- Home
- A-Z Publications
- Publications
Publications
Development Concept of Integrated Energy Network and Hydrogen Energy Industry Based on Hydrogen Production Using Surplus Hydropower
Apr 2020
Publication
The development of hydropower industry is progressing rapidly in China and the installed capacity and power generation are increasing year by year. However due to factors such as transmission channels and power grid peaking capacity hydropower consumption in some areas is facing greater pressure. As an excellent medium for energy interconnection hydrogen energy can play an important role in promoting hydropower consumption. This paper introduces the current status and trends of hydrogen energy development in major developed countries and China and analyzes the current status of China’s hydropower abandoned water. Based on the production of hydrogen using surplus hydropower in the Dadu River Basin in Sichuan an integrated energy network research plan including hydropower electrolytic hydrogen production storage and transportation hydrogen refueling and hydrogen-powered vehicles is proposed. At the same time the development concept of hydrogen energy industry including hydrogen energy source economy hydrogen energy industry ecosphere and hydrogen energy sky road in western Sichuan is also proposed.
Everything About Hydrogen Podcast: Using the Law and Regulation to Facilitate Hydrogen Development
Jun 2022
Publication
Burges Salmon’s energy lawyers are known for ground-breaking work in the energy power and utilities sector. They understand the opportunities the technologies and the challenges which the sector presents. Their reputation has been built upon first-of-a-kind projects and deals and an intimate knowledge of energy regulation. Burges Salmon specialists provide expert advice throughout the project/plant life cycle. Over the years this has in turn led to investors and funders requesting their services in the knowledge that they understand the key issues technologies face. They have a team of over 80 lawyers who focus on helping developers investors and funders achieve their aims in the sector. The team has won or been shortlisted for all the key industry awards in energy over the last decade.
The podcast can be found on their website
The podcast can be found on their website
Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports
Oct 2022
Publication
The freight sector is expected to keep or even increase its fundamental role for the major modern economies and therefore actions to limit the growing pressure on the environment are urgent. The use of electricity is a major option for the decarbonization of transports; in the heavy-duty segment it can be implemented in different ways: besides full electric-battery powertrains electricity can be used to supply catenary roads or can be chemically stored in liquid or gaseous fuels (e-fuels). While the current EU legislation adopts a tailpipe Tank-To-Wheels approach which results in zero emissions for all direct uses of electricity a Well-To-Wheels (WTW) method would allow accounting for the potential benefits of using sustainable fuels such as e-fuels. In this article we have performed a WTW-based comparison and modelling of the options for using electricity to supply heavy-duty vehicles: e-fuels eLNG eDiesel and liquid Hydrogen. Results showed that the direct use of electricity can provide high Greenhouse Gas (GHG) savings and also in the case of the e-fuels when low-carbonintensity electricity is used for their production. While most studies exclusively focus on absolute GHG savings potential considerations of the need for new infrastructures and the technological maturity of some options are fundamental to compare the different technologies. In this paper an assessment of such technological and non-technological barriers has been conducted in order to compare alternative pathways for the heavy-duty sector. Among the available options the flexibility of using drop-in energy-dense liquid fuels represents a clear and substantial immediate advantage for decarbonization. Additionally the novel approach adopted in this paper allows us to quantify the potential benefits of using e-fuels as chemical storage able to accumulate electricity from the production peaks of variable renewable energies which would otherwise be wasted due to grid limitations.
Hybrid Renewable Hydrogen Energy Solution for Application in Remote Mines
Dec 2020
Publication
Mining operations in remote locations rely heavily on diesel fuel for the electricity haulage and heating demands. Such significant diesel dependency imposes large carbon footprints to these mines. Consequently mining companies are looking for better energy strategies to lower their carbon footprints. Renewable energies can relieve this over-reliance on fossil fuels. Yet in spite of their many advantages renewable systems deployment on a large scale has been very limited mainly due to the high battery storage system. Using hydrogen for energy storage purposes due to its relatively cheaper technology can facilitate the application of renewable energies in the mining industry. Such cost-prohibitive issues prevent achieving 100% penetration rate of renewables in mining applications. This paper offers a novel integrated renewable–multi-storage (wind turbine/battery/fuel cell/thermal storage) solution with six different configurations to secure 100% off-grid mining power supply as a stand-alone system. A detailed comparison between the proposed configurations is presented with recommendations for implementation. A parametric study is also performed identifying the effect of different parameters (i.e. wind speed battery market price and fuel cell market price) on economics of the system. The result of the present study reveals that standalone renewable energy deployment in mine settings is technically and economically feasible with the current market prices depending on the average wind speed at the mine location.
How a Grid Company Could Enter the Hydrogen Industry through a New Business Model: A Case Study in China
Mar 2023
Publication
The increasing penetration of renewable and distributed resources signals a global boom in energy transition but traditional grid utilities have yet to share in much of the triumph at the current stage. Higher grid management costs lower electricity prices fewer customers and other challenges have emerged along the path toward renewable energy but many more opportunities await to be seized. Most importantly there are insufficient studies on how grid utilities can thrive within the hydrogen economy. Through a case study on the State Grid Corporation of China we identify the strengths weaknesses opportunities and threats (SWOT) of grid utilities within the hydrogen economy. Based on these factors we recommend that grids integrate hydrogen into the energy-as-a-service model and deliver it to industrial customers who are under decarbonization pressure. We also recommend that grid utilities fund a joint venture with pipeline companies to optimize electricity and hydrogen transmissions simultaneously.
A Review on the Kinetics of Iron Ore Reduction by Hydrogen
Dec 2021
Publication
A clean energy revolution is occurring across the world. As iron and steelmaking have a tremendous impact on the amount of CO2 emissions there is an increasing attraction towards improving the green footprint of iron and steel production. Among reducing agents hydrogen has shown a great potential to be replaced with fossil fuels and to decarbonize the steelmaking processes. Although hydrogen is in great supply on earth extracting pure H2 from its compound is costly. Therefore it is crucial to calculate the partial pressure of H2 with the aid of reduction reaction kinetics to limit the costs. This review summarizes the studies of critical parameters to determine the kinetics of reduction. The variables considered were temperature iron ore type (magnetite hematite goethite) H2/CO ratio porosity flow rate the concentration of diluent (He Ar N2 ) gas utility annealing before reduction and pressure. In fact increasing temperature H2/CO ratio hydrogen flow rate and hematite percentage in feed leads to a higher reduction rate. In addition the controlling kinetics models and the impact of the mentioned parameters on them investigated and compared concluding chemical reaction at the interfaces and diffusion of hydrogen through the iron oxide particle are the most common kinetics controlling models.
Simulation and Study of PEMFC System Directly Fueled by Ammonia Decomposition Gas
Mar 2022
Publication
Ammonia can be stored as a liquid under relatively easy conditions (Ambient temperature by applying 10 bar or Ambient pressure with the temperature of 239 K). At the same time liquid ammonia has a high hydrogen storage density and is therefore a particularly promising carrier for hydrogen storage. At the same time the current large-scale industrial synthesis of ammonia has long been mature and in the future it will be possible to achieve a zero-emission ammonia regeneration cycle system by replacing existing energy sources with renewable ones. Ammonia does not contain carbon and its use in fuel cells can avoid NOx production during energy release. high temperature solid oxide fuel cells can be directly fueled by ammonia and obtain good output characteristics but the challenges inherent in high temperature solid oxide fuel cells greatly limit the implementation of this option. Whereas PEMFC has gained initial commercial use however for PEMFC ammonia is a toxic gas so the general practice is to convert ammonia to pure hydrogen. Ammonia to hydrogen requires decomposition under high temperature and purification which increases the complexity of the fuel system. In contrast PEMFC that can use ammonia decomposition gas directly can simplify the fuel system and this option has already obtained preliminary experimental validation studies. The energy efficiency of the system obtained from the preliminary validation experiments is only 34–36% which is much lower than expected. Therefore this paper establishes a simulation model of PEMFC directly using ammonia decomposition gas as fuel to study the maximum efficiency of the system and the effect of the change of system parameters on the efficiency and the results show that the system efficiency can reach up to 45% under the condition of considering certain heat loss. Increasing the ammonia decomposition reaction temperature decreases the system efficiency but the effect is small and the system efficiency can reach 44% even at a temperature of 850°C. The results of the study can provide a reference for a more scientific and quantitative assessment of the potential value of direct ammonia decomposition gas-fueled PEMFC.
Toward to Hydrogen Energy of Electric Power: Characteristics and Main Case Studies in Shenzhen
Feb 2023
Publication
China has pledged that it will strive to achieve peak carbon emission by 2030 and realize carbon neutrality by 2060 which has spurred renewed interest in hydrogen for widespread decarbonization of the economy. Hydrogen energy is an important secondary clean energy with the advantage of high density high calorific value rich reserves extensive sources and high conversion efficiency that can be widely used in power generation transportation fuel and other fields. In recent years with the guidance of policies and the progress of technology China’s hydrogen energy industry has developed rapidly. About 42% of China’s carbon emissions comes from the power system and Shenzhen has the largest urban power grid in China. Bringing the utilization of hydrogen energy into Shenzhen’s power system is an important method to achieve industry transformation achieve the “double carbon” goal and promote sustainable development. This paper outlines the domestic and international development status of hydrogen energy introduces the characteristics of Shenzhen new power system the industrial utilization of hydrogen energy and the challenges of further integrating hydrogen energy into Shenzhen new power system and finally suggests on the integration of hydrogen energy into Shenzhen new power system in different dimensions.
Numerical Study on Tri-fuel Combustion: Ignition Properties of Hydrogen-enriched Methane-diesel and Methanol-diesel Mixtures
Jan 2020
Publication
Simultaneous and interactive combustion of three fuels with differing reactivities is investigated by numerical simulations. In the present study conventional dual-fuel (DF) ignition phenomena relevant to DF compression ignition (CI) engines are extended and explored in tri-fuel (TF) context. In the present TF setup a low reactivity fuel (LRF) methane or methanol is perfectly mixed with hydrogen and air to form the primary fuel blend at the lean equivalence ratio of 0.5. Further such primary fuel blends are ignited by a high-reactivity fuel (HRF) here n-dodecane under conditions similar to HRF spray assisted ignition. Here ignition is relevant to the HRF containing parts of the tri-fuel mixtures while flame propagation is assumed to occur in the premixed LRF/ containing end gas regions. The role of hydrogen as TF mixture reactivity modulator is explored. Mixing is characterized by n-dodecane mixture fraction ξ and molar ratio . When x < 0.6 minor changes are observed for the first- and second-stage ignition delay time (IDT) of tri-fuel compared to dual-fuel blends (x = 0). For methane when x > 0.6 first- and second-stage IDT increase by factor 1.4–2. For methanol a respective decrease by factor 1.2–2 is reported. Such contrasting trends for the two LRFs are explained by reaction sensitivity analysis indicating the importance of OH radical production/consumption in the ignition process. Observations on LRF/ end gas laminar flame speed () indicate that increases with x due to the highly diffusive features of . For methane increase with x is more significant than for methanol.
Hydrogen Insights 2022
Sep 2022
Publication
Authored by the Hydrogen Council in collaboration with McKinsey and Company Hydrogen Insights 2022 presents an updated perspective on hydrogen market development and actions required to unlock hydrogen at scale.
The pipeline of hydrogen projects is continuing to grow but actual deployment is lagging.
680 large-scale project proposals worth USD 240 billion have been put forward but only about 10% (USD 22 billion) have reached final investment decision (FID). While Europe leads in proposed investments (~30%) China is slightly ahead on actual deployment of electrolyzers (200 MW) while Japan and South Korea are leading in fuel cells (more than half of the world’s 11 GW manufacturing capacity).
The urgency to invest in mature hydrogen projects today is greater than ever.
For the world to be on track for net zero emissions by 2050 investments of some USD 700 billion in hydrogen are needed through 2030 – only 3% of this capital is committed today. Ambition and proposals by themselves do not translate into positive impact on climate change; investments and implementation on the ground is needed.
Joint action by the public and private sectors is urgently required to move from project proposals to FIDs.
Both governments and industry need to act to implement immediate actions for 2022 to 2023 – policymakers need to enable demand visibility roll out funding support and ensure international coordination; industry needs to increase supply chain capability and capacity advance projects towards final investment decision (FID) and develop infrastructure for cross-border trade.
The paper can be found on their website.
The pipeline of hydrogen projects is continuing to grow but actual deployment is lagging.
680 large-scale project proposals worth USD 240 billion have been put forward but only about 10% (USD 22 billion) have reached final investment decision (FID). While Europe leads in proposed investments (~30%) China is slightly ahead on actual deployment of electrolyzers (200 MW) while Japan and South Korea are leading in fuel cells (more than half of the world’s 11 GW manufacturing capacity).
The urgency to invest in mature hydrogen projects today is greater than ever.
For the world to be on track for net zero emissions by 2050 investments of some USD 700 billion in hydrogen are needed through 2030 – only 3% of this capital is committed today. Ambition and proposals by themselves do not translate into positive impact on climate change; investments and implementation on the ground is needed.
Joint action by the public and private sectors is urgently required to move from project proposals to FIDs.
Both governments and industry need to act to implement immediate actions for 2022 to 2023 – policymakers need to enable demand visibility roll out funding support and ensure international coordination; industry needs to increase supply chain capability and capacity advance projects towards final investment decision (FID) and develop infrastructure for cross-border trade.
The paper can be found on their website.
HydroGenerally - Episode 5: Hydrogen for Glass Production
May 2022
Publication
In this fifth episode Steffan Eldred and Neelam Mughal from Innovate UK KTN discuss how the glass industry is driving new hydrogen developments and research and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Ireson Innovation and Partnerships Manager at Glass Futures Ltd.
The podcast can be found on their website
The podcast can be found on their website
Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO2 Emissions and Cost
Oct 2022
Publication
CO2 emissions associated with hydrogen production can be reduced replacing steam methane reforming with electrolysis using renewable electricity with a trade-off of increasing energy consumption water consumption and cost. In this research a linear programming optimization model of a hydrogen production system that considers simultaneously energy consumption water consumption CO2 emissions and cost on a cradle-to-gate basis was developed. The model was used to evaluate the impact of CO2 intensity on the optimum design of a hydrogen production system for Japan considering different stakeholders’ priorities. Hydrogen is produced using steam methane reforming and electrolysis. Electricity sources include grid wind solar photovoltaic geothermal and hydro. Independent of the stakeholders’ priorities steam methane reforming dominates hydrogen production for cradle-to-gate CO2 intensities larger than 9 kg CO2/kg H2 while electrolysis using renewable electricity dominates for lower cradle-to-gate CO2 intensities. Reducing the cradle-to-gate CO2 intensity increases energy consumption water consumption and specific cost of hydrogen production. For a cradle-to-gate CO2 intensity of 0 kg CO2/kg H2 the specific cost of hydrogen production varies between 8.81 and 13.6 USD/kg H2; higher than the specific cost of hydrogen production targeted by the Japanese government in 2030 of 30 JPY/Nm3 3.19 USD/kg H2.
Open-source Project Feasibility Tools for Supporting Development of the Green Ammonia Value Chain
Nov 2022
Publication
Ammonia plays a vital role in feeding the world through fertilizer production as well as having other industrial uses. However current ammonia production processes rely heavily on fossil fuels mostly natural gas to generate hydrogen as a feedstock. There is an urgent need to re-design and decarbonise the production process to reduce greenhouse emissions and avoid dependence on volatile gas markets and a depleting resource base. Renewable energy driven electrolysis to generate hydrogen provides a viable pathway for producing carbon-free or green ammonia. However a key challenge associated with producing green ammonia is managing low cost but highly variable wind and solar renewable energy generation for hydrogen electrolysis while maintaining reliable operation of the less flexible ammonia synthesis unit. To date green ammonia production has only been demonstrated at pilot scale and optimising plant configurations and scaling up production facilities is an urgent task. Existing feasibility studies have demonstrated the ability to model and cost green ammonia production pathways that can overcome the technical and economic challenges. However these existing approaches are context specific demonstrating the ability to model and cost green ammonia production for defined locations with set configurations. In this paper we present a modelling framework that consolidates the array of configurations previously studied into a single framework that can be tailored to the location of interest. Our open-source green ammonia modelling and costing tool dynamically simulates the integration of renewable energy with a wide range of balancing power and storage options to meet the flexible demands of the green ammonia production process at hourly time resolution over a year or more. Unlike existing models the open-source implementation of our tool allows it to be used by a potentially wide range of stakeholders to explore their own projects and help guide the upscaling of green ammonia as a pathway for decarbonisation. Using Gladstone in Australia as a case study a 1 million tonne per annum (MMTPA) green ammonia plant is modelled and costed using price assumptions for major equipment in 2030 provided by the Australian Energy Market Operator (AEMO). Using a hybrid (solar PV and wind) renewable energy source and Battery Energy Storage System as balancing technology we estimate a levelized cost of ammonia (LCOA) between 0.69 and 0.92 USD kgNH3 -1 . While greater than historical ammonia production costs from natural gas falling renewables costs and emission reduction imperatives suggest a major future role for green ammonia.
Putting Bioenergy With Carbon Capture and Storage in a Spatial Context: What Should Go Where?
Mar 2022
Publication
This paper explores the implications of siting a bioenergy with carbon capture and storage (BECCS) facility to carbon emission performances for three case-study supply chains using the Carbon Navigation System (CNS) model. The three case-study supply chains are a wheat straw derived BECCS-power a municipal solid waste derived BECCS-waste-to-energy and a sawmill residue derived BECCS-hydrogen. A BECCS facility needs to be carefully sited taking into consideration its local low carbon infrastructure available biomass and geography for successful deployment and achieving a favorable net-negative carbon balance. On average across the three supply chains a 10 km shift in the siting of the BECCS facility results in an 8.6–13.1% increase in spatially explicit supply chain emissions. BECCS facilities producing low purity CO2 at high yields have lower spatial emissions when located within the industrial clusters while those producing high purity CO2 at low yields perform better outside the clusters. A map is also generated identifying which of the three modeled supply chains delivers the lowest spatially explicit supply chain emission options for any given area of the UK at a 1 MtCO2/yr capture scale.
Industrial Status, Technological Progress, Challenges, and Prospects of Hydrogen Energy
Apr 2022
Publication
Under the requirements of China's strategic goal of "carbon peaking and carbon neutrality" as a renewable clean and efficient secondary energy source hydrogen benefits from abundant resources a wide variety of sources a high combustion calorific value clean and non-polluting various forms of utilization energy storage mediums and good security etc. It will become a realistic way to help energy transportation petrochemical and other fields to achieve deep decarbonization and will turn into an important replacement energy source for China to build a modern clean energy system. It is clear that accelerating the development of hydrogen energy has become a global consensus. In order to provide a theoretical support for the accelerated transformation of hydrogen-related industries and energy companies and provide a basis and reference for the construction of "Hydrogen Energy China" this paper describes main key technological progresses in the hydrogen industry chain such as hydrogen production storage transportation and application. The status and development trends of hydrogen industrialization are analyzed and then the challenges faced by the development of the hydrogen industry are discussed. At last the development and future of the hydrogen industry are prospected. The following conclusions are achieved. (1) Hydrogen technologies of our country will become mature and enter the road of industrialization. The whole industry chain system of the hydrogen industry is gradually being formed and will realize the leap-forward development from gray hydrogen blue hydrogen to green hydrogen. (2) The overall development of the entire hydrogen industry chain such as hydrogen production storage and transportation fuel cells hydrogen refueling stations and other scenarios should be accelerated. Besides in-depth integration and coordination with the oil and gas industry needs more attention which will rapidly promote the high-quality development of the hydrogen industry system. (3) The promotion and implementation of major projects such as "north-east hydrogen transmission" "west-east hydrogen transmission" "sea hydrogen landing" and utilization of infrastructures such as gas filling stations can give full play to the innate advantages of oil and gas companies in industrial chain nodes such as hydrogen production and refueling etc. which can help to achieve the application of "oil gas hydrogen and electricity" four-station joint construction form a nationwide hydrogen resource guarantee system and accelerate the planning and promotion of the "Hydrogen Energy China" strategy.
Renewable Electricity for Decarbonisation of Road Transport: Batteries or E-Fuels?
Feb 2023
Publication
Road transport is one of the most energy-consuming and greenhouse gas (GHG) emitting sectors. Progressive decarbonisation of electricity generation could support the ambitious target of road vehicle climate neutrality in two different ways: direct electrification with onboard electro-chemical storage or a change of energy vector with e-fuels. The most promising state-of-the-art electrochemical storages for road transport have been analysed considering current and future technologies (the most promising ones) whose use is assumed to occur within the next 10–15 years. Different e-fuels (e-hydrogen e-methanol e-diesel e-ammonia E-DME and e-methane) and their production pathways have been reviewed and compared in terms of energy density synthesis efficiency and technology readiness level. A final energetic comparison between electrochemical storages and e-fuels has been carried out considering different powertrain architectures highlighting the huge difference in efficiency for these competing solutions. E-fuels require 3–5 times more input energy and cause 3–5 times higher equivalent vehicle CO2 emissions if the electricity is not entirely decarbonised.
Multilevel Governance, PV Solar Energy, and Entrepreneurship: The Generation of Green Hydrogen as a Fuel of Renewable Origin
Sep 2022
Publication
In Spain the institutional framework for photovoltaic energy production has experienced distinct stages. From 2007 to 2012 the feed-in-tariff system led to high annual growth rates of this renewable energy but after the suppression of the policy of public subsidies the sector stagnated. In recent years green hydrogen an innocuous gas in the atmosphere has become a driving force that stimulates photovoltaic energy production. Since 2020 encouraged by the European energy strategies and corresponding funds Spain has established a regulation to promote green hydrogen as a form of energy resource. Adopting the new institutional economics (NIE) approach this article investigates the process of changing incentives for the energy business sector and its impact on photovoltaic energy production. The results show an increase in the number of both projects approved or on approval and companies involved in green hydrogen that are planning to use photovoltaic energy in Spain thus engendering the creation of a new photovoltaic business environment based on innovation and sustainability.
Time‐Decoupling Layered Optimization for Energy and Transportation Systems under Dynamic Hydrogen Pricing
Jul 2022
Publication
The growing popularity of renewable energy and hydrogen‐powered vehicles (HVs) will facilitate the coordinated optimization of energy and transportation systems for economic and en‐ vironmental benefits. However little research attention has been paid to dynamic hydrogen pricing and its impact on the optimal performance of energy and transportation systems. To reduce the dependency on centralized controllers and protect information privacy a time‐decoupling layered optimization strategy is put forward to realize the low‐carbon and economic operation of energy and transportation systems under dynamic hydrogen pricing. First a dynamic hydrogen pricing mechanism was formulated on the basis of the share of renewable power in the energy supply and introduced into the optimization of distributed energy stations (DESs) which will promote hydro‐ gen production using renewable power and minimize the DES construction and operation cost. On the basis of the dynamic hydrogen price optimized by DESs and the traffic conditions on roads the raised user‐centric routing optimization method can select a minimum cost route for HVs to purchase fuels from a DES with low‐cost and/or low‐carbon hydrogen. Finally the effectiveness of the proposed optimization strategy was verified by simulations.
Green Hydrogen in Developing Countries
Aug 2020
Publication
In the future green hydrogen—hydrogen produced with renewable energy resources—could provide developing countries with a zero-carbon energy carrier to support national sustainable energy objectives and it needs further consideration by policy makers and investors. Developing countries with good renewable energy resources could produce green hydrogen locally generating economic opportunities and increasing energy security by reducing exposure to oil price volatility and supply disruptions. Support from development finance institutions and concessional funds could play an important role in deploying first-of-a-kind green hydrogen projects accelerating the uptake of green hydrogen in developing countries and increasing capacity and creating the necessary policy and regulatory enabling environment.
Development of Risk Mitigation Guidance for Hydrogen Sensor Placement Indoors and Outdoors
Sep 2021
Publication
Guidance on Sensor Placement remains one of the top priorities for the safe deployment of hydrogen and fuel cell equipment in the commercial marketplace. Building on the success of Phase l work reported at TCHS20l9 and published in TJHE this paper discusses the consecutive steps to further develop and validate such guidance for mechanically ventilated enclosures. The key step included a more in-depth analysis of sensitivity to variation of physical parameters in a small enclosure. and finally expansion of the developed approach to confined spaces in an outdoor environment.
No more items...