- Home
- A-Z Publications
- Publications
Publications
A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers
Dec 2022
Publication
Hydrogen is one of the energy carriers that has started to play a significant role in the clean energy transition. In the hydrogen ecosystem storing hydrogen safely and with high volumetric density plays a key role. In this regard metal hydride storage seems to be superior to compressed gas storage which is the most common method used today. However thermal management is a challenge that needs to be considered. Temperature changes occur during charging and discharging processes due to the reactions between metal metal hydride and hydrogen which affect the inflow or outflow of hydrogen at the desired flow rate. There are different thermal management techniques to handle this challenge in the literature. When the metal hydride storage tanks are used in integrated systems together with a fuel cell and/or an electrolyzer the thermal interactions between these components can be used for this purpose. This study gives a comprehensive review of the heat transfer during the charging and discharging of metal hydride tanks the thermal management system techniques used for metal hydride tanks and the studies on the thermal management of metal hydride tanks with material streams from the fuel cell and/or electrolyzers.
Fluid-dynamics Analyses and Economic Investigation of Offshore Hydrogen Transport via Steel and Composite Pipelines
Apr 2024
Publication
One of the challenges associated with the use of hydrogen is its storage and transportation. Hydrogen pipelines are an essential infrastructure for transporting hydrogen from offshore production sites to onshore distribution centers. This paper presents an innovative analysis of the pressure drops velocity profile and levelized cost of hydrogen (LCOH) in various hydrogen transportation scenarios examining the influence of pipeline type (steel vs. composite) diameter and outlet pressure. The role of the compressor and the pipeline individually and together was assessed for 1000 and 100 tons of hydrogen. Notably the LCOH was highly sensitive to these parameters with the compressor contribution ranging between 21.52% and 85.11% and the pipeline’s share varying from 14.89% to 78.48%. The outflow pressure and diameter of the pipeline have a significant impact on the performance: when 1000 tons of hydrogen is transported the internal pressure drop ranges from 2 to 30 bar and the flow velocity can vary between 2 and 25 m/s. For equivalent hydrogen quantities the composite pipeline exhibits the same trends but with minor variations in the specific values.
Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies
Apr 2023
Publication
Hydrogen-based multi-microgrid systems (HBMMSs) are beneficial for energy saving and emission reductions. However the optimal sizing of HBMMSs lacks a practical configuration optimization model and a reasonable solution method. To address these problems we designed a novel structure of HBMMSs that combines conventional energy renewable energy and a hydrogen energy subsystem. Then we established a bi-level multi-objective capacity optimization model while considering electricity market trading and different hydrogen production strategies. The objective of the inner model which is the minimum annual operation cost and the three objectives of the outer model which are the minimum total annual cost (TAC); the annual carbon emission (ACE); and the maximum self-sufficiency rate (SSR) are researched simultaneously. To solve the above optimization model a two-stage solution method which considers the conflicts between objectives and the objectivity of objective weights is proposed. Finally a case study is performed. The results show that when green hydrogen production strategies are adopted the three objectives of the best configuration optimization scheme are USD 404.987 million 1.106 million tons and 0.486 respectively.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
Investigation of Hydrogen-Blended Natural Gas Pipelines in Utility Tunnel Leakage and Development of an Accident Ventilation Strategy for the Worst Leakage Conditions
Mar 2024
Publication
The development of hydrogen-blended natural gas (HBNG) increases the risk of gas transportation and presents challenges for pipeline security in utility tunnels. The objective of this study is to investigate the diffusion properties of HBNG in utility tunnels and evaluate the effectiveness of various ventilation mechanisms. The numerical simulation software Fluent 2023 R1 is applied to simulate and analyze the leakage of small holes in a HBNG pipeline in the natural gas compartment. By examining the leaking behavior of HBNG through small holes in different circumstances we aimed to identify the most unfavorable operational situation for leakage. Subsequently we analyzed the ventilation strategy for sub-high-pressure pipes at various pressure levels in this unfavorable condition. This study’s findings demonstrate that blending hydrogen improves the gas diffusion capacity and increases the likelihood of explosion. The primary factors that influence the pattern of leakage are the size of the leaking holes and the pressure of the pipeline. The gas compartment experiences the most unfavorable working conditions for natural gas pipeline leaks when there are higher pressures wider leak openings higher hydrogen blending ratios (HBRs) and leaks in close proximity to an air inlet. When the HBR is 20% the minimum accident ventilation rates for pressures of 0.4 MPa and 0.8 MPa are 15 air changes per hour and 21 air changes per hour respectively. The maximum allowable wind speed for accident ventilation is 5 m/s as regulated by China’s national standard GB 50838-2015. This regulation makes it difficult to minimize the risk of leakage in a 1.6 MPa gas pipeline. It is recommended to install a safety interlock device to quickly shut off the pipeline in the event of a leak in order to facilitate the dispersion of the substance.
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
Assessing and Modelling Hydrogen Reactivity in Underground Hydrogen Storage: A Review and Models Simulating the Lobodice Town Gas Storage
Apr 2023
Publication
Underground Hydrogen storage (UHS) is a promising technology for safe storage of large quantities of hydrogen in daily to seasonal cycles depending on the consumption requirements. The development of UHS requires anticipating hydrogen behavior to prevent any unexpected economic or environmental impact. An open question is the hydrogen reactivity in underground porous media storages. Indeed there is no consensus on the effects or lack of geochemical reactions in UHS operations because of the strong coupling with the activity of microbes using hydrogen as electron donor during anaerobic reduction reactions. In this work we apply different geochemical models to abiotic conditions or including the catalytic effect of bacterial activity in methanogenesis acetogenesis and sulfate-reduction reactions. The models are applied to Lobodice town gas storage (Czech Republic) where a conversion of hydrogen to methane was measured during seasonal gas storage. Under abiotic conditions no reaction is simulated. When the classical thermodynamic approach for aqueous redox reactions is applied the simulated reactivity of hydrogen is too high. The proper way to simulate hydrogen reactivity must include a description of the kinetics of the aqueous redox reactions. Two models are applied to simulate the reactions of hydrogen observed at Lobodice gas storage. One modeling the microbial activity by applying energy threshold limitations and another where microbial activity follows a Monod-type rate law. After successfully calibrating the bio-geochemical models for hydrogen reactivity on existing gas storage data and constraining the conditions where microbial activity will inhibit or enhance hydrogen reactivity we now have a higher confidence in assessing the hydrogen reactivity in future UHS in aquifers or depleted reservoirs.
Power Balance Control and Dimensioning of a Hybrid Off-grid Energy system for a Nordic Climate Townhouse
Mar 2023
Publication
This paper investigates conversion of a Nordic oil-heated townhouse into carbon-neutral by different energy efficiency (EE) improvements and an off-grid system including solar photovoltaics (PV) wind power and battery and hydrogen energy storage systems (BESS and HESS). A heat-pump-based heating system including waste heat recovery (WHR) from the HESS and an off-grid electrical system are dimensioned for the building by applying models developed in MATLAB and Microsoft Excel to study the life cycle costs (LCC). The work uses a measured electrical load profile and the heat generation of the new heating system and the power generation are simulated by commercial software. It is shown that the EE improvements and WHR from the HESS have a positive effect on the dimensioning of the off-grid system and the LCC can be reduced by up to €2 million. With the EE improvements and WHR the component dimensioning can be reduced by 22%–41% and 13%–51% on average respectively. WHR can cover up to 57% of the building's annual heat demand and full-power dimensioning of the heat pump is not reasonable when WHR is applied. Wind power was found to be very relevant in the Nordic conditions reducing the LCC by 32%.
Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor
Nov 2022
Publication
In recent years growing awareness about environmental issues is pushing humankind to explore innovative technologies to reduce the anthropogenic sources of pollutants. Among these sources internal combustion engines in non-road mobile machinery (NRMM) such as agricultural tractors are one of the most important. The aim of this work is to explore the possibility of replacing the conventional diesel engine with an electric powertrain powered by a hybrid storage system consisting of a small battery pack and a fuel-cell system. The battery pack (BP) is necessary to help the fuel cell manage sudden peaks in power demands. Numerical models of the conventional powertrain and a fuel-cell tractor were carried out. To compare the two powertrains work cycles derived from data collected during real operative conditions were exploited and simulated. For the fuel-cell tractor a control strategy to split the electric power between the battery pack and the fuel cell was explored. The powertrains were compared in terms of greenhouse gas emissions (GHG) according to well-to-wheel (WTW) equivalent CO2 emission factors available in the literature. Considering the actual state-of-the-art hydrogen production methods the simulation results showed that the fuel-cell/battery powertrain was able to accomplish the tasks with a reduction of about 50% of the equivalent CO2 emissions compared to traditional diesel-powered vehicles.
Design for Reliability and Safety: Challenges and Opportunities in Hydrogen Mobility Assets
Sep 2023
Publication
Safety and reliability are important performance attributes of any engineered system where humanmachine interactions are present. However they are usually approached as afterthoughts or in some cases unintended consequences of the system design and development process that must be addressed and verified in subsequent design stages. In plain words safety and reliability are often seen as constraints that add layers of complexity and extra costs to the minimum functional system of interest. No longer. Shell Hydrogen is embedding the Design for Reliability and Safety approach to engineer our products and assets in such a way that safety and reliability are at the core of a concurrent engineering process throughout the system lifecycle. This has been achieved in practice by leveraging systems reliability and safety engineering methods along with the experience and expertise of Shell Hydrogen original equipment manufacturers and system integrators in designing building and operating hydrogen assets for mobility applications.<br/>The challenges in implementing this approach are many ranging from access to historical data on equipment and component safety and reliability performance to lack of standardization in the industry when dealing with hydrogen related hazards. In this paper we will describe the approach in more detail some of our early successes and failures during deployment and the continual improvement journey that lies ahead.
Economic Assessment of Hydrogen Production in a Renewable Energy Community in Italy
Feb 2023
Publication
Renewable Energy Community (REC) is a new paradigm in European Union to produce transform share and sell renewables at a local consumer level also via e-fuel (i.e. hydrogen). This work investigates the economic feasibility of a hydrogen Power-to-Gas (PtG) system realized inside a REC using only excess renewable electricity not consumed by REC itself. A single centralized photovoltaic (PV) plant is directly connected to an electrolyser; a hydrogen compressor and two hydrogen storages at low and high pressure complete the PtG system. A scenario of a REC composed by 450 residential electric users (around 1000 people) has been analysed coupled with described PtG considering eight different sizes of PV plant. In the study Italian subsidies to REC shared energy are evaluated as incentives to hydrogen production. An optimal size of PtG components for each PV size is investigated at the limit of economical sustainability evaluating net present value (NPV) positive and near zero. Results show that for the considered REC it is possible to produce and sell up to around 3 tons per year of green hydrogen at most to the same lowest selling price declared currently in the Italian market (5 €/kg).
The Role of Hydrogen and H2 Mobility on the Green Transition of Islands: The Case of Anafi (Greece)
Apr 2023
Publication
The holistic green energy transition of non-interconnected islands faces several challenges if all the energy sectors are included i.e. electricity heating/cooling and mobility. On the one hand the penetration of renewable energy systems (RES) is limited due to design restrictions with respect to the peak demand. On the other hand energy-intensive heating and mobility sectors pose significant challenges and may be difficult to electrify. The focus of this study is on implementing a hybrid Wind–PV system on the non-interconnected island of Anafi (Greece) that utilizes surplus renewable energy production for both building heating through heat pumps and hydrogen generation. This comprehensive study aims to achieve a holistic green transition by addressing all three main sectors—electricity heating and transportation. The produced hydrogen is utilized to address the energy needs of the mobility sector (H2 mobility) focusing primarily on public transportation vehicles (buses) and secondarily on private vehicles. The overall RES production was modeled to be 91724 MWh with a RES penetration of 84.68%. More than 40% of the produced electricity from RES was in the form of excess electricity that could be utilized for hydrogen generation. The modeled generated hydrogen was simulated to be more than 40 kg H2/day which could cover all four bus routes of the island and approximately 200 cars for moderate use i.e. traveled distances of less than 25 km/day for each vehicle.
Pre-cooling Systems for Hydrogen Fueling Stations: Techno-economic Analysis for Scaled Enactment
Mar 2023
Publication
Hydrogen fueling standards stipulates a sustainable cooling system technically and economically. Accordingly the interior surface temperature of the on-board H2 storage tank in fuel cell electric vehicles must not exceed the maximum specified limit (358.15 K) and the fueling rate must be ≤ 42.86 sec / kg-H2 with T40 dispenser at 70 MPa. In this context H2 refueling stations often employ double-tube and block heat exchangers for heat transfer. This study examines the H2 pre-cooling system for various loads and provides a comparative techno-economic analysis of double tube heat exchangers (DTHE) and microchannel heat exchangers (MCHE) under stipulated technical operational and outlet gas standards. For this purpose thermal and hydraulic performances were simulated using ANSYS-CFX. Technical and cost models utilize manufacturer specifications and literature-based technical and economic characteristics to derive the minimum sustainable price defined as the price to sustain the product. The results showed that the MCHE outperformed the DTHE for setups in mass manufacturing improved effective heat transfer area and predicted long term unit cost. The annual quantitative output affects manufacturing expenses and profit margins substantially. With high production rates it is expected that the unit cost of the MCHE will decrease by up to 74%. In switching from DTHE to MCHE general material requirements decreased by ~60% with scrap waste savings of ~45% reflecting an appreciable footprint reduction.
Decarbonisation Options for the Cement Industry
Jan 2023
Publication
The cement industry is a building block of modern society and currently responsible for around 7% of global and 4% of EU CO2 emissions. While facing global competition and a challenging business environment the EU cement sector needs to decarbonise its production processes to comply with the EU’s ambitious 2030 and 2050 climate targets. This report provides a snapshot of the current cement production landscape and discusses future technologies that are being explored by the sector to decarbonise its processes describing the transformational change the industry faces. This report compiles the current projects and announcements to deploy breakthrough technologies which do require high capital investments. However with 2050 just one investment cycle away the sector needs to commercialise new low-CO2 technologies this decade to avoid the risk of stranded assets. As Portland cement production is highly CO2-intensive and EU plants are already operating close to optimum efficiency the industry appears to be focussing on carbon capture storage and utilisation technologies - while breakthroughs in alternative chemistries are still being explored - to reduce emissions. While the EU has played an important role in supporting early stage R&D for these technologies it is now striving to fill the funding gap for the commercialisation of breakthrough technologies. The recent momentum towards CO2-free cement provides the EU with the opportunity to be a frontrunner in creating markets for green cement.
Hydrogen Net Zero Investment Roadmap: Leading the Way to Net Zero
Apr 2023
Publication
This net zero investment roadmap summarises government’s hydrogen policies and available investment opportunities.
Recent Advancements of Polymeric Membranes in Anion Exchange Membrane Water Electrolyzer (AEMWE): A Critical Review
Apr 2023
Publication
The formation of green hydrogen from water electrolysis is one of the supreme methodologies for understanding the well-organized consumption of sporadic renewable energies and the carbon-free future. Among the different electrolysis techniques the evolving anion exchange membrane water electrolysis (AEMWE) shows the utmost promise for manufacturing green hydrogen in an inexpensive way. In the present review we establish the most current and noteworthy achievements of AEMWE which include the advancements in increasing the ionic conductivity and understanding the mechanism of degradation of AEM and the most important topics regarding the designing of the electrocatalyst. The crucial issues that affect the AEMWE behavior are highlighted and future constraints and openings are also discussed. Furthermore this review article provides the appreciated strategies for producing extremely dynamic and robust electrocatalysts and evolving the construction of AEMWE equipment.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
Fuelling the Transition Podcast: Building the UK Hydrogen Backbone
Feb 2022
Publication
In this episode Tony Green Hydrogen Director at National Grid and John Williams Head of Hydrogen Expertise Cluster at AFRYManagement Consulting join us to discuss the challenges in implementing hydrogen. Tony is involved in two exciting hydrogen projects: FutureGrid andProject Union. FutureGrid involves building a facility to create a representative whole-network to trial hydrogen. Project Union will develop a UK hydrogen ‘backbone’ joining together clusters around the country potentially creating a 2000km hydrogen network.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
Comparative Study on Ammonia and Liquid Hydrogen Transportation Costs in Comparison to LNG
Feb 2023
Publication
Since ammonia and liquid hydrogen are the optional future shipping cargo and fuels the applicability was crucial using the current technologies and expectations. Existing studies for the economic feasibility of the energies had limitations: empirical evaluation with assumptions and insufficiency related to causality. A distorted estimation can result in failure of decision-making or policy in terms of future energy. The present study aimed to evaluate the transportation costs of future energy including ammonia and liquid hydrogen in comparison to LNG for overcoming the limitations. An integrated mathematical model was applied to the investigation for economic feasibility. The transportation costs of the chosen energies were evaluated for the given transportation plan considering key factors: ship speed BOR and transportation plan. The transportation costs at the design speed for LNG and liquid hydrogen were approximately 55 % and 80 % of that for ammonia without considering the social cost due to CO2 emission. Although ammonia was the most expensive energy for transportation ammonia could be an effective alternative due to insensitivity to the transportation plan. If the social cost was taken into account liquid hydrogen already gained competitiveness in comparison to LNG. The advantage of liquid hydrogen was maximized for higher speed where more BOG was injected into main engines.
No more items...