- Home
- A-Z Publications
- Publications
Publications
A Numerical Investigation on De-NOx Technology and Abnormal Combustion Control for a Hydrogen Engine with EGR System
Sep 2020
Publication
The combustion emissions of the hydrogen-fueled engines are very clean but the problems of abnormal combustion and high NOx emissions limit their applications. Nowadays hydrogen engines use exhaust gas recirculation (EGR) technology to control the intensity of premixed combustion and reduce the NOx emissions. This study aims at improving the abnormal combustion and decreasing the NOx emissions of the hydrogen engine by applying a three-dimensional (3D) computational fluid dynamics (CFD) model of a single-cylinder hydrogen-fueled engine equipped with an EGR system. The results indicated that peak in-cylinder pressure continuously increased with the increase of the ignition advance angle and was closer to the top dead center (TDC). In addition the mixture was burned violently near the theoretical air–fuel ratio and the combustion duration was shortened. Moreover the NOx emissions the average pressure and the in-cylinder temperature decreased as the EGR ratio increased. Furthermore increasing the EGR ratio led to an increase in the combustion duration and a decrease in the peak heat release rate. EGR system could delay the spontaneous combustion reaction of the end-gas and reduce the probability of knocking. The pressure rise rate was controlled and the in-cylinder hot spots were reduced by the EGR system which could suppress the occurrence of the pre-ignition in the hydrogen engine.
An Experimental Study of the Possibility of In Situ Hydrogen Generation within Gas Reservoirs
Aug 2021
Publication
Hydrogen can be generated in situ within reservoirs containing hydrocarbons through chemical reactions. This technology could be a possible solution for low-emission hydrogen production due to of simultaneous CO2 storage. In gas fields it is possible to carry out the catalytic methane conversion (CMC) if sufficient amounts of steam catalyst and heat are ensured in the reservoir. There is no confirmation of the CMC’s feasibility at relatively low temperatures in the presence of core (reservoir rock) material. This study introduces the experimental results of the first part of the research on in situ hydrogen generation in the Promyslovskoye gas field. A set of static experiments in the autoclave reactor were performed to study the possibility of hydrogen generation under reservoir conditions. It was shown that CMC can be realized in the presence of core and ex situ prepared Ni-based catalyst under high pressure up to 207 atm but at temperatures not lower than 450 ◦C. It can be concluded that the crushed core model improves the catalytic effect but releases carbon dioxide and light hydrocarbons which interfere with the hydrogen generation. The maximum methane conversion rate to hydrogen achieved at 450 ◦C is 5.8%
Hydrogen Production from Water Electrolysis: Role of Catalysts
Feb 2021
Publication
As a promising substitute for fossil fuels hydrogen has emerged as a clean and renewable energy. A key challenge is the efcient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efcient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active stable and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity stability and efciency. This will be followed by outlining current knowledge on the two half-cell reactions hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be dis‑ cussed. New strategies and insights in exploring the synergistic structure morphology composition and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efcient production of hydrogen from water splitting electrolysis will also be outlined.
Life Cycle Assessment of Carbon Footprint in Public Transportation - A Case Study of Bus Route NO. 2 in Tainan City, Taiwan
Apr 2019
Publication
Human activities have exacerbated global greenhouse effects resulting in extreme climate changes that have caused disasters and food and water shortages in recent years. Transport activities are the one of the main causes of global greenhouse gas (GHG) emissions. Therefore policy makers must develop some strategies to reduce GHG emissions. One of the Taiwan’s transportation policies intended to reduce CO2 emissions is to replace all traditional diesel fuel urban buses with alternative energy buses. This paper uses a case study of bus route NO. 2 in Tainan City and follows the international standard ISO/TS 14067 and PAS2050 to measure the carbon footprints of different energy buses. The purpose is to measure the environmental benefits of alternative energy buses. The results of the bus carbon footprints from high to low were LNG buses 63.14g CO2e/pkm; traditional diesel buses 54.6g CO2e/pkm; liquefied petroleum gas buses 47.4g CO2e/pkm; plug-in electric buses 37.82g CO2e/pkm and hydrogen fuel cell bus es 29.17g CO2e/pkm respectively. It was also found that the use of hydrogen fuel cell buses would potentially reduce CO2e emissions in Tainan City by 1244081 tons which at this time is only city bus No. 2. If all the Taiwan city buses were switched to hydrogen fuel cell buses this would potentially reduce CO2e by 227832.39 tons. The effect of the reduction in carbon emissions from the use of hydrogen fuel cells buses in all Taiwanese urban areas is the equivalent of planting 22.78 million trees. It is thus suggested that the government use hydrogen fuel cell buses as the future of the country’s major alternative energy buses since they are the most environmentally friendly alternative to reducing CO2 emissions.
A Technical, Economic and Environmental Analysis of Combining Geothermal Energy with Carbon Sequestration for Hydrogen Production
Jul 2014
Publication
Among numerous techniques for the hydrogen production without harmful emissions especially avoiding the carbon dioxide emissions hydrogen technologies driven by geothermal energy represent an attractive solution. This paper is interested in the process by which the electricity generated from geothermal power plant that is operated using CO2 as heat transmission fluid is exploited for hydrogen production through water electrolysis. A numerical simulation is used to evaluate the potential for hydrogen production and to estimate the levelized cost of electrolytic hydrogen. We also present brief analysis of environmental issues including the carbon tax. The results show that the process has a good potential for geothermal hydrogen production is capable of producing about 22 kg/h of electrolytic hydrogen for the geothermal source of carbon dioxide mass flow rate of 40 kg/s and a temperature of 296 K. In economic regard the electric energy system costs are the major component of the total hydrogen production cost (more than 90%). The estimated cost of hydrogen is 8.24 $/kg H2. By including the carbon tax the cost of hydrogen production becomes far more competitive.
Efficiency, Economic and Environmental Impact Assessment of a Newly Developed Rail Engine using Hydrogen and Other Sustainable Fuel Blends
Jan 2023
Publication
Locomotives still use antiqued engines such as internal combustion engines operated by fossil fuels which cause global warming due to their significant emissions. This paper continues investigating the newly hybridized locomotive engine containing a gas turbine system solid oxide fuel cell system energy saving system and on-board hydrogen production system. This new engine is operated using five fuel blends composed of five alternative fuels such as hydrogen methane methanol ethanol and dimethyl ether. The current investigation involves exergy analysis exergo-economic analysis and exergo-environmental analysis to assess the engine from three perspectives: efficiency/irreversibility cost and environmental impact. The study results show that the net power of this new engine is 4948.6 kW and it has an exergetic efficiency of 62.7% according to the fuel and product principle. This engine weighs about 9 tons and costs about $10.2M with a levelized cost rate of 147 $/h and 14.06 mPt/h of overall component-related environmental rate. The average overall specific fuel and product exergy costs are about 37 $/GJ and 60 $/GJ and the minimum values are 13.3 $/GJ and 21.8 $/GJ using methane and hydrogen blend respectively. Also the average overall specific fuel and product exergo-environmental impact are about 15 and 23 mPt/MJ respectively. The on-board hydrogen production has an average exergy cost of 274 $/GJ and an environmental impact of 52 mPt/MJ. Hydrogen blended with methane or methanol is found to be more economic and has less environmental impact.
Economic and Technical Analysis of Power to Gas Factory Taking Karamay as an Example
May 2022
Publication
Power to gas (PTG) refers to the technology of converting power into energy-storage gas which can absorb excess power when there is excess power and release energy-storage gas when needed. Based on the carbon dioxide (CO2 ) emission of Karamay City in Northwest China this study designed a process flow of the CO2 absorption process and the hydrogen and CO2 methanation process in PTG technology. The results show that the efficiency of the CO2 absorption process was 91.5% and the methanation efficiency was 77.5%. The heat recovery module was set during the process and the total heat recovered was 17.85 MW. The cost of producing synthetic natural gas (SNG) in the PTG factory was 1782 USD/ton. In terms of cost the cost of hydrogen production from electrolyzed water accounted for the largest proportion. In terms of product profit the sale of pure oxygen was the largest part of the profit. At present the carbon emission reduction index profit brought by SNG production accounted for a small proportion. In the future with technological progress industrial upgrading and the improvement in the carbon trading market PTG technology is expected to become one of the ways to achieve carbon-emission-reduction targets.
Risk Assessment of the Low-carbon Transition of Austria’s Steel and Electricity Sectors
Dec 2018
Publication
To limit global temperature increase below +2°C societies need to reduce greenhouse gas emissions radically within the next few decades. Amongst other mitigation measures this requires transforming process-emission intensive industries towards emission neutrality. One way to this end is the renewables-based electrification of industries. We present results of a recent coproduction process which brought together stakeholders from industry policy administration and science to co-create climate-neutral transition pathways for the steel and electricity sectors in Austria. The results summarized here are the definition of reliable pathways and the identification of associated risks pertaining to pathway implementation including a macro-economic quantification. We find that risks to implementation (barriers) are at least as important as risks of implementation (negative consequences). From the quantitative analysis we find that provided that barriers can be reduced macroeconomic costs of the transition are only moderate and that stakeholders might overestimate risks when neglecting economy-wide feedbacks.
Blowout Prediction on a Salt Cavern Selected for a Hydrogen Storage Pilot
Oct 2022
Publication
To prevent climate change Europe and the world must shift to low-carbon and renewable energies. Hydrogen as an energy vector provides viable solutions for replacing polluting and carbon-emitting fossil fuels. Gaseous hydrogen can be stored underground and coupled with existing natural gas pipe networks. Salt cavern storage is the best suited technology to meet the challenges of new energy systems. Hydrogen storage caverns are currently operated in the UK and Texas. A preliminary risk analysis dedicated to underground hydrogen salt caverns highlighted the importance of containment losses (leaks) and the formation of gas clouds following blowouts whose ignition may generate dangerous phenomena such as jet fires unconfined vapor cloud explosions (UVCEs) or flashfires. A blowout is not a frequent accident in gas storage caverns. A safety valve is often set at a 30 m depth below ground level; it is automatically triggered following a pressure drop at the wellhead. Nevertheless a blowout remains to be one of the significant accidental scenarios likely to occur during hydrogen underground storage in salt caverns. In this paper we present modelling the subterraneous and aerial parts of a blowout on an EZ53 salt cavern fully filled with hydrogen.
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Biohydrogen—A Green Fuel for Sustainable Energy Solutions
Oct 2022
Publication
Energy plays a crucial role in the sustainable development of modern nations. Today hydrogen is considered the most promising alternative fuel as it can be generated from clean and green sources. Moreover it is an efficient energy carrier because hydrogen burning only generates water as a byproduct. Currently it is generated from natural gas. However it can be produced using other methods i.e. physicochemical thermal and biological. The biological method is considered more environmentally friendly and pollution free. This paper aims to provide an updated review of biohydrogen production via photofermentation dark fermentation and microbial electrolysis cells using different waste materials as feedstocks. Besides the role of nanotechnology in enhancing biohydrogen production is examined. Under anaerobic conditions hydrogen is produced during the conversion of organic substrate into organic acids using fermentative bacteria and during the conversion of organic acids into hydrogen and carbon dioxide using photofermentative bacteria. Different factors that enhance the biohydrogen production of these organisms either combined or sequentially using dark and photofermentation processes are examined and the effect of each factor on biohydrogen production efficiency is reported. A comparison of hydrogen production efficiency between dark fermentation photofermentation and two-stage processes is also presented.
Application and Limitations of Batteries and Hydrogen in Heavy Haul Rail using Australian Case Studies
Oct 2022
Publication
Decarbonisation of heavy haul rail is an essential contributor to a zero-emissions future. However the transition from diesel to battery locomotives is not always practical given the unique characteristics of each haul. This paper demonstrates the limitations of state-of-the-art batteries using real-world data from multiple locomotives operating in Australian rail freight. An energy model was developed to assess each route’s required energy and potential regenerated energy. The tractive and regenerative battery energy mass and cost were determined using data from the energy model coupled with battery specifications. The feasibility of implementing lithium iron phosphate (LFP) nickel manganese cobalt (NMC) and lithium titanium oxide (LTO) chemistries was explored based on cost energy density cycle lifespan and locomotive data. LFP was identified as the most suitable current battery solution based on current chemistries. Further examination of the energy demands and associated mass/volume constraints concluded that three platforms are required for heavy haul rail decarbonisation i) a battery electric locomotive for low-energy demands which can be coupled with either ii) a battery electric tender for medium energy demands or iii) a hydrogen fuel cell electric tender for higher energy demands. A future-looking techno-economic assessment of battery and hydrogen fuel cell platforms concludes that the lowest cost solution for low-energy hauls is a battery-only system and for high-energy hauls a battery-hydrogen system.
OIES Podcast: Global Trade of Hydrogen: What is the Best Way to Transfer Hydrogen Over Long Distances?
Aug 2022
Publication
In this podcast David Ledesma talks with Rahmat Poudineh Senior Research Fellow and Aliaksei Patonia Research Fellow on issues and options with respect to long distance transportation of the hydrogen.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review
Sep 2022
Publication
According to the specific requirements of railway engineering a techno-economic comparison for onboard hydrogen storage technologies is conducted to discuss their feasibility and potentials for hydrogen-powered hybrid trains. Physical storage methods including compressed hydrogen (CH2 ) liquid hydrogen (LH2 ) and cryo-compressed hydrogen (CcH2 ) and material-based (chemical) storage methods such as ammonia liquid organic hydrogen carriages (LOHCs) and metal hydrides are carefully discussed in terms of their operational conditions energy capacity and economic costs. CH2 technology is the most mature now but its storage density cannot reach the final target which is the same problem for intermetallic compounds. In contrast LH2 CcH2 and complex hydrides are attractive for their high storage density. Nevertheless the harsh working conditions of complex hydrides hinder their vehicular application. Ammonia has advantages in energy capacity utilisation efficiency and cost especially being directly utilised by fuel cells. LOHCs are now considered as a potential candidate for hydrogen transport. Simplifying the dehydrogenation process is the important prerequisite for its vehicular employment. Recently increasing novel hydrogen-powered trains based on different hydrogen storage routes are being tested and optimised across the world. It can be forecasted that hydrogen energy will be a significant booster to railway decarbonisation.
A Mini-review on Recent Trends in Prospective Use of Porous 1D Nanomaterials for Hydrogen Storage
Nov 2021
Publication
The sustainable development of hydrogen energy is a priority task for a possible solution to 26 the global energy crisis. Hydrogen is a clean and renewable energy source that today is used 27 exclusively in the form of compressed gas or in liquefied form which prevents its widespread 28 use. Storing hydrogen in solid-state systems will not only increase the bulk density and 29 gravimetric capacity but will also have a positive impact on safety issues. From this point of 30 view the current review considers the latest research in the field of application of 1D 31 nanomaterials for solid-state hydrogen storage and also discusses the mechanisms of its 32 adsorption and desorption. Despite the high publication activity the use of 1D nanomaterials for 33 hydrogen storage has not been fully studied. In the current review modern developments in the 34 field of hydrogen storage using 1D nanomaterials and composites based on them are investigated 35 in detail and their problems and future prospects are discussed.
Next Steps for the Gas Grid- Future Gas Series Part 1
Sep 2014
Publication
Policy Connect Carbon Connect and sector and Parliamentary experts have collaborated to present options for the gas grid to play a useful role in the UK’s transition to a low carbon energy system through the widespread use of low carbon gas. The report calls on Government to support the transition to a more flexible gas grid that uses various forms of gas including low carbon gases such as hydrogen and biomethane.
Far Off-shore Wind Energy-based Hydrogen Production: Technological Assessment and Market Valuation Designs
Jan 2020
Publication
This article provides a techno-economic study on coupled offshore wind farm and green hydrogen production via sea water electrolysis (OWF-H2). Offshore wind energy wind farms (OWF) and water electrolysis (WE) technologies are described. MHyWind (the tool used to perform simulations and optimisations of such plants) is presented as well as the models of the main components in the study. Three case studies focus on offshore wind farms either stand-alone or connected to the grid via export cables coupled with a battery and electrolysis systems either offshore or onshore. Exhaustive searches and optimisations performed allowed for rules of thumb to be derived on the sizing of coupled OWF-H2 plants that minimize costs of hydrogen production (LCoH2 in €/kgH2): Non-connected OWF-H2 coupled to a battery offers the lowest LCoH2 without the costs of H2 transportation when compared to cases where the WE is installed onshore and connected to the OWF. Using a simple power distribution heuristic increasing the number of installed WE allows the system to take advantage of more OWF energy but doesn’t improve plant efficiency whereas a battery always does. Finally within the scope of this study it is observed that power ratios of optimized plant architectures (leading to the lowest LCoH2) are between 0.8-0.9 for PWE/POWF and 0.3-0.35 for PBattery/POWF.
Building the Green Hydrogen Market - Current State and Outlook on Green Hydrogen Demand and Electrolyzer Manufacturing
Jul 2022
Publication
Over the past two years requirements to meet climate targets have been intensified. In addition to the tightening of the climate targets and the demand for net-zero achievement by as early as 2045 there have been discussions on implementing and realizing these goals. Hydrogen has emerged as a promising climate-neutral energy carrier. Thus over the last 1.5 years more than 25 countries have published hydrogen roadmaps. Furthermore various studies by different authorities have been released to support the development of a hydrogen economy. This paper examines published studies and hydrogen country roadmaps as part of a meta-analysis. Furthermore a market analysis of electrolyzer manufacturers is conducted. The prospected demand for green hydrogen from various studies is compared to electrolyzer manufacturing capacities and selected green hydrogen projects to identify potential market ramp-up scenarios and to evaluate if green hydrogen demand forecasts can be filled.
Effects of Compression Ratios on Combustion and Emission Characteristics of SI Engine Fueled with Hydrogen-Enriched Biogas Mixture
Aug 2022
Publication
The effects of hydrogen-enriched biogas on combustion and emissions of a dual-fuel sparkignition engine with different hydrogen concentration ratios were studied numerically. A 1-cylinder spark ignition was used to perform a numerical simulation. To reveal the influence of the compression ratios on combustion and emissions of a gaseous engine the crankshaft of the engine was modified to generate different compression ratios of 8.5 9.0 9.4 10.0 and 10.4. The biogas contained 60 and 40% methane (CH4 ) and carbon dioxide (CO2 ) respectively while the hydrogen fractions used to enrich biogas were 10 20 and 30% of the mixture by volume. The ignition timing is fixed at 350 CA◦ . The results indicate that the in-cylinder pressure combustion temperature and combustion burning speed increase gradually with increasing hydrogen concentration due to the combustion characteristics of hydrogen in blends. As increasing the compression ratio NOx emissions increase proportionally while CO2 emissions decrease gradually. Almost no combustion process occurs as operating the compression ratio below 8.5 when using pure biogas. However adding 20% of hydrogen fraction could improve the combustion process significantly even at a low compression ratio.
Assessment of Hydrogen Fuel for Rotorcraft Applications
Jun 2022
Publication
This paper presents the application of a multidisciplinary approach for the preliminary design and evaluation of the potential improvements in performance and environmental impact through the utilization of compressed (CGH2) and liquefied (LH2) hydrogen fuel for a civil tilt-rotor modelled after the NASA XV-15. The methodology deployed comprises models for rotorcraft flight dynamics engine performance flight path analysis hydrogen tank and thermal management system sizing. Trade-offs between gravimetric efficiency energy consumption fuel burn CO2 emissions and cost are quantified and compared to the kerosene-fuelled rotorcraft. The analysis carried out suggests that for these vehicle scales gravimetric efficiencies of the order of 13% and 30% can be attained for compressed and liquid hydrogen storage respectively leading to reduced range capability relative to the baseline tilt-rotor by at least 40%. At mission level it is shown that the hydrogen-fuelled configurations result in increased energy consumption by at least 12% (LH2) and 5% (CGH2) but at the same time significantly reduced life-cycle carbon emissions compared to the kerosene counterpart. Although LH2 storage at cryogenic conditions has a higher gravimetric efficiency than CGH2 (at 700 bar) it is shown that for this class of rotorcraft the latter is more energy efficient when the thermal management system for fuel pressurization and heating prior to combustion is accounted for.
No more items...