant load fluctuation of the tractor in field operation. This article first analyzes the characteristics of the hydrogen fuel cell power battery and ultracapacitor and designs a hybrid energy system for the tractor. Second the energy management strategy (EMS) of multi-layer decoupling control based on the Haar wavelet and logic rule is designed to realize the multi-layer decoupling of high-frequency low-frequency and steady-state signals of load demand power. Then the EMS redistributes the decoupled power signals to each energy source. Finally a hardware-in-loop simulation experiment was carried out through the model. The results show that compared with single-layer control strategies such as fuzzy control and power-following control the multi-layer control strategy can allocate the demand power more reasonably and the efficiency of the hydrogen fuel cell is the highest. The average efficiency of the hydrogen fuel cell was increased by 2.87% and 1.2% respectively. Furthermore the equivalent hydrogen consumption of the tractor was reduced by 17.06% and 5.41% respectively within the experimental cycle. It is shown that the multi-layer control strategy considering power fluctuation can improve the vehicle economy based on meeting the power demanded by the whole vehicle load.
Effect of Rotation on Ignition Thresholds of Stoichiometric Hydrogen Mixtures
Sep 2017
Publication
Successful transition to a hydrogen economy calls for a deep understanding of the risks associated with its widespread use. Accidental ignition of hydrogen by hot surfaces is one of such risks. In the present study we investigated the effect that rotation has on the reported ignition thresholds by numerically determining the minimum surface temperature required to ignite stoichiometric hydrogen-air using a hot horizontal cylinder rotating at various angular velocities ω. Numerical experiments showed a weak but interesting dependence of the ignition thresholds on rotation: the ignition thresholds increased by 8 K from 931 K to 939 K with increasing angular velocity (0 ≤ ω ≤ 240 rad/s). A further increase to ω = 480 rad/s resulted in a decrease in ignition surface temperature to 935 K. Detailed analysis of the flow patterns inside the vessel and in close proximity to the hot surface brought about by the combined effect of buoyancy and rotation as well as of the distribution of the wall heat flux along the circumference of the cylinder support our previous findings in which regions where temperature gradients are small were found to be prone to ignition.
Achievements of The EC Network of Excellence Hysafe
Sep 2009
Publication
In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to facilitate the safe introduction of hydrogen as an energy carrier by removing the safety related obstacles. The prioritisation of the HySafe internal project activities was based on a phenomena identification and ranking exercise (PIRT) and expert interviews. The identified research headlines were “Releases in (partially) confined areas” “Mitigation” and “Quantitative Risk Assessment”. Along these headlines existing or planned research work was re-orientated and slightly modified to build up three large internal research projects “InsHyde” “HyTunnel” and “HyQRA”. In InsHyde realistic indoor hydrogen leaks and associated hazards have been investigated to provide recommendations for the safe use of indoor hydrogen systems including mitigation and detection means. The appropriateness of available regulations codes and standards (RCS) has been assessed. Experimental and numerical work was conducted to benchmark simulation tools and to evaluate the related recommendations. HyTunnel contributed to the understanding of the nature of the hazards posed by hydrogen vehicles inside tunnels and its relative severity compared to other fuels. In HyQRA quantitative risk assessment strategies were applied to relevant scenarios in a hydrogen refuelling station and the performance was compared to derive also recommendations. The integration provided by the network is manifested by a series of workshops and benchmarks related to experimental and numerical work. Besides the network generated the following products: the International Conference on Hydrogen Safety the first academic education related to hydrogen safety and the Safety Handbook. Finally the network initiated the founding of the International Association for Hydrogen Safety which will open up the future networking to all interested parties on an international level. The indicated results of this five years integration activity will be described in short.
Non-adiabatic Blowdown Model: A Complimentary Tool for the Safety Design of Tank-TPRD System
Sep 2017
Publication
Previous studies have demonstrated that while blowdown pressure is reproduced well by both adiabatic and isothermal analytical models the dynamics of temperature cannot be predicted well by either model. The reason for the last is heat transfer to cooling during expansion gas from the vessel wall. Moreover when exposed to an external fire the temperature inside the vessel increases i.e. when a thermally activated pressure relief device (TPRD) is still closed with subsequent pressure increase that may lead to a catastrophic rupture of the vessel. The choice of a TPRD exit orifice size and design strategy are challenges: to provide sufficient internal pressure drop in a fire when the orifice size is too small; to avoid flame blow off expected with the decrease of pressure during the blowdown; to decrease flame length of subsequent jet fire as much as possible by the decrease of the orifice size under condition of sufficient fire resistance provisions to avoid pressure peaking phenomenon etc. The adiabatic model of blowdown [1] was developed using the Abel-Nobel equation of state and the original theory of underexpanded jet [2]. According to experimental observations e.g. [3] heat transfer plays a significant role during the blowdown. Thus this study aims to modify the adiabatic blowdown model to include the heat transfer to non-ideal gas. The model accounts for a change of gas temperature inside the vessel due to two “competing” processes: the decrease of temperature due to gas expansion and the increase of temperature due to heat transfer from the surroundings e.g. ambience or fire through the vessel wall. This is taken into account in the system of equations of adiabatic blowdown model through the change of energy conservation equation that accounts for heat from outside. There is a need to know the convective heat transfer coefficient between the vessel wall and the surroundings and wall size and properties to define heat flux to the gas inside the vessel. The non-adiabatic model is validated against available experimental data. The model can be applied as a new engineering tool for the inherently safer design of hydrogen tank-TPRD system.
Monte-Carlo-analysis of Minimum Load Cycle Requirements for Composite Cylinders for Hydrogen
Sep 2017
Publication
Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3 UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition the probability of acceptance for potentially unsafe design types is determined.
Introductory Course on Hydrogen Safety at CENEH-UNICAMP
Sep 2013
Publication
The course is an introduction to the procedures for safe handling of hydrogen flammable and toxic gases by small users working in the field of hydrogen and fuel cells. Theoretical and practical aspects are emphasized aiming at identifying the main hazards and reduce the risks associated with the use of these gases. Topics: 1. Market hydrogen production fuel cells and energy storage; 2. International System of Units Comparison between the ideal gas and real gases; 3. Safety of gases and hydrogen; 4. Cylinders fittings and valves for gases and hydrogen; 5. Purge of gases; 6. Infrastructure for gases and hydrogen; 7. Accidents with hydrogen.
Hydrogen Safety Sensor Performance and Use Gap Analysis
Sep 2017
Publication
Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However gaps in sensor metrological specifications as well as in their performance for some applications exist. The U.S. Department of Energy (DOE) Fuel Cell Technologies Office published a short list of critical gaps in the 2007 and 2012 Multiyear Project Plans; more detailed gap analyses were independently performed by the Joint Research Centre (JRC) and the National Renewable Energy Laboratory (NREL). There have been however some significant advances in sensor technologies since these assessments including the commercial availability of hydrogen sensors with fast response times (t90 < 1 s which had been an elusive DOE target since 2007) improved robustness to chemical poisons improved selectivity and improved lifetime and stability. These improvements however have not been universal and typically pertain to select platforms or models. Moreover as hydrogen markets grow and new applications are being explored more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and the JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community especially end users. NREL and the JRC are currently organizing a series of workshops (in Europe and the United States) with sensor developers end-users and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop was held on May 10 in Brussels Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at NREL in Golden CO USA. This paper reviews improvements in sensor technologies in the past 5 to 10 years identifies gaps in sensor performance and use requirements and identifies potential research strategies to address the gaps. The outcomes of the Hydrogen Sensors Workshops are also summarized.
Security Risk Analysis of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Sep 2017
Publication
Although many studies have looked at safety issues relating to hydrogen fuelling stations few studies have analyzed the security risks such as deliberate attack of the station by threats such as terrorists and disgruntled employees. The purpose of this study is to analyze security risks for a hydrogen fuelling station with an on-site production of hydrogen from methylcyclohexane. We qualitatively conducted a security risk analysis using American Petroleum Institute Standard 780 as a reference for the analysis. The analysis identified 93 scenarios including pool fires. We quantitatively simulated a pool fire scenario unique to the station to analyze attack consequences. Based on the analysis and the simulation we recommend countermeasures to prevent and mitigate deliberate attacks.
Failure of PEM Water Electrolysis Cells: Case Study Involving Anode Dissolution and Membrane Thinning
Sep 2013
Publication
Polymer electrolyte membrane (PEM) water electrolysis is an efficient and environmental friendly method that can be used for the production of molecular hydrogen of electrolytic grade using zero-carbon power sources such as renewable and nuclear. However market applications are asking for cost reduction and performances improvement. This can be achieved by increasing operating current density and lifetime of operation. Concerning performance safety reliability and durability issues the membrane-electrode assembly (MEA) is the weakest cell component. Most performance losses and most accidents occurring during PEM water electrolysis are usually due to the MEA. The purpose of this communication is to report on some specific degradation mechanisms that have been identified as a potential source of performance loss and membrane failure. An accelerated degradation test has been performed on a MEA by applying galvanostatic pulses. Platinum has been used as electrocatalyst at both anode and cathode in order to accelerate degradation rate by maintaining higher cell voltage and higher anodic potential that otherwise would have occurred if conventional Ir/IrOx catalysts had been used. Experimental evidence of degradation mechanisms have been obtained by post-mortem analysis of the MEA using microscopy and chemical analysis. Details of these degradation processes are presented and discussed.
Dependence of Hydrogen Embrittlement on Hydrogen in the Surface Layer in Type 304 Stainless Steel
Sep 2013
Publication
Hydrogen embrittlement (HE) together with the hydrogen transport behaviour in hydrogen-charged type 304 stainless steel was investigated by combined tension and outgassing experiments. The hydrogen release rate and HE of hydrogen-charged 304 specimens increase with the hydrogen pressure for hydrogen-charging (or hydrogen content) and almost no HE is observed below the hydrogen content of 8.5 mass ppm. Baking at 433 K for 48 h can eliminate HE of the hydrogen-charged 304 specimen while removing the surface layer will restore HE which indicates that hydrogen in the surface layer plays the primary role in HE. Scanning electron microscopy (SEM) and scanning tunnel microscopy (STM) observations show that particles attributed to the strain-induced α′ martensite formation break away from the matrix and the small holes form during deformation on the specimen surface. With increasing strain the connection among small holes along {111} slip planes of austenite will cause crack initiation on the surface and then the hydrogen induced crack propagates from the surface to interior.
Development of NaBH4-Based Hydrogen Generator for Fuel Cell Unmanned Aerial Vehicles with Movable Fuel Cartridge
Mar 2019
Publication
NaBH4-based hydrogen generator for fuel cell Unmanned Aerial Vehicle (UAVs) with movable fuel cartridge was developed in the present study. The main fuel of hydrogen generator is Sodium borohydride (NaBH4) that is a kind of chemical hydride and has a high hydrogen storage density. In the previous studies hydrogen generators were developed in which hydrogen was directly generated from solid state NaBH4. However it was a prototype so inconvenient to replace the fuel after used up and lacked user convenience. Therefore the performance evaluation and the development procedure of NaBH4-based hydrogen generator that was designed taking user convenience in consideration for commercialization were described in this paper.
Mixing and Warming of Cryogenic Hydrogen Releases
Sep 2017
Publication
Laboratory measurements were made on the concentration and temperature fields of cryogenic hydrogen jets. Images of spontaneous Raman scattering from a pulsed planar laser sheet were used to measure the concentration and temperature fields from varied releases. Jets with up to 5 bar pressure with near-liquid temperatures at the release point were characterized in this work. This data is relevant for characterizing unintended leaks from piping connected to cryogenic hydrogen storage tanks such as might be encountered at a hydrogen fuel cell vehicle fuelling station. The average centerline mass fraction was observed to decay at a rate similar to room temperature hydrogen jets while the half-width of the Gaussian profiles of mass fraction were observed to spread more slowly than for room temperature hydrogen. This suggests that the mixing and models for cryogenic hydrogen may be different than for room temperature hydrogen. Results from this work were also compared to a one-dimensional (streamwise) model. Good agreement was seen in terms of temperature and mass fraction. In subsequent work a validated version of this model will be exercised to quantitatively assess the risk at hydrogen fuelling stations with cryogenic hydrogen on-site.
Analysis of Transient Supersonic Hydrogen Release, Dispersion and Combustion
Sep 2017
Publication
A hydrogen leak from a facility which uses highly compressed hydrogen gas (714 bar 800 K) during operation was studied. The investigated scenario involves supersonic hydrogen release from a 10 cm2 leak of the pressurized reservoir turbulent hydrogen dispersion in the facility room followed by an accidental ignition and burn-out of the resulting H2-air cloud. The objective is to investigate the maximum possible flame velocity and overpressure in the facility room in case of a worst-case ignition. The pressure loads are needed for the structural analysis of the building wall response. The first two phases namely unsteady supersonic release and subsequent turbulent hydrogen dispersion are simulated with GASFLOW-MPI. This is a well validated parallel all-speed CFD code which solves the compressible Navier-Stokes equations and can model a broad range of flow Mach numbers. Details of the shock structures are resolved for the under-expanded supersonic jet and the sonic-subsonic transition in the release. The turbulent dispersion phase is simulated by LES. The evolution of the highly transient burnable H2-air mixture in the room in terms of burnable mass volume and average H2-concentration is evaluated with special sub-routines. For five different points in time the maximum turbulent flame speed and resulting overpressures are computed using four published turbulent burning velocity correlations. The largest turbulent flame speed and overpressure is predicted for an early ignition event resulting in 35–71 m/s and 0.13–0.27 bar respectively.
A Study of Hydrogen Flame Length with Complex Nozzle Geometry
Sep 2017
Publication
The growing number of hydrogen fillings stations and cars increases the need for accurate models to determine risk. The effect on hydrogen flame length was measured by varying the diameter of the spouting nozzle downstream from the chocked nozzle upstream. The results was compared with an existing model for flame length estimations. The experimental rig was setup with sensors that measured accurately temperature mass flow heat radiation and the pressure range from 0.1 to 11 MPa. The flame length was determined with an in-house developed image-processing tool which analyzed a high-speed film of the each experiment. Results show that the nozzle geometry can cause a deviation as high as 50% compared to estimated flame lengths by the model if wrong assumptions are made. Discharge coefficients for different nozzles has been calculated and presented.
Hydrogen Strategy for Canada: Seizing the Opportunities for Hydrogen - A Call to Action
Dec 2020
Publication
For more than a century our nation’s brightest minds have been working on the technology to turn the invisible promise of hydrogen into tangible solutions. Canadian ingenuity and innovation has once again brought us to a pivotal moment. As we rebuild our economy from the impacts of COVID-19 and fight the existential threat of climate change the development of low-carbon hydrogen is a strategic priority for Canada. The time to act is now.<br/>The Hydrogen Strategy for Canada lays out an ambitious framework for actions that will cement hydrogen as a tool to achieve our goal of net-zero emissions by 2050 and position Canada as a global industrial leader of clean renewable fuels. This strategy shows us that by 2050 clean hydrogen can help us achieve our net-zero goal—all while creating jobs growing our economy and protecting our environment. This will involve switching from conventional gasoline diesel and natural gas to zero-emissions fuel sources taking advantage of new regulatory environments and embracing new technologies to give Canadians more choice of zero emission alternatives.<br/>As one of the top 10 hydrogen producers in the world today we are rich in the feedstocks that produce hydrogen. We are blessed with a strong energy sector and the geographic assets that will propel Canada to be a major exporter of hydrogen and hydrogen technologies. Hydrogen might be nature’s smallest molecule but its potential is enormous. It provides new markets for our conventional energy resources and holds the potential to decarbonize many sectors of our economy including resource extraction freight transportation power generation manufacturing and the production of steel and cement. This Strategy is a call to action. It will spur investments and strategic partnerships across the country and beyond our borders. It will position Canada to seize economic and environmental opportunities that exist coast to coast. Expanding our exports. Creating as many as 350000 good green jobs over the next three decades. All while dramatically reducing our greenhouse gas emissions. And putting a net-zero future within our reach.<br/>The importance of Canada’s resource industries and our clean technology sectors has been magnified during the pandemic. We must harness our combined will expertise and financial resources to fully seize the opportunities that hydrogen presents. This strategy is the product of three years of study and analysis including extensive engagement sessions where we heard from more than 1500 of our country’s leading experts and stakeholders. But its release is not the end of a process. This is only the beginning. Together we will use this Strategy to guide our actions and investments. By working with provinces and territories Indigenous partners and the private-sector and by leveraging our many advantages we will create the prosperity we all want protect the planet we all cherish and we will ensure we leave no one behind.
Real-gas Equations-of-State for the GASFLOW CFD Code
Sep 2011
Publication
GASFLOW is a finite-volume computer code that solves the time-dependent two-phase homogeneous equilibrium model compressible Navier–Stokes equations for multiple gas species with turbulence. The fluid-dynamics algorithm is coupled with conjugate heat and mass transfer models to represent walls floors ceilings and other internal structures to describe complex geometries such as those found in nuclear containments and facilities. Recent applications involve simulations of cryogenic hydrogen tanks at elevated pressures. These applications which often have thermodynamic conditions near the critical point require more accurate real-gas Equations-of-State (EoS) and transport properties than the standard ideal gas EoS and classical kinetic-theory transport properties. This paper describes the rigorous implementation of the generalized real-gas EoS into the GASFLOW CFD code as well as the specific implementation of respective real-gas models (Leachman's NIST hydrogen EoS a modified van der Waals EoS and a modified Nobel-Abel EoS); it also includes a logical testing procedure based upon a numerically exact benchmark problem. An example of GASFLOW simulations is presented for an ideal cryo-compressed hydrogen tank of the type utilized in fuel cell vehicles.
No more items...