- Home
- A-Z Publications
- Publications
Publications
Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)
Dec 2022
Publication
In recent years there has been great interest in Wankel-type rotary engines which are one of the most suitable power sources for unmanned aerial vehicle (UAV) applications due to their high power-to-size and power-to-weight ratios. The purpose of the present study was to investigate the potential of a hydrogen enrichment strategy for the improvement of the performance and reduction of the emissions of Wankel engines. The main motivation behind this study was to make Wankel engines which are already very advantageous for UAV applications even more advantageous by applying the hydrogen enrichment technique. In this study hydrogen addition was implemented in a spark-ignition rotary engine model operating at a constant engine speed of 6000 rpm. The mass fraction of hydrogen in the intake gradually increased from 0% to 10%. Simulation results revealed that addition of hydrogen to the fuel accelerated the flame propagation and increased the burning speed of the fuel the combustion temperature and the peak pressure in the working chamber. These phenomena had a very positive effect on the performance and emissions of the Wankel engine. The indicated mean effective pressure (IMEP) increased by 8.18% and 9.68% and the indicated torque increased by 6.15% and 7.99% for the 5% and 10% hydrogen mass fraction cases respectively compared to those obtained with neat gasoline. In contrast CO emissions were reduced by 33.35% and 46.21% and soot emissions by 11.92% and 20.06% for 5% and 10% hydrogen additions respectively. NOx emissions increased with the application of the hydrogen enrichment strategy for the Wankel engine.
Prospects for the Implementation of Underground Hydrogen Storage in the EU
Dec 2022
Publication
The hydrogen economy is one of the possible directions of development for the European Union economy which in the perspective of 2050 can ensure climate neutrality for the member states. The use of hydrogen in the economy on a larger scale requires the creation of a storage system. Due to the necessary volumes the best sites for storage are geological structures (salt caverns oil and gas deposits or aquifers). This article presents an analysis of prospects for large-scale underground hydrogen storage in geological structures. The political conditions for the implementation of the hydrogen economy in the EU Member States were analysed. The European Commission in its documents (e.g. Green Deal) indicates hydrogen as one of the important elements enabling the implementation of a climate-neutral economy. From the perspective of 2050 the analysis of changes and the forecast of energy consumption in the EU indicate an increase in electricity consumption. The expected increase in the production of energy from renewable sources may contribute to an increase in the production of hydrogen and its role in the economy. From the perspective of 2050 discussed gas should replace natural gas in the chemical metallurgical and transport industries. In the longer term the same process will also be observed in the aviation and maritime sectors. Growing charges for CO2 emissions will also contribute to the development of underground hydrogen storage technology. Geological conditions especially wide-spread aquifers and salt deposits allow the development of underground hydrogen storage in Europe.
Economic Complexity of Green Hydrogen Production Technologies - A Trade Data-based Analysis of Country-sepcific Industrial Preconditions
May 2023
Publication
Countries with high energy demand but limited renewable energy potential are planning to meet part of their future energy needs by importing green hydrogen. For potential exporting countries in addition to sufficient renewable resources industrial preconditions are also relevant for the successful implementation of green hydrogen production value chains. A list of 36 “Green H2 Products” needed for stand-alone hydrogen production plants was defined and their economic complexity was analyzed using international trade data from 1995 to 2019. These products were found to be comparatively complex to produce and represent an opportunity for countries to enter new areas of the product space through green diversification. Large differences were revealed between countries in terms of industrial preconditions and their evolution over time. A detailed analysis of nine MENA countries showed that Turkey and Tunisia already possess industrial know-how in various green hydrogen technology components and perform only slightly worse than potential European competitors while Algeria Libya and Saudi Arabia score the lowest in terms of calculated hydrogen-related green complexity. These findings are supported by statistical tests showing that countries with a higher share of natural resources rents in their gross domestic product score significantly lower on economic and green complexity. The results thus provide new perspectives for assessing the capabilities of potential hydrogen-producing countries which may prove useful for policymakers and investors. Simultaneously this paper contributes to the theory of economic complexity by applying its methods to a new subset of products and using a dataset with long-term coverage.
Thermo-physical Numerical Model for Hydrogen Storage in Underground Tanks and Caverns
Apr 2024
Publication
Compressed hydrogen storage is an energy-efficient alternative to liquefaction and in the absence of underground salt formations reservoirs like rock caverns mining shafts and cased boreholes are gaining traction. The limited reservoir volume constrained by excavation or drilling results in short high-pressure cycles. Thus effective temperature control is crucial to maintain integrity and maximize hydrogen density. This study presents a validated numerical model with open-access code for simulating heat exchange and predicting operating pressure and temperature for underground hydrogen storage in tanks or caverns. The validation encompasses analytical solutions and existing cylindrical models. Results highlight the heat transfer’s impact on hydrogen density and the limited penetration depth of the thermal perturbation underscoring the need for simulating heat transfer across multiple layers especially in restrictive media like cement. Managing injection and extraction flow rates is crucial to limit temperature peaks for larger radius reservoirs where heat transfer is less efficient.
Cryogenic Hydrogen Jet and Flame for Clean Energy Applications: Progress and Challenges
May 2023
Publication
Industries across the world are making the transition to net-zero carbon emissions as government policies and strategies are proposed to mitigate the impact of climate change on the planet. As a result the use of hydrogen as an energy source is becoming an increasingly popular field of research particularly in the aviation sector where an alternative green renewable fuel to the traditional hydrocarbon fuels such as kerosene is essential. Hydrogen can be stored in multiple ways including compressed gaseous hydrogen cryo-compressed hydrogen and cryogenic liquid hydrogen. The infrastructure and storage of hydrogen will play a pivotal role in the realisation of large-scale conversion from traditional fuels with safety being a key consideration. This paper provides a review on previous work undertaken to study the characterisation of both unignited and ignited hydrogen jets which are fundamental phenomena for the utilisation of hydrogen. This includes work that focuses on the near-field flow structure dispersion in the far-field ignition and flame characteristics with multi-physics. The safety considerations are also included. The theoretical models and computational fluid dynamics (CFD) multiphase and reactive flow approaches are discussed. Then an overview of previous experimental work is provided before focusing the review on the existing computational results with comparison to experiments. Upon completion of this review it is highlighted that the complex near-field physics and flow phenomena are areas lacking in research. The near-field flow properties and characteristics are of significant importance with respect to the ignition and combustion of hydrogen.
Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy
May 2023
Publication
Hydrogen barrier coatings are protective layers consisting of materials with a low intrinsic hydrogen diffusivity and solubility showing the potential to delay reduce or hinder hydrogen permeation. Hydrogen barrier coatings are expected to enable steels which are susceptible to hydrogen embrittlement specifically cost-effective low alloy-steels or light-weight high-strength steels for applications in a hydrogen economy. Predominantly ceramic coating materials have been investigated for this purpose including oxides nitrides and carbides. In this review the state of the art with respect to hydrogen permeation is discussed for a variety of coatings. Al2O3 TiAlN and TiC appear to be the most promising candidates from a large pool of ceramic materials. Coating methods are compared with respect to their ability to produce layers with suitable quality and their potential for scaling up for industrial use. Different setups for the characterisation of hydrogen permeability are discussed using both gaseous hydrogen and hydrogen originating from an electrochemical reaction. Finally possible pathways for improvement and optimisation of hydrogen barrier coatings are outlined.
On the Use of a Hydrogen-Fueled Engine in a Hybrid Electric Vehicle
Dec 2022
Publication
Hybrid electric vehicles are currently one of the most effective ways to increase the efficiency and reduce the pollutant emissions of internal combustion engines. Green hydrogen produced with renewable energies is an excellent alternative to fossil fuels in order to drastically reduce engine pollutant emissions. In this work the author proposes the implementation of a hydrogen-fueled engine in a hybrid vehicle; the investigated hybrid powertrain is the power-split type in which the engine two electric motor/generators and the drive shaft are coupled together by a planetary gear set; this arrangement allows the engine to operate independently from the wheels and thus to exploit the best efficiency operating points. A set of numeric simulations were performed in order to compare the gasoline-fueled engine with the hydrogen-fueled one in terms of the thermal efficiency and total energy consumed during a driving cycle. The simulation results show a mean engine efficiency increase of around 17% when fueled with hydrogen with respect to gasoline and an energy consumption reduction of around 15% in a driving cycle.
Environmental Sustainability Assessment of Large-scale Hydrogen Production Using Prospective Life Cycle Analysis
Nov 2022
Publication
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet the full range of environmental consequences of large-scale hydrogen production remains unclear. Here prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework known human health burdens the impacts of the world economy and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ∼2 to ∼5 USD/kg hydrogen) while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ∼7 to ∼3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.
Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers
Dec 2018
Publication
In order to adopt water electrolyzers as a main hydrogen production system it is critical to develop inexpensive and earth-abundant catalysts. Currently both half-reactions in water splitting depend heavily on noble metal catalysts. This review discusses the proton exchange membrane (PEM) water electrolysis (WE) and the progress in replacing the noble-metal catalysts with earth-abundant ones. The efforts within this field for the discovery of efficient and stable earth-abundant catalysts (EACs) have increased exponentially the last few years. The development of EACs for the oxygen evolution reaction (OER) in acidic media is particularly important as the only stable and efficient catalysts until now are noble-metal oxides such as IrOx and RuOx. On the hydrogen evolution reaction (HER) side there is significant progress on EACs under acidic conditions but there are very few reports of these EACs employed in full PEM WE cells. These two main issues are reviewed and we conclude with prospects for innovation in EACs for the OER in acidic environments as well as with a critical assessment of the few full PEM WE cells assembled with EACs.
Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective
Mar 2023
Publication
The present day energy supply scenario is unsustainable and the transition towards a more environmentally friendly energy supply system of the future is inevitable. Hydrogen is a potential fuel that is capable of assisting with this transition. Certain technological advancements and design challenges associated with hydrogen generation and fuel cell technologies are discussed in this review. The commercialization of hydrogen-based technologies is closely associated with the development of the fuel cell industry. The evolution of fuel cell electric vehicles and fuel cell-based stationary power generation products in the market are discussed. Furthermore the opportunities and threats associated with the market diffusion of these products certain policy implications and roadmaps of major economies associated with this hydrogen transition are discussed in this review.
Evaluation of the Potential for Distributed Generation of Green Hydrogen Using Metal-hydride Storage Methods
May 2023
Publication
This study presents methodology for the evaluation of appropriateness of a hydrogen generator for gas production in multiple distributed plants based on renewable energy sources. The general idea is to form hydrogen clusters integrated with storage and transportation. The paper focuses on the financial viability of the plants presenting the results of economic evaluation together with sensitivity analysis for various economic factors. The analyzed case study proves that over a wide range of parameters alkaline electrolyzers show favorable economic characteristics however a PEM-based plant is more resilient to changes in the price of electricity which is the main cost component in hydrogen generation. The study is enriched with an experimental investigation of low-pressure storage methods based on porous metal hydride tanks. The effectiveness of the tanks (β) compared to pressurized hydrogen tanks in the same volume and pressure is equal to β = 10.2. A solution is proposed whereby these can be used in a distributed hydrogen generation concept due to their safe and simple operation without additional costly equipment e.g. compressors. A method for evaluation of the avoided energy consumption as a function of the effectiveness of the tanks is developed. Avoided energy consumption resulting from implementing MH tanks equals 1.33 – 1.37 kWh per kilogram of hydrogen depending on the number of stages of a compressor. The methods proposed in this paper are universal and can be used for various green hydrogen facilities.
EU Decarbonization under Geopolitical Pressure: Changing Paradigms and Implications for Energy and Climate Policy
Mar 2023
Publication
This paper aims to assess the impact of EU energy and climate policy as a response to Russia’s war in Ukraine on the EU decarbonization enterprise. It showcases how the Russian invasion was a crunch point that forced the EU to abandon its liberal market dogma and embrace in practice an open strategic autonomy approach. This led to an updated energy and climate policy with significant changes underpinning its main pillars interdependence diversification and the focus of market regulation and build-up. The reversal of enforced interdependence with Russia and the legislative barrage to support and build-up a domestic clean energy market unlocks significant emission reduction potential with measures targeting energy efficiency solar wind and hydrogen development; an urban renewable revolution and electricity and carbon market reforms standing out. Such positive decarbonization effects however are weakened by source and fuel diversification moves that extend to coal and shale gas especially when leading to an infrastructure build-up and locking-in gas use in the mid-term. Despite these caveats the analysis overall vindicates the hypothesis that geopolitics constitutes a facilitator and accelerator of EU energy transition.
Hydrogen Release Modelling for Analysis Using Data-driven Autoencoder with Convolutional Neural Networks
Sep 2023
Publication
High-accuracy gas dispersion models are necessary for predicting hydrogen movement and for reducing the damage caused by hydrogen release accidents in chemical processes. In urban areas where obstacles are large and abundant computational fluid dynamics (CFD) would be the best choice for simulating and analyzing scenarios of the accidental release of hydrogen. However owing to the large computation time required for CFD simulation it is inappropriate in emergencies and real-time alarm systems. In this study a non-linear surrogate model based on deep learning is proposed. Deep convolutional layer data-driven autoencoder and batch normalized deep neural network is used to analyze the effects of wind speed wind direction and release degree on hydrogen concentration in real-time. The typical parameters of hydrogen diffusion accidents at hydrogen refuelling stations were acquired by CFD numerical simulation approach and a database of hydrogen diffusion accident parameters is established. By establishing an appropriate neural network structure and associated activation function a deep learning framework is created and then a deep learning model is constructed. The accuracy and timeliness of the model are assessed by comparing the results of the CFD simulation with those of the deep learning model. To develop a dynamic reconfiguration prediction model for the hydrogen refuelling station diffusion scenario the algorithm is continuously enhanced and the model is improved. After training is finished the model's prediction time is measured in seconds which is 105 times quicker than field CFD simulations. The deep learning model of hydrogen release in hydrogen refuelling stations is established to realize timely and accurate prediction and simulation of accident consequences and provide decision-making suggestions for emergency rescue and personnel evacuation which is of great significance for the protection of human life health and property safety.
Understanding Degradation Effects of Elevated Temperature Operating Conditions in Polymer Electrolyte Water Electrolyzers
Apr 2021
Publication
The cost of polymer electrolyte water electrolysis (PEWE) is dominated by the price of electricity used to power the water splitting reaction. We present a liquid water fed polymer electrolyte water electrolyzer cell operated at a cell temperature of 100 °C in comparison to a cell operated at state-of-the-art operation temperature of 60 °C over a 300 h constant current period. The hydrogen conversion efficiency increases by up to 5% at elevated temperature and makes green hydrogen cheaper. However temperature is a stress factor that accelerates degradation causes in the cell. The PEWE cell operated at a cell temperature of 100 °C shows a 5 times increased cell voltage loss rate compared to the PEWE cell at 60 °C. The initial performance gain was found to be consumed after a projected operation time of 3500 h. Elevated temperature operation is only viable if a voltage loss rate of less than 5.8 μV h−1 can be attained. The major degradation phenomena that impact performance loss at 100 °C are ohmic (49%) and anode kinetic losses (45%). Damage to components was identified by post-test electron-microscopic analysis of the catalyst coated membrane and measurement of cation content in the drag water. The chemical decomposition of the ionomer increases by a factor of 10 at 100 °C vs 60 °C. Failure by short circuit formation was estimated to be a failure mode after a projected lifetime 3700 h. At elevated temperature and differential pressure operation hydrogen gas cross-over is limiting since a content of 4% hydrogen in oxygen represents the lower explosion limit.
Hydrogen in the Natural Gas Network—Relevance for Existing Fire Precautions
Jun 2024
Publication
Power-to-gas technology can be used to convert excess power from renewable energies to hydrogen by means of water electrolysis. This hydrogen can serve as “chemical energy storage” and be converted back to electricity or fed into the natural gas grid. In the presented study a leak in a household pipe in a single-family house with a 13 KW heating device was experimentally investigated. An admixture of up to 40% hydrogen was set up to produce a scenario of burning leakage. Due to the outflow and mixing conditions a lifted turbulent diffusion flame was formed. This led to an additional examination point and expanded the aim and novelty of the experimental investigation. In addition to the fire safety experimental simulation of a burning leakage the resulting complex properties of the flame namely the lift-off height flame length shape and thermal radiation have also been investigated. The obtained results of this show clearly that as a consequence of the hydrogen addition the main properties of the flame such as lifting height flame temperature thermal radiation and total heat flux densities along the flame have been changed. To supplement the measurements with thermocouples imaging methods based on the Sobel gradient were used to determine the lifting height and the flame length. In order to analyze the determined values a probability density function was created.
Assessment of Fuel Switching as a Decarbonization Strategy in the Cement Sector
May 2024
Publication
Limiting global warming and the pursuit of a net-zero global society by 2050 emphasizes the need to transform the hard-to-abate industrial sectors. The cement sector is the second-largest source of global industrial emissions accounting for 8% of worldwide greenhouse gas emissions. Fuel switching in the cement sector is a decarbonization pathway that has not been explored in detail; previous studies involving fuel switching in the sector either view it from an energy efficiency lens or focus on a single technology. In this study a framework is developed to evaluate and directly compare six fuel switching options (including hydrogen biomass municipal solid waste and natural gas) from 2020 to 2050. Capital costs non-energy operating costs energy costs and carbon costs are used to calculate marginal abatement costs and emulate cost based-market decisions. The developed framework is used to conduct a case study for Canada using the LEAP-Canada model. This study shows that cumulative energy-related greenhouse gas emissions can be reduced by up to 21% between 2020 and 2050 with negative marginal abatement costs. Multiple fuel switching decarbonization pathways were established reducing the likelihood that locality prevents meaningful emissions reduction and suggesting that with low-carbon fuel and electricity policies the sector can take significant steps towards emissions reduction. The developed framework can be applied to jurisdictions around the world for decision making as nations move towards eliminating emissions from cement production.
Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System
Aug 2023
Publication
To solve the problems of low utilization of biomass and uncertainty and intermittency of wind power (WP) in rural winter an interval optimization model of a rural integrated energy system with biogas fermentation and electrolytic hydrogen production is constructed in this paper. Firstly a biogas fermentation kinetic model and a biogas hydrogen blending model are developed. Secondly the interval number is used to describe the uncertainty of WP and an interval optimization scheduling model is developed to minimize daily operating cost. Finally a rural integrated energy system in Northeast China is taken as an example and a sensitivity analysis of electricity price gas production and biomass price is conducted. The simulation results show that the proposed strategy can significantly reduce the wind abandonment rate and improve the economy by 3.8–22.3% compared with conventional energy storage under optimal dispatch.
A Web-based Decision Support System (DSS) for Hydrogen Refueling Station Location and Supply Chain Optimisation
Jun 2023
Publication
This study presents a novel web-based decision support system (DSS) that optimizes the locations of hydrogen refueling stations (HRSs) and hydrogen supply chains (HSCs). The system is developed with a design science approach that identifies key design requirements and features through interviews and literature reviews. Based on the findings a system architecture and data model were designed incorporating scenario management optimization model visualization and data management components. The DSS provides a two-stage solution model that links demand to HRSs and production facilities to HRSs. A prototype is demonstrated with a plan for 2025 and 2030 in the Republic of Korea where 450 to 660 stations were deployed nationwide and linked to production facilities. User evaluation confirmed the effectiveness of the DSS in solving optimization problems and its potential to assist the government and municipalities in planning hydrogen infrastructure.
Techno-Economic Analysis of Hydrogen Production from Swine Manure Biogas via Steam Reforming in Pilot-Scale Installation
Sep 2023
Publication
The main purpose of this paper is the techno-economic analysis of hydrogen production from biogas via steam reforming in a pilot plant. Process flow modeling based on mass and energy balance is used to estimate the total equipment purchase and operating costs of hydrogen production. The pilot plant installation produced 250.67 kg/h hydrogen from 1260 kg/h biomethane obtained after purification of 4208 m3/h biogas using a heat and mass integration process. Despite the high investment cost the plant shows a great potential for biomethane reduction and conversion to hydrogen an attractive economic path with ecological possibilities. The conversion of waste into hydrogen is a possibility of increasing importance in the global energy economy. In the future such a plant will be expanded with a CO2 reduction module to increase economic efficiency and further reduce greenhouse gases in an economically viable manner.
Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future
Sep 2023
Publication
There is a growing interest in green hydrogen with researchers institutions and countries focusing on its development efficiency improvement and cost reduction. This paper explores the concept of green hydrogen and its production process using renewable energy sources in several leading countries including Australia the European Union India Canada China Russia the United States South Korea South Africa Japan and other nations in North Africa. These regions possess significant potential for “green” hydrogen production supporting the transition from fossil fuels to clean energy and promoting environmental sustainability through the electrolysis process a common method of production. The paper also examines the benefits of green hydrogen as a future alternative to fossil fuels highlighting its superior environmental properties with zero net greenhouse gas emissions. Moreover it explores the potential advantages of green hydrogen utilization across various industrial commercial and transportation sectors. The research suggests that green hydrogen can be the fuel of the future when applied correctly in suitable applications with improvements in production and storage techniques as well as enhanced efficiency across multiple domains. Optimization strategies can be employed to maximize efficiency minimize costs and reduce environmental impact in the design and operation of green hydrogen production systems. International cooperation and collaborative efforts are crucial for the development of this technology and the realization of its full benefits.
No more items...