- Home
- A-Z Publications
- Publications
Publications
Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage
May 2021
Publication
Subsurface porous formations provide large capacities for underground hydrogen storage (UHS). Successful utilization of these porous reservoirs for UHS depends on accurate quantification of the hydrogen transport characteristics at continuum (macro) scale specially in contact with other reservoir fluids. Relative-permeability and capillary-pressure curves are among the macro-scale transport characteristics which play crucial roles in quantification of the storage capacity and efficiency. For a given rock sample these functions can be determined if pore-scale (micro-scale) surface properties specially contact angles are known. For hydrogen/brine/rock system these properties are yet to a large extent unknown. In this study we characterize the contact angles of hydrogen in contact with brine and Bentheimer and Berea sandstones at various pressure temperature and brine salinity using captive-bubble method. The experiments are conducted close to the in-situ conditions which resulted in water-wet intrinsic contact angles about 25 to 45 degrees. Moreover no meaningful correlation was found with changing tested parameters. We monitor the bubbles over time and report the average contact angles with their minimum and maximum variations. Given rock pore structures using the contact angles reported in this study one can define relative-permeability and capillary-pressure functions for reservoir-scale simulations and storage optimization.
Integration of Battery and Hydrogen Energy Storage Systems with Small-scale Hydropower Plants in Off-grid Local Energy Communities
Apr 2024
Publication
The energy transition is pushing towards a considerable diffusion of local energy communities based on renewable energy systems and coupled with energy storage systems or energy vectors to provide independence from fossil fuels and limit carbon emissions. Indeed the variable and intermittent nature of renewables make them inadequate to satisfy the end-users’ electricity demand throughout the whole day; thus the study of energy storage systems considering their seasonal storage behaviour (e.g. energy-power coupling selfdischarge loss and minimum state of charge) is fundamental to guarantee the proper energy coverage. This work aims at identifying the off-grid operation of a local energy community powered by a 220 kW small-scale hydropower plant in the center of Italy using either a battery energy storage system or a hydrogen one with the Calliope framework. Results show that whereas the hydrogen storage system is composed of a 137 kW electrolyser a 41 kW fuel cell and a storage of 5247 kgH2 a battery system storage system would have a capacity of 280 MWh. Even though the battery storage has a better round-trip efficiency its self-discharge loss and minimum state of charge limitation involve a discharging phase with a steeper slope thus requiring considerable economic investments because of the high energy-to-power ratio.
Trapping, Hysteresis and Ostwald Ripening in Hydrogen Storage: A Pore-scale Imaging Study
Jan 2024
Publication
Green hydrogen produced from surplus electricity during peak production can be injected into subsurface reservoirs and retrieved during high-demand periods. In this study X-ray tomography was employed to examine hysteresis resulting from repeated hydrogen injection and withdrawal. An unsteady state experiment was performed to evaluate the distribution of hydrogen and brine after drainage and imbibition cycles: images of the pore-space configuration of fluids were taken immediately once injection had stopped and after waiting for a period of 16 h with no flow. A Bentheimer sandstone sample with a length of 60 mm and diameter of 12.8 mm was used and hydrogen was injected at ambient temperature and a pore pressure of 1 MPa. The gas flow rate was decreased from 2 ml/min to 0.08 ml/min over three cycles of gas injection followed by water flooding while the brine injection rate was kept constant. The results showed the presence of capillary pressure hysteresis and hydrogen migration through Ostwald ripening due to the diffusion of gas dissolved in the brine. These phenomena were characterized through analysis of interfacial curvature area connectivity and pore occupancy. The hydrogen tended to reside in the larger pore spaces consistent with water-wet conditions. 16 h after flow had stopped the hydrogen aggregated into larger ganglia with a single large connected ganglion dominating the volume. Moreover the Euler characteristic decreased after 16 h indicating an improvement in connectivity. The work implies that Ostwald ripening – mass transport of dissolved gas – leads to less hysteresis and better connectivity than would be assumed ignoring this effect as done in assessments of hydrocarbon flow and trapping.
Sustainability Assessment of Green Ammonia Production to Promote Industrial Decarbonization in Spain
Oct 2023
Publication
This article investigates the economic and environmental implications of implementing green ammonia production plants in Spain. To this end one business-as-usual scenario for gray ammonia production was compared with three green ammonia scenarios powered with different renewable energy sources (i.e. solar photovoltaic (PV) wind and a combination of solar PV and wind). The results illustrated that green ammonia scenarios reduced the environmental impacts in global warming stratospheric ozone depletion and fossil resource scarcity when compared with conventional gray ammonia scenario. Conversely green ammonia implementation increased the environmental impacts in the categories of land use mineral resource scarcity freshwater eutrophication and terrestrial acidification. The techno-economic analysis revealed that the conventional gray ammonia scenario featured lower costs than green ammonia scenarios when considering a moderate natural gas cost. However green ammonia implementation became the most economically favorable option when the natural gas cost and carbon prices increased. Finally the results showed that developing efficient ammonia-fueled systems is important to make green ammonia a relevant energy vector when considering the entire supply chain (production/transportation). Overall the results of this research demonstrate that green ammonia could play an important role in future decarbonization scenarios.
Effect of Relative Permeability Hysteresis on Reservoir Simulation of Underground Hydrogen Storage in an Offshore Aquifer
Mar 2023
Publication
Underground hydrogen storage (UHS) in porous media is proposed to balance seasonal fluctuations between demand and supply in an emerging hydrogen economy. Despite increasing focus on the topic worldwide the understanding of hydrogen flow in porous media is still not adequate. In particular relative permeability hys teresis and its impact on the storage performance require detailed investigations due to the cyclic nature of H2 injection and withdrawal. We focus our analysis on reservoir simulation of an offshore aquifer setting where we use history matched relative permeability to study the effect of hysteresis and gas type on the storage efficiency. We find that omission of relative permeability hysteresis overestimates the annual working gas capacity by 34 % and the recovered hydrogen volume by 85 %. The UHS performance is similar to natural gas storage when using hysteretic hydrogen relative permeability. Nitrogen relative permeability can be used to model the UHS when hysteresis is ignored but at the cost of the accuracy of the bottom-hole pressure predictions. Our results advance the understanding of the UHS reservoir modeling approaches.
Integration of Water Electrolysis Facilities in Power Grids: A Case Study in Northern Germany
Mar 2022
Publication
This work presents a study of the effects that integration of electrolysis facilities for Power-to-X processes have on the power grid. The novel simulation setup combines a high-resolution grid optimization model and a detailed scheduling model for alkaline water electrolysis. The utilization and congestion of power lines in northern Germany is investigated by setting different installed capacities and production strategies of the electrolysis facility. For electrolysis capacities up to 300 MW (~50 ktH2/a) local impacts on the grid are observed while higher capacities cause supra-regional impacts. Thereby impacts are defined as deviations from the average line utilization greater than 5%. In addition the minimum line congestion is determined to coincide with the dailyconstrained production strategy of the electrolysis facility. Our result show a good compromise for the integrated grid-facility operation with minimum production cost and reduced impact on the grid.
Hydrogen Relative Permeability Hysteresis in Underground Storage
Aug 2022
Publication
Implementation of the hydrogen economy for emission reduction will require storage facilitiesand underground hydrogen storage (UHS) in porous media offers a readily available large-scale option. Lack ofstudies on multiphase hydrogen flow in porous media is one of the several barriers for accurate predictions ofUHS. This paper reports for the first time measurements of hysteresis in hydrogen-water relative permeabilityin a sandstone core under shallow storage conditions. We use the steady state technique to measure primarydrainage imbibition and secondary drainage relative permeabilities and extend laboratory measurements withnumerical history matching and capillary pressure measurements to cover the whole mobile saturation range.We observe that gas and water relative permeabilities show strong hysteresis and nitrogen as substitute forhydrogen in laboratory assessments should be used with care. Our results serve as calibrated input to field scalenumerical modeling of hydrogen injection and withdrawal processes during porous media UHS.
Secure Hydrogen Production Analysis and Prediction Based on Blockchain Service Framework for Intelligent Power Management System
Nov 2023
Publication
The rapid adoption of hydrogen as an eco-friendly energy source has necessitated the development of intelligent power management systems capable of efficiently utilizing hydrogen resources. However guaranteeing the security and integrity of hydrogen-related data has become a significant challenge. This paper proposes a pioneering approach to ensure secure hydrogen data analysis by integrating blockchain technology enhancing trust transparency and privacy in handling hydrogen-related information. Combining blockchain with intelligent power management systems makes the efficient utilization of hydrogen resources feasible. Using smart contracts and distributed ledger technology facilitates secure data analysis (SDA) real-time monitoring prediction and optimization of hydrogen-based power systems. The effectiveness and performance of the proposed approach are demonstrated through comprehensive case studies and simulations. Notably our prediction models including ABiLSTM ALSTM and ARNN consistently delivered high accuracy with MAE values of approximately 0.154 0.151 and 0.151 respectively enhancing the security and efficiency of hydrogen consumption forecasts. The blockchain-based solution offers enhanced security integrity and privacy for hydrogen data analysis thus advancing clean and sustainable energy systems. Additionally the research identifies existing challenges and outlines future directions for further enhancing the proposed system. This study adds to the growing body of research on blockchain applications in the energy sector specifically on secure hydrogen data analysis and intelligent power management systems.
Seasonal Hydrogen Storage Decisions Under Constrained Electricity Distribution Capacity
Jun 2022
Publication
We consider a profit-maximizing renewable energy producer operating in a rural area with limited electricity distribution capacity to the grid. While maximizing profits the energy producer is responsible for the electricity supply of a local community that aims to be self-sufficient. Energy storage is required to deal with the energy productions' uncertain and intermittent character. A promising new solution is to use strategic hydrogen reserves. This provides a long-term storage option to deal with seasonal mismatches in energy production and the local community's demand. Using a Markov decision process we provide a model that determines optimal daily decisions on how much energy to store as hydrogen and buy or sell from the power grid. We explicitly consider the seasonality and uncertainty of production demand and electricity prices. We show that ignoring seasonal demand and production patterns is suboptimal and that introducing hydrogen storage transforms loss-making operations into profitable ones. Extensive numerical experiments show that the distribution capacity should not be too small to prevent local grid congestion. A higher storage capacity increases the number of buying actions from the grid thereby causing more congestion which is problematic for the grid operator. We conclude that a profit-maximizing hydrogen storage operation alone is not an alternative to grid expansion to solve congestion which is essential knowledge for policy-makers and grid operators.
Future Costs of Hydrogen: A Quantitative Review
Mar 2024
Publication
Hydrogen is the key energy carrier of the future. Numerous industrial processes incorporate hydrogen in their transformation towards climate neutrality. To date the high cost of producing hydrogen from renewable sources has been a major barrier to its widespread adoption. Inspired by these two aspects many researchers have published cost predictions for hydrogen. This review provides an overview of the extant literature of more than 7000 publications in the last two decades concerned with the topic. After removing articles that do not provide explicit hydrogen production cost projections for the 2020 to 2050 time horizon 89 articles remain and are analyzed in detail. The review identifies 832 cost forecast data points among these studies and categorizes the data points according to various parameters such as production region production process and publication year of the study. Through a linear regression a main trajectory for the development of hydrogen production costs can be derived. The costs of hydrogen from electrolysis are reduced on the basis of this trajectory starting from the reference 5.3 V per kg in 2020 to 4.4 V per kg in 2030 and to 2.7 V per kg in 2050. The costs for natural gas-based hydrogen are almost constant on a globally aggregated basis. There are also major regional and processrelated differences. In 2050 Asia has the lowest average costs of the regions analyzed at 1.8 V per kg and production by alkaline electrolysis with average costs of 2.0 V per kg appears to be the most costeffective electrolysis technology. Although studies show a high degree of variation it is evident from this review that the trend within certain investigation parameters is well defined. Therefore researchers and practitioners can use this review to set up further analyses that depend on future hydrogen costs.
Optimal Design of Hydrogen-based Storage with a Hybrid Renewable energy System Considering Economic and Environmental Uncertainties
Dec 2023
Publication
Hydrogen and electricity derived from renewable sources present feasible alternative energy options for the decarbonisation of the transportation and power sectors. This study presents the utilisation of hydrogen generated from solar and wind energy resources as a clean fuel for mobility and backup storage for stationary applications under economic and environmental uncertainties. This is achieved by developing a detailed technoeconomic model of an integrated system consisting of a hydrogen refuelling station and an electric power generation system using Mixed Integer Quadratic Constrained Programming (MIQCP) which is further relaxed to Mixed Integer Linear Programming (MILP). The model is implemented in the Advanced Interactive Multidi mensional Modelling Software (AIMMS) and considering the inherent uncertainties in the wind resource solar resource costs and discount rate the total cost of the three configurations (Hybrid PV-Wind Standalone PV and Standalone wind energy system) was minimised using robust optimisation technique and the corresponding optimal sizes of the components levelised cost of energy (LCOE) excess energy greenhouse emission avoided and carbon tax were evaluated. The levelised cost of the deterministic optimisation solution for all the config uration ranges between 0.0702 $/kWh to 0.0786 $/kWh while the levelised cost of the robust optimisation solution ranges between 0.07188 $/kWh to 0.1125 $/kWh. The proposed integration has the advantages of affordable hydrogen and electricity prices minimisation of carbon emissions and grid export of excess energy.
Place-based Allocation of R&D Funding: Directing the German Innovation System for Hydrogen Technologies in Space
Jul 2024
Publication
The geographical understanding of directionality in the literature on mission-oriented innovation systems is still underdeveloped. Therefore this article reflects on whether the allocation of funding for R&D activities to different places can direct innovation systems in space. A placebased approach to the allocation of funding and its effects on innovation systems is developed to analyze how the German national government allocates funding to the national innovation system for hydrogen technologies. The results show that the allocation of funding considers placebased characteristics and has a range of systemic outcomes encompassing the clustering of research activities the specialization of certain places in certain market segments and the in crease of the spatial reach of the national innovation system by integrating left behind places. However the funding contributes insufficiently to market formation at the local and regional scale and is contested due to existing alternative routes that the innovation system could take.
An Analysis of the Competitiveness of Hydrogen Storage and Li-ion Batteries Based on Price Arbitrage in the Day-ahead Market
Jul 2022
Publication
Acceleration of the hydrogen economy is being observed on a global scale. It is considered to be a potential solution to the problems with high-carbon energy industry and transport systems. The potential of production cost-competitiveness and opportunities are currently being investigated to provide insights to policymakers researchers and industry. In this context this study makes a quantitative assessment of the competitiveness of hydrogen storage compared to Li-ion batteries based on price arbitrage in the day-ahead market. Two scenarios that form the boundaries of rational decision-making regarding the charging and discharging of energy storage are considered. The first one assumes the charging and discharging of energy storage facilities over the same hours throughout the entire year. The selection of these hours is based on historical electricity prices. The second scenario assumes charge and discharge during historical daily minimum and maximum prices. The results show that NPV is below zero for both technologies when current values of investment expenditure are assumed. The outcomes of sensitivity analysis indicate that only a substantial reduction of investment expenditure could improve the financial results of the Li-ion batteries (NPV>0). The investigation also shows that even simplified charge and discharge over the same hours allows one to achieve 47% (hydrogen) and 70% (Li-ion batteries) of the maximum operating profit when the perfect foresight of prices is applied. In each case NPV for Li-ion technology is significantly higher than for hydrogen; for example for a 1 MWh and 1 MWout storage system NPV is EUR -4.85 million in the case of hydrogen and with Li-ion NPV is EUR -0.23 million. Consequently the application of expensive decision support systems in small systems may be unprofitable. The increase in profits may not cover the cost of developing and introducing such a system.
Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification
Jun 2020
Publication
In this study the electrical electrochemical and thermodynamic performance of a PV/T electrolyzer system was investigated and the experimental results were verified with a numerical model. The annual amounts of electrical and thermal energy from the PV/T electrolyzer system were calculated as 556.8 kWh and 1912 kWh respectively. In addition the hydrogen production performance for the PV/T electrolyzer was compared with that of a PV electrolyzer system. The amount of hydrogen was calculated as 3.96 kg annually for the PV system while this value was calculated as 4.49 kg for the PV/T system. Furthermore the amount of hydrogen production was calculated as 4.59 kg for a 65 ◦C operation temperature. The electrical thermal and total energy efficiencies of the PV/T system which were obtained hourly on a daily basis were calculated and varied between 12–13.8% 36.1–45.2% and 49.1–58.4% respectively. The hourly exergy analyses were also carried out on a daily basis and the results showed that the exergy efficiencies changed between 13.8–14.32%. The change in the electrolysis voltage was investigated by changing the current and temperature in the ranges of 200–1600 mA/cm2 A and 30–65 ◦C respectively. While the current and the water temperature varied in the ranges of 400–2350 mA/cm2 and 28.1–45.8 ◦C respectively energy efficiency and exergy efficiency were in the ranges of 57.85–69.45% and 71.1–79.7% respectively.
Highly Efficient Solar Hydrogen Production through the Use of Bifacial Photovoltaics and Membrane Electrolysis
Jul 2020
Publication
T The large-scale implementation of solar hydrogen production requires an optimal combination of photovoltaic systems with suitably-designed electrochemical cells possibly avoiding power electronics for DC-DC conversion to decrease costs. Here a stable solar-driven water splitting system is presented obtained through the direct connection of a state-of-the-art proton exchange membrane (PEM) electrolyzer to a bifacial silicon hetero junction (SHJ) solar module of three cells in series with total area of 730 cm2 . The bifaciality of the solar module has been optimized through modeling in terms of the number of cells module height and inclination. During outdoor operation in the standard monofacial configuration the system is able to produce 3.7 gr of H2 h 1 m 2 with an irradiation of 1000 W m 2 and a solar-to-hydrogen efficiency (STH) of 11.55%. The same system operating in bifacial mode gives rise to a higher H2 flux and STH efficiency reaching values of 4.2 gr of H2 h 1 m 2 and STH of 13.5%. Such a noticeable difference is achieved through the collection of albedo radiation from the ground by the bifacial PV system. The system has been tested outdoors for more than 55 h exhibiting very good endurance with no appreciable change in production and eff
Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions
Aug 2024
Publication
The article examines the role of green hydrogen in reducing CO2 emissions in the transition to climate neutrality highlighting both its benefits and challenges. It starts by discussing the production of green hydrogen from renewable sources and provides a brief analysis of primary resource structures for energy production in European countries including Romania. Despite progress there remains a significant reliance on fossil fuels in some countries. Economic technologies for green hydrogen production are explored with a note that its production alone does not solve all issues due to complex and costly compression and storage operations. The concept of impure green hydrogen derived from biomass gasification pyrolysis fermentation and wastewater purification is also discussed. Economic efficiency and future trends in green hydrogen production are outlined. The article concludes with an analysis of hydrogen-methane mixture combustion technologies offering a conceptual framework for economically utilizing green hydrogen in the transition to a green hydrogen economy.
Model for Hydrogen Production Scheduling Optimisation
Feb 2024
Publication
This scientific article presents a developed model for optimising the scheduling of hydrogen production processes addressing the growing demand for efficient and sustainable energy sources. The study focuses on the integration of advanced scheduling techniques to improve the overall performance of the hydrogen electrolyser. The proposed model leverages constraint programming and satisfiability (CP-SAT) techniques to systematically analyse complex production schedules considering factors such as production unit capacities resource availability and energy costs. By incorporating real-world constraints such as fluctuating energy prices and the availability of renewable energy the optimisation model aims to improve overall operational efficiency and reduce production costs. The CP-SAT was applied to achieve more efficient control of the electrolysis process. The optimisation of the scheduling task was set for a 24 h time period with time resolutions of 1 h and 15 min. The performance of the proposed CP-SAT model in this study was then compared with the Monte Carlo Tree Search (MCTS)-based model (developed in our previous work). The CP-SAT was proven to perform better but has several limitations. The model response to the input parameter change has been analysed.
Thermodynamic Modelling, Testing and Sensitive Analysis of a Directly Pressurized Hydrogen Refuelling Process with a Compressor
Mar 2024
Publication
This paper presents the development of a thermodynamic model for the hydrogen refuelling station (HRS) to simulate the process of refuelling which involves the transfer of hydrogen gas from a high-pressure storage tank to the onboard tank of a fuel cell electric vehicle (FCEV). This model encompasses the fundamental elements of an HRS which consists of a storage tank compressor piping system heat exchanger and an on-board vehicle tank. The model is implemented and validated using experimental data from SAE J2601. Various simulations are conducted to assess the impact of the Joule-Thomson effect and compression on the temperature of hydrogen flow specifically focusing on an average pressure rate of 18 MPa/min. Furthermore a comprehensive analysis is conducted to examine the impact of pressure variations in the storage tank (10–90 MPa) and the initial pressure within the vehicle tank (5–35 MPa) as well as variations in ambient temperature (0–40 °C). The study revealed that the energy consumption in the cooling system surpasses the average power consumption in the more advantageous scenario of 60 MPa by a range of 36% to over 220% when the pressure in the storage system drops below 30 MPa. Furthermore it was noted that the impact of ambient temperature is comparatively less significant when compared to the initial pressure of the vehicle's tank. The impact of an ambient temperature change of 10 °C on the final temperature of a hydrogen vehicle is found to be approximately 2 °C. Similarly a variation in the initial vehicle pressure of 10 MPa results in a modification of the final hydrogen vehicle temperature by approximately 8.5 °C.
Optimizing Sustainable Energy Systems: A Comparative Study of Geothermal-powered Desalination for Green Hydrogen Production
Oct 2024
Publication
The synergy between hydrogen and water is crucial in moving towards a sustainable energy future. This study explores the integration of geothermal energy with desalination and hydrogen production systems to address water and clean energy demands. Two configurations one using multi-effect distillation (MED) and the other reverse osmosis (RO) were designed and compared. Both configurations utilized geothermal energy with MED directly using geothermal heat and RO converting geothermal energy into electricity to power desalination. The systems are evaluated based on various performance indicators including net power output desalinated water production hydrogen production exergy efficiency and levelized costs. Multi-objective optimization using an artificial neural network (ANN) and genetic algorithm (GA) was conducted to identify optimal operational conditions. Results highlighted that the RO-based system demonstrated higher water production efficiency achieving a broader range of optimal solutions and lower levelized costs of water (LCOW) and hydrogen production while the MED-based system offered economic advantages under specific conditions. A case study focused on Canada illustrated the potential benefits of these systems in supporting hydrogen-powered vehicles and residential water needs emphasizing the significant impact of using high-quality desalinated water to enhance the longevity and efficiency of proton exchange membrane electrolyzers (PEME). This research provides valuable insights into the optimal use of geothermal energy for sustainable water and hydrogen production.
The Progress of Autoignition of High-Pressure Hydrogen Gas Leakage: A Comprehensive Review
Aug 2024
Publication
As a paradigm of clean energy hydrogen is gradually attracting global attention. However its unique characteristics of leakage and autoignition pose significant challenges to the development of high-pressure hydrogen storage technologies. In recent years numerous scholars have made significant progress in the field of high-pressure hydrogen leakage autoignition. This paper based on diffusion ignition theory thoroughly explores the mechanism of high-pressure hydrogen leakage autoignition. It reviews the effects of various factors such as gas properties burst disc rupture conditions tube geometric structure obstacles etc. on shock wave growth patterns and autoignition characteristics. Additionally the development of internal flames and propagation characteristics of external flames after ignition kernels generation are summarized. Finally to promote future development in the field of high-pressure hydrogen energy storage and transportation this paper identifies deficiencies in the current research and proposes key directions for future research.
No more items...