- Home
- A-Z Publications
- Publications
Publications
Energy Management of Heavy-duty Fuel Cell Vehicles in Real-world Driving Scenarios: Robust Design of Strategies to Maximize the Hydrogen Economy and System Lifetime
Feb 2021
Publication
Energy management is a critical issue for the advancement of fuel cell vehicles because it significantly influences their hydrogen economy and lifetime. This paper offers a comprehensive investigation of the energy management of heavy-duty fuel cell vehicles for road freight transportation. An important and unique contribution of this study is the development of an extensive and realistic representation of the vehicle operation which includes 1750 hours of real-world driving data and variable truck loading conditions. This framework is used to analyze the potential benefits and drawbacks of heuristic optimal and predictive energy management strategies to maximize the hydrogen economy and system lifetime of fuel cell vehicles for road freight transportation. In particular the statistical evaluation of the effectiveness and robustness of the simulation results proves that it is necessary to consider numerous and realistic driving scenarios to validate energy management strategies and obtain a robust design. This paper shows that the hydrogen economy can be maximized as an individual target using the available driving information achieving a negligible deviation from the theoretical limit. Furthermore this study establishes that heuristic and optimal strategies can significantly reduce fuel cell transients to improve the system lifetime while retaining high hydrogen economies. Finally this investigation reveals the potential benefits of predictive energy management strategies for the multi-objective optimization of the hydrogen economy and system lifetime.
Determination of Critical Hydrogen Concentration and Its Effect on Mechanical Performance of 2200 MPa and 600 HBW Martensitic Ultra-High-Strength Steel
Jun 2021
Publication
The influence of hydrogen on the mechanical performance of a hot-rolled martensitic steel was studied by means of constant extension rate test (CERT) and constant load test (CLT) followed with thermal desorption spectroscopy measurements. The steel shows a reduction in tensile strength up to 25% of ultimate tensile strength (UTS) at critical hydrogen concentrations determined to be about 1.1 wt.ppm and 50% of UTS at hydrogen concentrations of 2 wt.ppm. No further strength degradation was observed up to hydrogen concentrations of 4.8 wt.ppm. It was observed that the interplay between local hydrogen concentrations and local stress states accompanied with the presence of total average hydrogen reducing the general plasticity of the specimen are responsible for the observed strength degradation of the steel at the critical concentrations of hydrogen. Under CLT the steel does not show sensitivity to hydrogen at applied loads below 50% of UTS under continuous electrochemical hydrogen charging up to 85 h. Hydrogen enhanced creep rates during constant load increased linearly with increasing hydrogen concentration in the steel.
Aqueous Phase Reforming of the Residual Waters Derived from Lignin-rich Hydrothermal Liquefaction: Investigation of Representative Organic Compounds and Actual Biorefinery Streams
Sep 2019
Publication
Secondary streams in biorefineries need to be valorized to improve the economic and environmental sustainability of the plants. Representative model compounds of the water fraction from the hydrothermal liquefaction (HTL) of biomass were subjected to aqueous phase reforming (APR) to produce hydrogen. Carboxylic and bicarboxylic acids hydroxyacids alcohols cycloketones and aromatics were identified as model compounds and tested for APR. The tests were performed with a Pt/C catalyst and the influence of the carbon concentration (0.3–1.8 wt. C%) was investigated. Typically the increase of the concentration negatively affected the conversion of the feed toward gaseous products without influencing the selectivity toward hydrogen production. A synthetic ternary mixture (glycolic acid acetic acid lactic acid) was subjected to APR to evaluate any differences in performance compared to the tests with single compounds. Indeed glycolic acid reacted faster in the mixture than in the corresponding single compound test while acetic acid remained almost unconverted. The influence of the reaction time temperature and carbon concentration was also evaluated. Finally residual water resulting from the HTL of a lignin-rich stream originating from an industrial-scale lignocellulosic ethanol process was tested for the first time after a thorough characterization. In this framework the stability of the catalyst was studied and found to be correlated to the presence of aromatics in the aqueous feedstock. For this reason the influence of an extraction procedure for the selective removal of these compounds was explored leading to an improvement in the APR performance.
Briefing on the EU Innovation Fund and the Implications for CCUS Projects- First Report on the Thematic Working Group on Policy, Regulation and Public Perception
Jan 2020
Publication
This report outlines the key modalities and procedures for the Innovation Fund and focuses on the potential funding implications for CCUS projects. The assessment of the suitability of the Innovation Fund for CCS projects has been completed based on discussion during a workshop hosted by the EU CCUS Projects Network in October 2019. This session was part of the Network’s Thematic Group on Policy Regulation and Public Perception. The session was held according to Chatham House rules to allow the projects present to exchange viewpoints and ideas freely.<br/>Broadly speaking it is hoped that the Innovation Fund Call for Proposal documents expected in mid-2020 will provide more information on how applicants should approach some of the key evaluation criteria namely calculating emissions avoidance for part-chain CCS and CCU projects demonstrating project maturity as well as project innovativeness. Furthermore there remains a concern that the costs for developing sufficient contingent storage sites could be overlooked by the Innovation Fund and EU policies directed towards CCS in general. Finally whereas there does not seem to be any regulatory barriers to blending Innovation Fund financing with Member State subsidies the asynchronous timing between the planned final investment decisions (FIDs) of some of the more advanced projects and the outcomes of the Innovation Fund (expected in 2022) means that certain projects may not be able to benefit from this.
Progress and Prospects of Hydrogen Production: Opportunities and challenges
Jan 2021
Publication
This study presents an overview of the current status of hydrogen production in relation to the global requirement for energy and resources. Subsequently it symmetrically outlines the advantages and disadvantages of various production routes including fossil fuel/biomass conversion water electrolysis microbial fermentation and photocatalysis (PC) in terms of their technologies economy energy consumption and costs. Considering the characteristics of hydrogen energy and the current infrastructure issues it highlights that onsite production is indispensable and convenient for some special occasions. Finally it briefly summarizes the current industrialization situation and presents future development and research directions such as theoretical research strengthening renewable raw material development process coupling and sustainable energy use.
Fire Safety of Hydrogen-Fuelled Vehicles- System-Level Bonfire Test
Sep 2005
Publication
The European Community requires a vehicle-level bonfire test for vehicles using plastic fuel tanks for conventional fuels (ECE R-34 Annex 5). A similar test could be applied to hydrogen-fuelled vehicles. It would test a realistic vehicle with its complete fuel and safety systems. An advantage of such a test is that the same test could be applied independent of the hydrogen storage technology (compressed gas liquid or hydride). There are currently standards for bonfire testing of a bare Compressed Natural Gas (CNG) tank and its Pressure Relief Device (PRD). This standard is FMVSS 304 in the U.S. and ISO 15869-1 in Europe. Japan has a similar standard. It requires that a bare tank and its associated PRD be subjected to a propane flame for 20 minutes. The tank must either survive or safely vent its contents. No modern composite wound tank is expected to survive for 20 minutes – so this is not a tank test but really a PRD test. The test procedure requires the PRD to be shielded from direct impingement of the flames – but the shield is not well specified. If it shields the PRD too well the PRD will not activate and the tank will burst. This paper describes the results of a CNG and a hydrogen tank burst from such tests. The mechanical energy released is enormous. It is simply unacceptable to allow the tank to burst – the PRD and venting system must work. Organizations in the U.S Europe and Japan are in the process of modifying the CNG tank bonfire test for compressed hydrogen storage. A bare tank with a single PRD is not a good simulation of a hydrogen fuel system installed in an actual vehicle. There will usually be multiple tanks plumbed together at either the tank pressure or at the intermediate pressure (after the pressure regulator). There may be more than one PRD. The tank may be shielded (from debris) or insulated to protect it from an underbody pool fire. Also the heat transfer from the simulated pool fire (propane flame) will be very different when mounted in a vehicle versus the bare tank test. A vehicle-level pool fire test will alleviate these problems. It is therefore recommended that the bare tank test be replaced by or augmented with a vehicle-level bonfire test similar to ECE R-34 Annex 5.
Comparative Analysis of Energy and Exergy Performance of Hydrogen Production Methods
Nov 2020
Publication
The study of the viability of hydrogen production as a sustainable energy source is a current challenge to satisfy the great world energy demand. There are several techniques to produce hydrogen either mature or under development. The election of the hydrogen production method will have a high impact on practical sustainability of the hydrogen economy. An important profile for the viability of a process is the calculation of energy and exergy efficiencies as well as their overall integration into the circular economy. To carry out theoretical energy and exergy analyses we have estimated proposed hydrogen production using different software (DWSIM and MATLAB) and reference conditions. The analysis consolidates methane reforming or auto-thermal reforming as the viable technologies at the present state of the art with reasonable energy and exergy efficiencies but pending on the impact of environmental constraints as CO2 emission countermeasures. However natural gas or electrolysis show very promising results and should be advanced in their technological and maturity scaling. Electrolysis shows a very good exergy efficiency due to the fact that electricity itself is a high exergy source. Pyrolysis exergy loses are mostly in the form of solid carbon material which has a very high integration potential into the hydrogen economy.
The Optimization of Hybrid Power Systems with Renewable Energy and Hydrogen Generation
Jul 2018
Publication
This paper discusses the optimization of hybrid power systems which consist of solar cells wind turbines fuel cells hydrogen electrolysis chemical hydrogen generation and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage we first developed a general hybrid power model using the Matlab/SimPowerSystemTM and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads without conducting individual experiments. Furthermore cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally the impacts of hydrogen costs on system optimization was discussed. In the future the developed method could be applied to design customized hybrid power systems.
New Insights into Hydrogen Uptake on Porous Carbon Materials via Explainable Machine Learning
Apr 2021
Publication
To understand hydrogen uptake in porous carbon materials we developed machine learning models to predict excess uptake at 77 K based on the textural and chemical properties of carbon using a dataset containing 68 different samples and 1745 data points. Random forest is selected due to its high performance (R2 > 0.9) and analysis is performed using Shapley Additive Explanations (SHAP). It is found that pressure and Brunauer-Emmett-Teller (BET) surface area are the two strongest predictors of excess hydrogen uptake. Surprisingly this is followed by a positive correlation with oxygen content contributing up to ∼0.6 wt% additional hydrogen uptake contradicting the conclusions of previous studies. Finally pore volume has the smallest effect. The pore size distribution is also found to be important since ultramicropores (dp < 0.7 nm) are found to be more positively correlated with excess uptake than micropores (dp < 2 nm). However this effect is quite small compared to the role of BET surface area and total pore volume. The novel approach taken here can provide important insights in the rational design of carbon materials for hydrogen storage applications.
Comparison Between Hydrogen Production by Alkaline Water Electrolysis and Hydrogen Production by PEM Electrolysis
Sep 2021
Publication
Hydrogen is an ideal clean energy source that can be used as an energy storage medium for renewable energy sources. The water electrolysis hydrogen production technology which is one of the mainstream hydrogen production methods can be used to produce high-purity hydrogen and other energy sources can be converted into hydrogen storage by electrolysis. Hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis are all water electrolysis hydrogen production technologies that have been industrially applied. From the application point of view the paper compares the working principle of the two kinds of electrolyzers the process flow of hydrogen production equipment advantages and disadvantages. This article provides a reference for relevant researchers.
Experimental and Theoretical Insights to Demonstrate the Hydrogen Evolution Activity of Layered Platinum Dichalcogenides Electrocatalysts
Mar 2021
Publication
Hydrogen is a highly efficient and clean renewable energy source and water splitting through electrocatalytic hydrogen evolution is a most promising approach for hydrogen generation. Layered transition metal dichalcogenides-based nano-structures have recently attracted significant interest as robust and durable catalysts for hydrogen evolution. We systematically investigated the platinum (Pt) based dichalcogenides (PtS2 PtSe2 and PtTe2) as highly energetic and robust hydrogen evolution electrocatalysts. PtTe2 catalyst unveiled the rapid hydrogen evolution process with the low overpotentials of 75 and 92 mV (vs. RHE) at a current density of 10 mA cm−2 and the small Tafel slopes of 64 and 59 mV/dec in acidic and alkaline medium respectively. The fabricated PtTe2 electrocatalyst explored a better catalytic activity than PtS2 and PtSe2. The density functional theory estimations explored that the observed small Gibbs free energy for H-adsorption of PtTe2 was given the prominent role to achieve the superior electrocatalytic and excellent stability activity towards hydrogen evolution due to a smaller bandgap and the metallic nature. We believe that this work will offer a key path to use Pt based dichalcogenides for hydrogen evolution electrocatalysts.
Insights into the Principles, Design Methodology and Applications of Electrocatalysts Towards Hydrogen Evolution Reaction
Apr 2021
Publication
The electrolysis of water for sustainable hydrogen producing is a crucial segment of various emerging clean-energy technologies. However pursuing an efficient and cheap alternative catalyst to substitute state-of-the-art platinum-group electrocatalysts remains a prerequisite for the commercialization of this technology. Typically precious-metal-free catalysts have always much lower activities towards hydrogen production than that of Pt-group catalysts. To explore high-performance catalysts maximally exposed active sites rapid charge transfer ability and desirable electronic configuration are essentially demanded. Herein the fundamentals of hydrogen evolution reaction will be briefly described and the main focus will be on the interfacial engineering strategies by means of constructing defect structure creating heterojunction phase engineering lattice strain control designing hierarchical architecture and doping heteroatoms to effectively proliferate the catalytic active sites facilitate the electron diffusion and regulate the electronic configuration of numerous transition metals and their nitrides carbides sulfides phosphides as well as oxides achieving a benchmark performance of platinum-free electrocatalysts for the hydrogen evolution reaction. This review unambiguously offers proof that the conventional cheap and earth-abundant transition metal-based substances can be translated into an active water splitting catalyst by the rational and controllable interfacial designing.
Hydrothermal Conversion of Lignin and Black Liquor for Phenolics with the Aids of Alkali and Hydrogen Donor
Jun 2019
Publication
The potentials of phenolic productions from lignin and black liquor (BL) via hydrothermal technology with the aids of alkalis and hydrogen donors were investigated by conducting batch experiments in micro-tube reactors with 300 °C sub-critical water as the solvent. The results showed that all the employed alkalis improved lignin degradation and thus phenolics production and the strong alkalis additionally manifested deoxygenation to produce more phenolics free of methoxyl group(s). Relatively hydrogen donors more visibly facilitated phenolics formation. Combination of strong alkali and hydrogen donors exhibited synergistically positive effects on producing phenolics (their total yield reaching 22 wt%) with high selectivities to phenolics among which the yields of catechol and cresols respectively peaked 16 and 3.5 wt%. BL could be hydrothermally converted into phenolics at high yields (approaching 10 wt% with the yields of catechol and cresols of about 4 and 2 wt% respectively) with the aids of its inherent alkali and hydrogen donors justifying its cascade utilization.
Nanotechnology Enabled Hydrogen Gas Sensing
Sep 2019
Publication
An important contribution to industry standards and to effective installation of hybrid renewable energy systems is evaluation of hydrogen (H2) monitoring techniques under pilot-scale and/or real-world conditions. We have designed a hybrid system to integrate solar power electrolysis and hydrogen fuel cell components in a DC micro-grid with capacity to evaluate novel nanomaterials for enhanced H2 gas sensing performance. In general enhanced hydrogen sensing performance is evaluated by high sensitivity selectivity and stability as well as low power consumption. Unique properties such as high surface area to volume ratio a large number of surface active sites high specific surface area and reactivity are key attributes of nanomaterials used for gas sensing. These attributes enable sensors to be embedded in Internet-of-Things applications or in mobile systems. With rapid development of hydrogen-based technologies for clean energy applications there remains a requirement for faster accurate and selective H2 sensors with low cost and low power consumption. Operating principles for these sensors include catalytic thermal conductivity electrochemical resistance based optical and acoustic methods. In this paper we review performance of H2 gas sensors based on conductometric devices operating at room temperature up to 200 °C. The focus of this work includes nanostructured metal oxides graphene materials and transition metal dichalcogenides employed as sensing materials.
Hy4Heat Domestic Hydrogen Purge Procedures - Work Package 4
Jun 2021
Publication
The aim of this project was to review the current purge standards for UK domestic installations in particular IGEM/UP/1B and carry out experiments to assess the validity of those standards for use in hydrogen in order to understand and recommend safe purge practices for hydrogen in a domestic environment.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
- changeover to hydrogen will result in an increased risk of flammability inside the installation pipework
- changeover to hydrogen will result in a reduced risk of a build-up of flammable gas in any room where purging occurs.
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
Towards Net-zero Smart System: An Power Synergy Management Approach of Hydrogen and Battery Hybrid System with Hydrogen Safety Consideration
May 2022
Publication
The building system is one of key energy consumption sector in the market and low-carbon building will make a significant contribution for the worldwide carbon emission reduction. The multiple energy systems including renewable generations hydrogen energy and energy storage is the perspective answer to the net-zero building system. However the research gap lies in the synergy power management among the renewable flexible loads batteries and hydrogen energy systems and at the same time taking the unique characteristic of different energy sectors into account by power managing. This paper proposed the power management approach based on the game theory by which the different characteristics of the energy players are described via creating the competing relationship against net-zero emission objective so that to achieve the power synergy. Under the proposed power management method the hydrogen and battery hybrid system including the fuel cell electrolyzer and battery is designed and investigated as to unlock the power management regions and control constraints within the building system. Particularly for the hydrogen system within the hybrid system the safe and long-lifetime operation is considered respectively by high-efficiency and pressure constraints within the power management. Simulation results show that providing the same energy storage services for the building system the fuel cell with the proposed power management method sustains for 9.9 years much longer than that of equivalent consumption minimization (4.98) model predictive control (4.61) and rule-based method (7.69). Moreover the maximum tank temperature of the hydrogen tank is reduced by 3.4 K and 2.9 K compared with consumption minimization strategy and model predictive control. Also the real-time of the proposed power management is verified by a scaled-down experiment platform.
Scenarios to Decarbonize Austria’s Energy Consumption and the Role of Underground Hydrogen Storage
May 2022
Publication
The European Union is aiming at reaching greenhouse gas (GHG) emission neutrality in 2050. Austria’s current greenhouse gas emissions are 80 million t/year. Renewable Energy (REN) contributes 32% to Austria’s total energy consumption. To decarbonize energy consumption a substantial increase in energy generation from renewable energy is required. This increase will add to the seasonality of energy supply and amplifies the seasonality in energy demand. In this paper the seasonality of energy supply and demand in a Net-Zero Scenario are analyzed for Austria and requirements for hydrogen storage derived. We looked into the potential usage of hydrogen in Austria and the economics of hydrogen generation and technology and market developments to assess the Levelized Cost of Hydrogen (LCOH). Then we cover the energy consumption in Austria followed by the REN potential. The results show that incremental potential of up to 140 TWh for hydropower photovoltaic (PV) and wind exists in Austria. Hydropower generation and PV is higher in summer- than in wintertime while wind energy leads to higher energy generation in wintertime. The largest incremental potential is PV with agrivoltaic systems significantly increasing the area amenable for PV compared with PV usage only. Battery Electric Vehicles (BEV) and Fuel Cell Vehicles (FCV) use energy more efficiently than Internal Combustion Engine (ICE) cars; however the use of hydrogen for electricity generation significantly decreases the efficiency due to electricity–hydrogen– electricity conversion. The increase in REN use and the higher demand for energy in Austria in wintertime require seasonal storage of energy. We developed three scenarios Externally Dependent Scenario (EDS) Balanced Energy Scenario (BES) or Self-Sustained Scenario (SSS) for Austria. The EDS scenario assumes significant REN import to Austria whereas the SSS scenario relies on REN generation within Austria. The required hydrogen storage would be 10.82 bn m3 for EDS 13.34 bn m3 for BES and 18.69 bn m3 for SSS. Gas and oil production in Austria and the presence of aquifers indicates that sufficient storage capacity might be available. Significant technology development is required to be able to implement hydrogen as an energy carrier and to balance seasonal energy demand and supply.
Enhanced Hydrogen Storage Properties of Mg by the Synergistic Effect of Grain Refinement and NiTiO 3 Nanoparticles
May 2021
Publication
As a promising hydrogen storage material the practical application of magnesium is obstructed by the stable thermodynamics and sluggish kinetics. In this paper three kinds of NiTiO3 catalysts with different mole ratio of Ni to Ti were successfully synthesized and doped into nanocrystalline Mg to improve its hydrogen storage properties. Experimental results indicated that all the Mg-NiTiO3 composites showed prominent hydrogen storage performance. Especially the Mg-NiTiO3/TiO2 composite could take up hydrogen at room temperature and the apparent activation energy for hydrogen absorption was dramatically decreased from 69.8 ± 1.2 (nanocrystalline Mg) kJ/mol to 34.2 ± 0.2 kJ/mol. In addition the hydrogenated sample began to release hydrogen at about 193.2 °C and eventually desorbed 6.6 wt% H2. The desorption enthalpy of the hydrogenated Mg-NiTiO3 -C was estimated to be 78.6 ± 0.8 kJ/mol 5.3 kJ/mol lower compared to 83.9 ± 0.7 kJ/mol of nanocrystalline Mg. Besides the sample revealed splendid cyclic stability during 20 cycles. No obvious recession occurred in the absorption and desorption kinetics and only 0.3 wt% hydrogen capacity degradation was observed. Further structural analysis demonstrates that nanosizing and catalyst doping led to a synergistic effect on the enhanced hydrogen storage performance of Mg-NiTiO3 -C composite which might serve as a reference for future design of highly effective hydrogen storage materials.
Evaluation of Stability and Catalytic Activity of Ni Catalysts for Hydrogen Production by Biomass Gasification in Supercritical Water
Mar 2019
Publication
Supercritical water gasification is a promising technology for wet biomass utilization. In this paper Ni and other metal catalysts were synthesized by wet impregnation. The stability and catalytic activities of Ni catalysts were evaluated. Firstly catalytic activities of Ni Fe Cu catalysts supported on MgO were tested using wheat straw as raw material in a batch reactor at 723 K and water density of 0.07 cm3/g. Experimental results showed that the order of metal catalyst activity for hydrogen generation was Ni/MgO > Fe/MgO > Cu/MgO. Secondly the influence of different supports on Ni catalysts performance was investigated. The results showed that the order of the Ni catalysts’ activity with different supports was Ni/MgO > Ni/ZnO > Ni/Al2O3 > Ni/ZrO2. Finally the effects of Ni loading and the amount of Ni catalyst addition on hydrogen production and the stability of Ni/MgO catalyst were studied. It was found that serious deactivation of Ni catalyst in the process of supercritical water gasification took place. Even if carbon deposited on the catalyst surface was removed by high temperature calcination and the catalyst was reduced with hydrogen the activity of used catalyst was only partially restored.
Why Can’t We Just Burn Hydrogen? Challenges When Changing Fuels in an Existing Infrastructure
Feb 2021
Publication
The current global consumption of natural gas as a fuel is roughly 4 trillion cubic meters per year. In terms of energy the demand for natural gas exceeds the global demand for fossil fuels for transportation. Despite this observation the challenges to natural gas end use that arise when changing the composition of the fuel are largely absent from public policy and research agendas whereas for transportation fuels the issues are more appreciated. Natural gas is delivered via complex networks of interconnected pipelines to end users for direct and indirect heating in household and industrial sectors and for power generation. This interconnectedness is a crucial aspect of the challenge for introducing new fuels.<br/>In this paper we discuss the issues that arise from changing fuel properties for an existing population of end-use equipment. To illustrate the issues we will consider the changes in (combustion) performance of domestic combustion equipment and gas engines for power generation in response to substituting natural gas by hydrogen or hydrogen/natural gas blends. During the discussion we shall also indicate methods for characterizing the properties of the fuel and identify the combustion challenges that must be addressed for a successful transition from the current fuel mix to whatever the future mix may be.
Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study
Mar 2018
Publication
This study evaluates the environmental profile of a real biomass-based hydrogen production small-scale (1 MWth) system composed of catalytic candle indirectly heated steam gasifier coupled with zinc oxide (ZnO) guard bed water gas shift (WGS) and pressure swing absorber (PSA) reactors. Environmental performance from cradle-to-gate was investigated by life cycle assessment (LCA) methodology. Biomass production shows high influence over all impact categories. In the syngas production process the main impacts observed are global warming potential (GWP) and acidification potential (AP). Flue gas emission from gasifier burner has the largest proportion of total GWP. The residual off gas use in internal combustion engine (ICE) leads to important environmental savings for all categories. Hydrogen renewability score is computed as 90% due to over 100% decline in non-renewable energy demand. Sensitivity analysis shows that increase in hydrogen production efficiency does not necessarily result in decrease in environmental impacts. In addition economic allocation of environmental charges increases all impact categories especially AP and photochemical oxidation (POFP).
Potentials of Hydrogen Technologies for Sustainable Factory Systems
Mar 2021
Publication
The industrial sector is the world’s second largest emitter of greenhouse gases hence a methodology for decarbonizing factory systems is crucial for achieving global climate goals. Hydrogen is an important medium for the transition towards carbon neutral factories due to its broad applicability within the factory including its use in electricity and heat generation and as a process gas or fuel. One of the main challenges is the identification of economically and environmentally suitable design scenarios such as for the entire value chain for hydrogen generation and application. For example the infrastructure for renewable electricity hydrogen generation hydrogen conversion (e.g. into synthetic fuels) storage and transport systems as well as application in the factory. Due to the high volatility of energy generation and the related dynamic interdependencies within a factory system a valid technical economic and environmental evaluation of benefits induced by hydrogen technologies can only be achieved using digital factory models. In this paper we present a framework to integrate hydrogen technologies into factory systems. This enables decision makers to identify promising measures according to their expected impact and collect data for appropriate factory modelling. Furthermore a concept for factory modelling and simulation is presented and demonstrated in a case study from the electronics industry assessing the use of hydrogen for decentralized power and heat generation.
Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
Nov 2021
Publication
In this paper the composition function and structure of the catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) are summarized. The hydrogen reduction reaction (HOR) and oxygen reduction reaction (ORR) processes and their mechanisms and the main interfaces of CL (PEM|CL and CL|MPL) are described briefly. The process of mass transfer (hydrogen oxygen and water) proton and electron transfer in MEA are described in detail including their influencing factors. The failure mechanism of CL (Pt particles CL crack CL flooding etc.) and the degradation mechanism of the main components in CL are studied. On the basis of the existing problems a structure optimization strategy for a high‐performance CL is proposed. The commonly used preparation processes of CL are introduced. Based on the classical drying theory the drying process of a wet CL is explained. Finally the research direction and future challenges of CL are pointed out hoping to provide a new perspective for the design and selection of CL materials and preparation equipment.
Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis
Jun 2017
Publication
The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant for CO2 methanation (Sabatier reaction). The utilization of CO2 as a feedstock for producing methane contributes to alleviate global climate changes and sequestration related problems. The produced methane is a carbon neutral gas that fits into existing infrastructure and allows issues related to the aforementioned intermittency and non-programmability of solar energy to be overcome. In this paper an experimental apparatus composed of an electrolyzer and a tubular fixed bed reactor is built and used to produce methane via Sabatier reaction. The objective of the experimental campaign is the evaluation of the process performance and a comparison with other CO2 valorization paths such as methanol production. The investigated pressure range was 2–20 bar obtaining a methane volume fraction in outlet gaseous mixture of 64.75% at 8 bar and 97.24% at 20 bar with conversion efficiencies of respectively 84.64% and 99.06%. The methanol and methane processes were compared on the basis of an energy parameter defined as the spent energy/stored energy. It is higher for the methanol process (0.45) with respect to the methane production process (0.41–0.43) which has a higher energy storage capability.
Interaction of Hydrogen with the Bulk, Surface and Subsurface of Crystalline RuO2 from First Principles
Feb 2021
Publication
Hydrogen and its interaction with metal oxide surfaces is of major importance for a wide range of research and applied fields spanning from catalysis energy storage microelectronics to metallurgy. This paper reviews state of the art of first principles calculations on the well-known ruthenium oxide (RuO2) surface in its (110) orientation and its interaction with hydrogen. In addition to it the paper also fills gaps in knowledge with new calculations and results on the (001) surface. Bulk and surface interactions are thoroughly reviewed. This includes systematic analysis of adsorption sites local agglomeration propensity of hydrogen and migration pathways in which literature data and their potential deviations are explained. We notably discuss novel results on propensity for agglomeration of hydrogen within bulk channels [001] oriented in which the proton-like behavior of adsorbed hydrogen hinders further agglomeration in adjacent channels. The paper brings new insights into the migration pathways on the surface and in bulk both exhibiting preferential diffusion paths along the [001] direction. The paper finally investigates the subsurface region. We show that while the subsurface has more stable sites for adsorption compared to bulk its accessibility from the surface shows prohibitive activation barriers inhibiting penetration into subsurface and bulk. We further calculate and discuss adsorption and penetration processes on the alternative RuO2 (001) surface.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Laser Induced Hydrogen Emission from Ethanol with Dispersed Graphene Particles
Apr 2021
Publication
Efficient hydrogen emission from ethanol with disperse graphene foam particles by using a continuous wave infrared laser diode is reported. The products of ethanol dissociation - hydrogen methane and carbon oxide were measured using mass spectrometry. It was found that the most efficient generation of hydrogen was observed when graphene particles were irradiated by a focused laser beam proceeded at the surface of ethanol solution. The process was assisted by intense white light emission resulting from the laser induced multiphoton ionization of graphene combined with the simultaneous emission of hot electrons. The hot electron emission enables the efficient dissociation of ethanol molecules located close to the solution surface with graphene foam particles.
Consumer Attitudes to Fuel Cell Vehicles Post Trial in the United Kingdom
Mar 2016
Publication
Fuel cell vehicles (FCVs) have clear societal and environmental benefits and can help mitigate the issues of climate change urban air pollution and oil dependence. In order for FCVs to have the biggest impact on these issues they need to be employed in large numbers. First though they need to be adopted by consumers. Their acceptance depends on positive consumer attitudes towards the vehicles. Currently there is a limited understanding within the literature on how consumers perceive FCVs and what the likelihood of adoption by consumers would be despite significant governmental and organisational investments into the technology. Therefore this study assesses consumer attitudes towards FCVs in the United Kingdom. 81 persons drove a Hyundai FCV at the Low Carbon Vehicle Event in September 2015 of which 30 took part in this study. The results show that at present FCVs are perceived mostly as being similar to incumbent internal combustion engine vehicles. This is an admirable technical achievement however in order for consumers to adopt FCVs they will need to be perceived as having distinctive benefits. Two significant barriers to the adoption of FCVs are observed in this sample: high costs and lack of refuelling infrastructure. This paper goes on to make suggestions on how and which beneficial attributes of the vehicles can be promoted to consumers and also makes suggestions on how the barriers can be overcame so that FCVs will be adopted by consumers.
Characterization of the Hazards from Jet Releases of Hydrogen
Sep 2005
Publication
Hydrogen is a convenient energy storage medium; it can be produced from fossil fuels and biomass via chemical conversion processes or from intermittent renewable sources like wind and solar via electrolysis. It is the fuel of choice for the clean fuel-cell vehicles of the future. If the general public are to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. For the safe design of retail facilities through the development of appropriate codes and standards it is essential to understand all the hazards that could arise following an accidental release of hydrogen. If it is to be stored and used as a high-pressure gas the hazards associated with jet releases from accidental leaks must be considered. This paper describes work by Shell and the Health and Safety Laboratory to characterise the hazards from jet releases of hydrogen. Jet release experiments have been carried out using small leaks (circular holes ranging from 1 mm to 12 mm diameter) at system pressures up to 150 barg. Concentration measurements were made in the unignited free jets to determine the extent of the flammable cloud generated. Ignited jets were observed both in the visible and infrared to determine the flame size and shape. The experimental results for the extent of the flammable cloud and jet flame length were found to be in good agreement with model predictions.
Review on Blended Hydrogen-fuel Internal Combustion Engines: A Case Study for China
Apr 2022
Publication
Under the dual pressure of energy conservation and environmental protection the internal combustion engine industry is facing huge challenges and it is imperative to find new clean energy. Hydrogen energy is expected to replace traditional fossil fuels as an excellent fuel for internal combustion engines because of its clean continuous regeneration and good combustion performance. This review article focuses on the research and development of blended hydrogen-fuel internal combustion engines in China since the beginning of this century. The main achievements gained by Chinese researchers in performing research on the effects of the addition of hydrogen into engines which predominantly include many types of hydrogen-blended engines such as gasoline diesel natural gas and alcohol engines rotary engines are discussed and analyzed in these areas of the engine’s performance and the combustion and emission characteristics etc. The merits and demerits of blended hydrogen-fuel internal combustion engines could be concluded and summarized after discussion. Finally the development trend and direction of exploration on hydrogen-fuel internal combustion engines could also be forecasted for relevant researchers.
Evaluation of a New Combined Energy System Performance to Produce Electricity and Hydrogen with Energy Storage Option
Mar 2021
Publication
According to new findings the use of alternative energy sources such as wind energy is needed to supply the energy demand of future generations. On the other hand combined renewable energy systems can be more efficient than their stand-alone systems. Therefore clean energy-based hybrid energy systems can be a suitable solution for fossil fuels. However for their widespread commercialization more detailed and powerful studies are needed. On the other hand in order to attain sustainable development for the use of renewable energy sources due to their nature energy storage is required. The motivation of this study is introduce and examine a new energy system performance for the production of electricity and hydrogen fuel as well as energy storage. So this paper presents the energy and exergy operation of a hybrid wind turbine water electrolyzer and Pumped-hydro-compressed air system. The electricity produced by the wind turbine is used to produce hydrogen fuel in electrolyzer and the excess energy is stored using the storage system. It was found that the electrolyzer needed 512.6 W of electricity to generate 5 mol/h of hydrogen fuel which was supplied by a 10 kW-wind turbine. In such a context the efficiency of the process was 74.93%. Furthermore on average the isothermal process requires 17.53% less storage capacity than the isentropic process. The effect of key parameters such as rate of hydrogen fuel production operating pressures wind speed and components efficiency on the process operation is also examined.
Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis
Aug 2016
Publication
Water electrolysis is a promising technology for enabling the storage of surplus electricity produced by intermittent renewable power sources in the form of hydrogen. At the core of this technology is the electrolyte and whether this is acidic or alkaline affects the reaction mechanisms gas purities and is of significant importance for the stability and activity of the electrocatalysts. This article presents a simple but precise physical model to describe the voltage-current characteristic heat balance gas crossover and cell efficiency of water electrolyzers. State-of-the-art water electrolysis cells with acidic and alkaline electrolyte are experimentally characterized in order to parameterize the model. A rigorous comparison shows that alkaline water electrolyzers with Ni-based catalysts but thinner separators than those typically used is expected be more efficient than acidic water electrolysis with Ir and Pt based catalysts. This performance difference was attributed mainly to a similar conductivity but approximately 38-fold higher diffusivities of hydrogen and oxygen in the acidic polymer electrolyte membrane (Nafion) than those in the alkaline separator (Zirfon filled with a 30 wt% KOH solution). With reference to the detailed analysis of the cell characteristics perspectives for the improvement of the efficiency of water electrolyzers are discussed.
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing before applying a composite reinforcement. It should be noted that the current regulations codes and standards (RC&S) do not specify liner testing methods after manufacturing. It was considered especially important to find a way of locating and assessing the size of air bubbles and inclusions and the field of deformations in liner walls. It was also expected that these methods would be easily applicable to mass-produced liners. The paper proposes the use of three optical methods namely visual inspection digital image correlation (DIC) and optical fiber sensing based on Bragg gratings (FBG). Deformation measurements are validated with finite element analysis (FEA). The tested object was a prototype of a hydrogen liner for high-pressure storage (700 bar). The mentioned optical methods were used to identify defects and measure deformations.
Economic Feasibility of Green Hydrogen Production by Water Electrolysis Using Wind and Geothermal Energy Resources in Asal-Ghoubbet Rift (Republic of Djibouti): A Comparative Evaluation
Dec 2021
Publication
The Republic of Djibouti has untapped potential in terms of renewable energy resources such as geothermal wind and solar energy. This study examines the economic feasibility of green hydrogen production by water electrolysis using wind and geothermal energy resources in the Asal–Ghoubbet Rift (AG Rift) Republic of Djibouti. It is the first study in Africa that compares the cost per kg of green hydrogen produced by wind and geothermal energy from a single site. The unit cost of electricity produced by the wind turbine (0.042 $/kWh) is more competitive than that of a dry steam geothermal plant (0.086 $/kWh). The cost of producing hydrogen with a suitable electrolyzer powered by wind energy ranges from $0.672/kg H2 to $1.063/kg H2 while that produced by the high-temperature electrolyzer (HTE) powered by geothermal energy ranges from $3.31/kg H2 to $4.78/kg H2 . Thus the AG Rift area can produce electricity and green hydrogen at low-cost using wind energy compared to geothermal energy. The amount of carbon dioxide (CO2 ) emissions reduced by using a “Yinhe GX113-2.5MW” wind turbine and a single flash geothermal power plant instead of fuel-oil generators is 2061.6 tons CO2/MW/year and 2184.8 tons CO2/MW/year respectively.
HyDeploy Report: Summary of Procedural Changes During Trial
Aug 2018
Publication
The assessment of appropriate operational procedures to govern the injection of a hydrogen/natural gas blend into the Keele University G3 gas distribution network was a requirement as part of the HyDeploy project. To perform this assessment a group of gas industry experts (from Cadent Northern Gas Networks and Keele University Estates Team) along with scientists and engineers from the Health & Safety Laboratory came together to form an Operational Procedures Forum. This forum came together periodically in various workshops to explore and assess the impact of hydrogen blended gas on all the relevant and current operational procedures that govern the safe transportation and utilisation of natural gas within the Keele University G3 gas distribution network.
The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. The report essentially summarises the key points of the basis of concern for different operational procedures by highlighting the key points of the existing procedure and whether this procedure requires modification for the hydrogen blended gas injection trial. Any requirements to modify an existing procedure have been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.
The forum took into account the associated experimental and research carried out as part of the HyDeploy project such as the assessment of gas characteristics materials impact asset survey of assets on the Keele G3 GDN and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.
The conclusion of the assessment is that there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a fundamental modification. Therefore it is necessary that an appropriate training package is built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Keele G3 GDN during the hydrogen blend injection period.
Click on Supplements to see the other documents from this report
The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. The report essentially summarises the key points of the basis of concern for different operational procedures by highlighting the key points of the existing procedure and whether this procedure requires modification for the hydrogen blended gas injection trial. Any requirements to modify an existing procedure have been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.
The forum took into account the associated experimental and research carried out as part of the HyDeploy project such as the assessment of gas characteristics materials impact asset survey of assets on the Keele G3 GDN and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.
The conclusion of the assessment is that there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a fundamental modification. Therefore it is necessary that an appropriate training package is built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Keele G3 GDN during the hydrogen blend injection period.
Click on Supplements to see the other documents from this report
Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications
Dec 2019
Publication
The climate changes that are becoming visible today are a challenge for the global research community. The stationary applications sector is one of the most important energy consumers. Harnessing the potential of renewable energy worldwide is currently being considered to find alternatives for obtaining energy by using technologies that offer maximum efficiency and minimum pollution. In this context new energy generation technologies are needed to both generate low carbon emissions as well as identifying planning and implementing the directions for harnessing the potential of renewable energy sources. Hydrogen fuel cell technology represents one of the alternative solutions for future clean energy systems. This article reviews the specific characteristics of hydrogen energy which recommends it as a clean energy to power stationary applications. The aim of review was to provide an overview of the sustainability elements and the potential of using hydrogen as an alternative energy source for stationary applications and for identifying the possibilities of increasing the share of hydrogen energy in stationary applications respectively. As a study method was applied a SWOT analysis following which a series of strategies that could be adopted in order to increase the degree of use of hydrogen energy as an alternative to the classical energy for stationary applications were recommended. The SWOT analysis conducted in the present study highlights that the implementation of the hydrogen economy depends decisively on the following main factors: legislative framework energy decision makers information and interest from the end beneficiaries potential investors and existence of specialists in this field.
Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU
Nov 2019
Publication
As the EU energy system transitions to low carbon the technology choices should consider a broader set of criteria. The use of Life Cycle Assessment (LCA) prevents burden shift across life cycle stages or impact categories while the use of Energy System Models (ESM) allows evaluating alternative policies capacity evolution and covering all the sectors. This study does an ex-post LCA analysis of results from JRC-EU-TIMES and estimates the environmental impact indicators across 18 categories in scenarios that achieve 80–95% CO2 emission reduction by 2050. Results indicate that indirect CO2 emissions can be as large as direct ones for an 80% CO2 reduction target and up to three times as large for 95% CO2 reduction. Impact across most categories decreases by 20–40% as the CO2 emission target becomes stricter. However toxicity related impacts can become 35–100% higher. The integrated framework was also used to evaluate the Power-to-Methane (PtM) system to relate the electricity mix and various CO2 sources to the PtM environmental impact. To be more attractive than natural gas the climate change impact of the electricity used for PtM should be 123–181 gCO2eq/kWh when the CO2 comes from air or biogenic sources and 4–62 gCO2eq/kWh if the CO2 is from fossil fuels. PtM can have an impact up to 10 times larger for impact categories other than climate change. A system without PtM results in ~4% higher climate change impact and 9% higher fossil depletion while having 5–15% lower impact for most of the other categories. This is based on a scenario where 9 parameters favor PtM deployment and establishes the upper bound of the environmental impact PtM can have. Further studies should work towards integrating LCA feedback into ESM and standardizing the methodology.
The Challenges of Hydrogen Storage on a Large Scale
Sep 2021
Publication
With the growing success of green hydrogen the general trend is for increased hydrogen production and large quantities of storage. Engie’s projects have grown from a few kilos of hydrogen to the quest for large scale production and associated storage – e.g. several tons or tens of tons. Although a positive sign for Engie’s projects it does inevitably result in challenges in new storage methods and in risks management related to such facilities; particularly with hydrogen facilities being increasingly placed in the vicinity of general public sites. For example a leak on hydrogen storage can generate significant thermal and overpressure effects on surrounding people/facilities in the event of ignition. Firewalls can be installed to protect individuals / infrastructure from thermal effects but the adverse result is that this solution can increase the violence of an explosion in case of delayed ignition or confinement. The manner of emergency intervention on a pool fire of hydrogen is also totally different from intervention on compressed gaseous hydrogen. The first part of this presentation will explain different means to store hydrogen in large quantities. The second part will present for each storage the specific risks generated. The third and final part will explain how these risks can be addressed on a technical point of view by safety devices or by other solutions (separation distance passive/active means …).
Optimal Strategies of Deployment of Far Offshore Co-located Wind-wave Energy Farms
Nov 2021
Publication
The most profitable offshore energy resources are usually found away from the coast. Nevertheless the accessibility and grid integration in those areas are more complicated. To avoid this problematic large scale hydrogen production is being promoted for far offshore applications. The main objective of this paper is to analyze the ability of wave energy converters to maximize hydrogen production in hybrid wind and wave far offshore farms. To that end wind and wave resource data are obtained from ERA5 for different locations in the Atlantic ocean and a Maximum Covariance Analysis is proposed for the selection of the most representative locations. Furthermore the suitability of different sized wave energy converters for auxiliary hydrogen production in the far offshore wind farms is also analysed. On that account the hydrodynamic parameters of the oscillating bodies are obtained via simulations with a Boundary Element Method based code and their operation is modelled using the software tool Matlab. The combination of both methodologies enables to perform a realistic assessment of the contribution of the wave energy converters to the hydrogen generation of an hybrid energy farm especially during those periods when the wind turbines would be stopped due to the variability of the wind. The obtained results show a considerable hydrogen generation capacity of the wave energy converters up to 6.28% of the wind based generation which could remarkably improve the efficiency of the far offshore farm and bring important economical profit. Wave energy converters are observed to be most profitable in those farms with low covariance between wind and waves where the disconnection times of the wind turbines are prone to be more prolonged but the wave energy is still usable. In such cases a maximum of 101.12 h of equivalent rated production of the wind turbine has been calculated to be recovered by the wave energy converters.
Prospects and Obstacles for Green Hydrogen Production in Russia
Jan 2021
Publication
Renewable energy is considered the one of the most promising solutions to meet sustainable development goals in terms of climate change mitigation. Today we face the problem of further scaling up renewable energy infrastructure which requires the creation of reliable energy storages environmentally friendly carriers like hydrogen and competitive international markets. These issues provoke the involvement of resource-based countries in the energy transition which is questionable in terms of economic efficiency compared to conventional hydrocarbon resources. To shed a light on the possible efficiency of green hydrogen production in such countries this study is aimed at: (1) comparing key Russian trends of green hydrogen development with global trends (2) presenting strategic scenarios for the Russian energy sector development (3) presenting a case study of Russian hydrogen energy project «Dyakov Ust-Srednekanskaya HPP» in Magadan region. We argue that without significant changes in strategic planning and without focus on sustainable solutions support the further development of Russian power industry will be halted in a conservative scenario with the limited presence of innovative solutions in renewable energy industries. Our case study showed that despite the closeness to Japan hydrogen market economic efficiency is on the edge of zero with payback period around 17 years. The decrease in project capacity below 543.6 MW will immediately lead to a negative NPV. The key reason for that is the low average market price of hydrogen ($14/kg) which is only a bit higher than its production cost ($12.5/kg) while transportation requires about $0.96/kg more. Despite the discouraging results it should be taken into account that such strategic projects are at the edge of energy development. We see them as an opportunity to lead transnational energy trade of green hydrogen which could be competitive in the medium term especially with state support.
Effect of Supercharging on Improving Thermal Efficiency and Modifying Combustion Characteristics in Lean-burn Direct-injection Near-zero-emission Hydrogen Engines
Oct 2021
Publication
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC) in which with an optimal combination of hydrogen injection timing and controlled jet geometry the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.
On the Evaluation of ALD TiO 2 , ZrO 2 and HfO 2 Coatings on Corrosion and Cytotoxicity Performances
May 2021
Publication
Magnesium alloys have been widely studied as materials for temporary implants but their use has been limited by their corrosion rate. Recently coatings have been proven to provide an effective barrier. Though only little explored in the field Atomic Layer Deposition (ALD) stands out as a coating technology due to the outstanding film conformality and density achievable. Here we provide first insights into the corrosion behavior and the induced biological response of 100 nm thick ALD TiO2 HfO2 and ZrO2 coatings on AZ31 alloy by means of potentiodynamic polarization curves electrochemical impedance spectroscopy (EIS) hydrogen evolution and MTS colorimetric assay with L929 cells. All three coatings improve the corrosion behavior and cytotoxicity of the alloy. Particularly HfO2 coatings were characterized by the highest corrosion resistance and cell viability slightly higher than those of ZrO2 coatings. TiO2 was characterized by the lowest corrosion improvements and though generally considered a biocompatible coating was found to not meet the demands for cellular applications (it was characterized by grade 3 cytotoxicity after 5 days of culture). These results reveal a strong link between biocompatibility and corrosion resistance and entail the need of taking the latter into consideration in the choice of a biocompatible coating to protect degradable Mg-based alloys.
Conceptual Design of a Hybrid Hydrogen Fuel Cell/Battery Blended-Wing-Body Unmanned Aerial Vehicle—An Overview
May 2022
Publication
The manuscript presents the conceptual design phase of an unmanned aerial vehicle with the objective of a systems approach towards the integration of a hydrogen fuel-cell system and Li-ion batteries into an aerodynamically efficient platform representative of future aircraft configurations. Using a classical approach to aircraft design and a combination of low- and high-resolution computational simulations a final blended wing body UAV was designed with a maximum take-off weight of 25 kg and 4 m wingspan. Preliminary aerodynamic and propulsion sizing demonstrated that the aircraft is capable of completing a 2 h long mission powered by a 650 W fuel cell hybridized with a 100 Wh battery pack and with a fuel quantity of 80 g of compressed hydrogen.
Systematic Overview of Newly Available Technologies in the Green Maritime Sector
Jan 2023
Publication
The application of newly available technologies in the green maritime sector is difficult due to conflicting requirements and the inter-relation of different ecological technological and economical parameters. The governments incentivize radical reductions in harmful emissions as an overall priority. If the politics do not change the continuous implementation of stricter government regulations for reducing emissions will eventually result in the mandatory use of what we currently consider alternative fuels. Immediate application of radically different strategies would significantly increase the economic costs of maritime transport thus jeopardizing its greatest benefit: the transport of massive quantities of freight at the lowest cost. Increased maritime transport costs would immediately disrupt the global economy as seen recently during the COVID-19 pandemic. For this reason the industry has shifted towards a gradual decrease in emissions through the implementation of “better” transitional solutions until alternative fuels eventually become low-cost fuels. Since this topic is very broad and interdisciplinary our systematic overview gives insight into the state-of-the-art available technologies in green maritime transport with a focus on the following subjects: (i) alternative fuels; (ii) hybrid propulsion systems and hydrogen technologies; (iii) the benefits of digitalization in the maritime sector aimed at increasing vessel efficiency; (iv) hull drag reduction technologies; and (v) carbon capture technologies. This paper outlines the challenges advantages and disadvantages of their implementation. The results of this analysis elucidate the current technologies’ readiness levels and their expected development over the coming years.
Zero-Emission Pathway for the Global Chemical and Petrochemical Sector
Jun 2021
Publication
The chemical and petrochemical sector relies on fossil fuels and feedstocks and is a major source of carbon dioxide (CO2 ) emissions. The techno-economic potential of 20 decarbonisation options is assessed. While previous analyses focus on the production processes this analysis covers the full product life cycle CO2 emissions. The analysis elaborates the carbon accounting complexity that results from the non-energy use of fossil fuels and highlights the importance of strategies that consider the carbon stored in synthetic organic products—an aspect that warrants more attention in long-term energy scenarios and strategies. Average mitigation costs in the sector would amount to 64 United States dollars (USD) per tonne of CO2 for full decarbonisation in 2050. The rapidly declining renewables cost is one main cause for this low-cost estimate. Renewable energy supply solutions in combination with electrification account for 40% of total emissions reductions. Annual biomass use grows to 1.3 gigatonnes; green hydrogen electrolyser capacity grows to 2435 gigawatts and recycling rates increase six-fold while product demand is reduced by a third compared to the reference case. CO2 capture storage and use equals 30% of the total decarbonisation effort (1.49 gigatonnes per year) where about one-third of the captured CO2 is of biogenic origin. Circular economy concepts including recycling account for 16% while energy efficiency accounts for 12% of the decarbonisation needed. Achieving full decarbonisation in this sector will increase energy and feedstock costs by more than 35%. The analysis shows the importance of renewables-based solutions accounting for more than half of the total emissions reduction potential which was higher than previous estimates.
Hydrogen Wide Area Monitoring of LH2 Releases at HSE for the PRESLHY Project
Sep 2021
Publication
The characterization of liquid hydrogen (LH2) releases has been identified as an international research priority to facilitate the safe use of hydrogen as an energy carrier. Empirical field measurements such as those afforded by Hydrogen Wide Area Monitoring can elucidate the behavior of LH2 releases which can then be used to support and validate dispersion models. Hydrogen Wide Area Monitoring can be defined as the quantitative three-dimensional spatial and temporal profiling of planned or unintentional hydrogen releases. The NREL Sensor Laboratory developed a Hydrogen Wide Area Monitor (HyWAM) based upon a distributed array of hydrogen sensors. The NREL Sensor Laboratory and the Health and Safety Executive (HSE) formally committed to collaborate on profiling GH2 and LH2 releases which allowed for the integration of the NREL HyWAM into the HSE LH2 release behavior investigation supported by the FCH JU Prenormative Research for the Safe Use of Liquid Hydrogen (PRESLHY) program. A HyWAM system was deployed consisting of 32 hydrogen measurement points and co-located temperature sensors distributed downstream of the LH2 release apparatus developed by HSE. In addition the HyWAM deployment was supported by proximal wind and weather monitors. In a separate presentation at this conference “HSE Experimental Summary for the Characterisation Dispersion and Electrostatic Hazards of LH2 for the PRESLHY Project” HSE researchers summarize the experimental apparatus and protocols utilized in the HSE LH2 releases that were performed under the auspices of PRESLHY. As a supplement to the HSE presentation this presentation will focus on the spatial and temporal behavior LH2 releases as measured by the NREL HyWAM. Correlations to ambient conditions such as wind speed and direction plume temperature and hydrogen concentrations will be discussed in addition to the design and performance of the NREL HyWAM and its potential for improving hydrogen facility safety.
Hydrogen Jet Structure in Presence of Forced Co-, Counter- and Cross-flow Ventilation
Sep 2021
Publication
This paper presents results of experimental investigations on unignited horizontal hydrogen jets in air in presence of co- cross- and counter-flow. Hydrogen concentration distributions are obtained as functions of distance to the hydrogen release nozzle. The H2-jet variables are two nozzle diameters 1 mm and 4 mm and two H2-jet mass flow rates 1 g/s up to 5 g/s. A propeller fan is used to provide forced ventilation compared to the case with no ventilation three different airflow velocities up to 5 m/s were studied systematically. It was found that any forced ventilation in co- cross- and counter-flow direction reduces the size of the burnable mixture cloud of the H2-jet compared to a free jet in quiescent air.
Analyzing the Necessity of Hydrogen Imports for Net-zero Emission Scenarios in Japan
Jun 2021
Publication
With Japan’s current plans to reach a fully decarbonized society by 2050 and establish a hydrogen society substantial changes to its energy system need to be made. Due to the limited land availability in Japan significant amounts of hydrogen are planned to be imported to reach both targets. In this paper a novel stochastic version of the open-source multi-sectoral Global Energy System Model in conjunction with a power system dispatch model is used to analyze the impacts of both availability and price of hydrogen imports on the transformation of the Japanese energy system considering a net-zero emission target. This analysis highlights that hydrogen poses a valuable resource in specific sectors of the energy system. Therefore importing hydrogen can indeed positively impact energy system developments although up to 19mt of hydrogen will be imported in the case with the cheapest available hydrogen. In contrast without any hydrogen imports power demand nearly doubles in 2050 compared to 2019 due to extensive electrification in non-electricity sectors. However hydrogen imports are not necessarily required to reach net-zero emissions. In all cases however large-scale investments into renewable energy sources need to be made.
Sulfide Stress Cracking of C-110 Steel in a Sour Environment
Jul 2021
Publication
The scope of this study includes modeling and experimental investigation of sulfide stress cracking (SSC) of high-strength carbon steel. A model has been developed to predict hydrogen permeation in steel for a given pressure and temperature condition. The model is validated with existing and new laboratory measurements. The experiments were performed using C-110 grade steel specimens. The specimens were aged in 2% (wt.) brine saturated with mixed gas containing CH4 CO2 and H2S. The concentration H2S was maintained constant (280 ppm) while varying the partial pressure ratio of CO2 (i.e. the ratio of partial pressure of CO2 to the total pressure) from 0 to 15%. The changes occurring in the mechanical properties of the specimens were evaluated after exposure to assess material embrittlement and SSC corrosion. Besides this the cracks developed on the surface of the specimens were examined using an optical microscope. Results show that the hydrogen permeation and subsequently SSC resistance of C-110 grade steel were strongly influenced by the Partial Pressure Ratio (PPR) of CO2 when the PPR was between 0 and 5%. The PPR of CO2 had a limited impact on the SSC process when it was between 10 and 15 percent.
Lowest Cost Decarbonisation for the UK: The Critical Role of CCS
Sep 2016
Publication
A new report to the Secretary of State for Business Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS) advises that that the UK should kickstart CCS in order to save consumers billions a year from the cost of meeting climate change targets.
No more items...