- Home
- A-Z Publications
- Publications
Publications
The Future of Hydrogen
Jun 2019
Publication
At the request of the government of Japan under its G20 presidency the International Energy Agency produced this landmark report to analyse the current state of play for hydrogen and to offer guidance on its future development.
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
Batteries and Hydrogen Technology: Keys for a Clean Energy Future
May 2020
Publication
As governments focus on dealing with the Covid-19 health emergency they are increasingly turning their attention to the impact of shutting down their economies and how to revive them quickly through stimulus measures. Economic recovery packages offer a unique opportunity to create jobs while supporting clean energy transitions around the world.
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Explosion Characteristics of Hydrogen-air and Hydrogen-Oxygen Mixtures at Elevated Pressures
Sep 2005
Publication
An essential problem for the operation of high pressure water electrolyzers and fuel cells is the permissible contamination of hydrogen and oxygen. This contamination can create malfunction and in the worst case explosions in the apparatus and gas cylinders. In order to avoid dangerous conditions the exact knowledge of the explosion characteristics of hydrogen/air and hydrogen/oxygen mixtures is necessary. The common databases e.g. the CHEMSAFE® database published by DECHEMA BAM and PTB contains even a large number of evaluated safety related properties among other things explosion limits which however are mainly measured according to standard procedures under atmospheric conditions.<br/>Within the framework of the European research project “SAFEKINEX” and other research projects the explosion limits explosion pressures and rates of pressure rise (KG values) of H2/air and H2/O2 mixtures were measured at elevated conditions of initial pressures and temperatures by the Federal Institute of Materials Research and Testing (BAM). Empirical equations of the temperature influence could be deduced from the experimental values. An anomaly was found at the pressure influence on the upper explosion limits of H2/O2 and H2/air mixtures in the range of 20 bars. In addition explosion pressures and also rates of pressure rises have been measured for different hydrogen concentrations inside the explosion range. Such data are important for constructive explosion protection measures. Furthermore the mainly used standards for the determination of explosion limits have been compared. Therefore it was interesting to have a look at the systematic differences between the new EN 1839 tube and bomb method ASTM E 681-01 and German DIN 51649-1.
Safety of Hydrogen-fueled Motor Vehicles with IC Engines.
Sep 2005
Publication
Clarification of questions of safety represents a decisive contribution to the successful introduction of vehicles fuelled by hydrogen. At the moment the safety of hydrogen is being discussed and investigated by various bodies. The primary focus is on fuel-cell vehicles with hydrogen stored in gaseous form. This paper looks at the safety of hydrogen-fuelled vehicles with an internal combustion engine and liquefied hydrogen storage. The safety concept of BMW’s hydrogen vehicles is described and the specific aspects of the propulsion and storage concepts discussed. The main discussion emphasis is on the utilization of boil-off parking of the vehicles in an enclosed space and their crash behaviour. Theoretical safety observations are complemented by the latest experimental and test results. Finally reference is made to the topic-areas in the field of hydrogen safety in which cooperative research work could make a valuable contribution to the future of the hydrogen-powered vehicle.
Progressing the Gas Goes Green Roadmap to Net Zero Webinar
Dec 2021
Publication
The Gas Goes Green Programme developed by the gas networks and the Energy Networks Association (ENA) describes a viable pathway to the injection of hydrogen and biomethane as a practical step towards the decarbonisation of the UK gas sector and will play a key role in the UK’s Net Zero energy strategy. It therefore follows that technical and management teams in the supply chain and related industries will need a sound understanding of the issues surrounding this deployment. This video shares the industry’s progress towards implementing the Gas Goes Green programme. Presenters including Oliver Lancaster CEO IGEM Dr Thomas Koller Programme Lead Gas Goes Green at the Energy Network Association (ENA) and Ian McCluskey CEng FIMechE FIGEM Head of Technical and Policy IGEM share their views on what has already been achieved and explain what they feel still needs to be done to develop the decarbonised gas network of tomorrow.
Flame Characteristics of High-Pressure Hydrogen Gas Jet
Sep 2005
Publication
It is expected that hydrogen will serve as a nonpolluting carrier of energy for the next generation of vehicles and guidelines for its safe use are required. Hydrogen-gas service stations for supplying fuel cell vehicles will have to handle high-pressure hydrogen gas but safety regulations for such installations have not received much investigation. In this study we experimentally investigated the flame characteristics of a rapid leakage of high-pressure hydrogen gas. A hydrogen jet diffusion flame was injected horizontally from convergent nozzles of various diameters between 0.1 and 4 mm at reservoir over pressures of between 0.01 and 40 MPa. The sizes of the flame were measured and experimental equations were obtained for the length and the width of the flame. Flame sizes depend not only on the nozzle diameter but also on the spouting pressure. Blow-off limits exists and are determined by the nozzle diameter and the spouting pressure. Furthermore the radiation from a hydrogen flame can be predicted from the flow rate of the gas and the distance from the flame.
Reducing UK Emissions Progress Report to Parliament
Jun 2020
Publication
This is the Committee’s 2020 report to Parliament assessing progress in reducing UK emissions over the past year. This year the report includes new advice to the UK Government on securing a green and resilient recovery following the COVID-19 pandemic. The Committee’s new analysis expands on its May 2020 advice to the UK Prime Minister in which it set out the principles for building a resilient recovery. In its new report the Committee has assessed a wide set of measures and gathered the latest evidence on the role of climate policies in the economic recovery. Its report highlights five clear investment priorities in the months ahead:
- Low-carbon retrofits and buildings that are fit for the future
- Tree planting peatland restoration and green infrastructure
- Energy networks must be strengthened
- Infrastructure to make it easy for people to walk cycle and work remotely
- Moving towards a circular economy.
- Reskilling and retraining programmes
- Leading a move towards positive behaviours
- Targeted science and innovation funding
Sectoral Scenarios for the Fifth Carbon Budget
Nov 2015
Publication
This report forms part of the Committee’s advice on the level of the fifth carbon budget.<br/>The report describes the scenarios used by the Committee to inform its judgements over the cost-effective path to meeting the UK’s greenhouse reduction targets in the period 2028-2032.
Digital Navigation of Energy–structure–function Maps for Hydrogen-bonded Porous Molecular Crystals
Feb 2021
Publication
Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites as well as their number has a profound influence on the shape of the resulting ESF maps revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps an important goal for closed-loop autonomous searches for molecular crystals with useful functions.
Role of Chemical Kinetics on the Detonation Properties of Hydrogen, Natural Gas & Air Mixtures
Sep 2005
Publication
The first part of the present work is to validate a detailed kinetic mechanism for the oxidation of hydrogen – methane – air mixtures in a detonation waves. A series of experiments on auto-ignition delay times have been performed by shock tube technique coupled with emission spectrometry for H2 / CH4 / O2 mixtures highly diluted in argon. The CH4/H2 ratio was varied from 0 to 4 and the equivalence ratio from 0.4 up to 1. The temperature range was from 1250 K to 2000 K and the pressure behind reflected shock waves was between 0.15 and 1.6 MPa. A correlation was proposed between temperature (K) concentration of chemical species (mol m-3) and ignition delay times. The experimental auto-ignition delay times were compared to the modelled ones using four different mechanisms from the literature: GRI [22] Marinov et al. [23] Hughes et al. [24] Konnov [25]. A large discrepancy was generally found between the different models. The Konnov’s model that predicted auto-ignition delay times close to the measured ones has been selected to calculate the ignition delay time in the detonation waves. The second part of the study concerned the experimental determination of the detonation properties namely the detonation velocity and the cell size. The effect of the initial composition hydrogen to methane ratio and the amount of oxygen in the mixture as well as the initial pressure on the detonation velocity and on the cell size were investigated. The ratio of methane / (methane + hydrogen) varied between 0 and 0.6 for 2 different equivalence ratio (0.75 and 1) while the initial pressure was fixed to 10 kPa. A correlation was established between the characteristic cell size and the ignition delay time behind the leading shock of the detonation. It was clearly showed that methane has an important inhibitor effect on the detonation of these combustible mixtures.
Measuring and Modelling Unsteady Radiation of Hydrogen Combustion
Sep 2005
Publication
Burning hydrogen emits thermal radiation in UV NIR and IR spectral range. Especially in the case of large cloud explosion the risk of heat radiation is commonly underestimated due to the non-visible flame of hydrogen-air combustion. In the case of a real explosion accident organic substances or inert dust might be entrained from outer sources to produce soot or heated solids to substantially increase the heat release by continuum radiation. To investigate the corresponding combustion phenomena different hydrogen-air mixtures were ignited in a closed vessel and the combustion was observed with fast scanning spectrometers using a sampling rate up to 1000 spectra/s. In some experiments to take into account the influence of organic co-combustion a spray of a liquid glycol-ester and milk powder was added to the mixture. The spectra evaluation uses the BAM code of ICT to model bands of reaction products and thus to get the temperatures. The code calculates NIR/IR-spectra (1 - 10 μm) of non-homogenous gas mixtures of H2O CO2 CO NO and HCl taking into consideration also emission of soot particles. It is based on a single line group model and makes also use of tabulated data of H2O and CO2 and a Least Squares Fit of calculated spectra to experimental ones enables the estimation of flame temperatures. During hydrogen combustion OH emits an intense spectrum at 306 nm. This intermediary radical allows monitoring the reaction progress. Intense water band systems between 1.2 and 3 μm emit remarkable amounts of heat radiation according to a measured flame temperature of 2000 K. At this temperature broad optically-thick water bands between 4.5 μm and 10 μm contribute only scarcely to the total heat output. In case of co-combustion of organic materials additional emission bands of CO and CO2 as well as a continuum radiation of soot and other particles occur and particularly increase the total thermal output drastically.
Reducing Emissions in Scotland – 2016 Progress Report
Sep 2016
Publication
This is the Committee’s fifth report on Scotland’s progress towards meeting emission reduction targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.<br/>The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Hydrogen in Aluminium-Coated Steels Exposed to Synthetic Seawater
Jul 2020
Publication
Thermally sprayed aluminium (TSA) coatings provide protection to offshore steel structures without the use of external cathodic protection (CP) systems. These coatings provide sacrificial protection in the same way as a galvanic anode and thus hydrogen embrittlement (HE) becomes a major concern with the use of high strength steels. The effect of TSA on the HE of steel seems to remain largely unknown. Further the location of hydrogen in TSA-coated steel has not been explored. To address the above knowledge gap API 5L X80 and AISI 4137 steel coupons with and without TSA were prepared and the amount of hydrogen present in these steels when cathodically polarised to −1.1 V (Ag/AgCl) for 30 days in synthetic seawater was determined. One set of TSA-coated specimens was left at open circuit potential (OCP). The study indicates that the amount of hydrogen present in TSA-coated steel is ~100 times more than the amount found in uncoated steel and that the hydrogen seems to be largely localised in the TSA layer.
Hydrogen – Analysis
Jun 2020
Publication
Hydrogen technologies maintained strong momentum in 2019 awakening keen interest among policy makers. It was a record year for electrolysis capacity becoming operational and several significant announcements were made for upcoming years. The fuel cell electric vehicle market almost doubled owing to outstanding expansion in China Japan and Korea. However low-carbon production capacity remained relatively constant and is still off track with the SDS. More efforts are needed to: scale up to reduce costs; replace high-carbon with low-carbon hydrogen in current applications; and expand hydrogen use to new applications.
Link to Document on IEA Website
Link to Document on IEA Website
Towards Hydrogen Safety Education and Training
Sep 2005
Publication
The onset and further development of the hydrogen economy are known to be constrained by safety barriers as well as by the level of public acceptance of new applications. Educational and training programmes in hydrogen safety which are currently absent in Europe are considered to be a key instrument in lifting these limitations and to ensure the safe introduction of hydrogen as an energy carrier. Therefore the European Network of Excellence ‘Safety of Hydrogen as an Energy Carrier’ (NoE HySafe) embarked on the establishment of the e-Academy of Hydrogen Safety. This work is led by the University of Ulster and carried out in cooperation with international partners from five other universities (Universidad Politecnica de Madrid Spain; University of Pisa Italy; Warsaw University of Technology Poland; Instituto Superior Technico Portugal; University of Calgary Canada) two research institutions (Forschungszentrum Karlsruhe and Forschungszentrum Juelich Germany) and one enterprise (GexCon Norway). The development of an International Curriculum on Hydrogen Safety Engineering aided by world-class experts from within and outside NoE HySafe is of central importance to the establishment of the e-Academy of Hydrogen Safety. Despite its key role in identifying the knowledge framework of the subject matter and its role in aiding educators with the development of teaching programmes on hydrogen safety no such curriculum appears to have been developed previously. The current structure of the International Curriculum on Hydrogen Safety Engineering and the motivation behind it are described in this paper. Future steps in the development of a system of hydrogen safety education and training in Europe are briefly described.
The Techno-economics Potential of Hydrogen Interconnectors for Electrical Energy Transmission and Storage
Dec 2021
Publication
This research introduces a ‘Hydrogen Interconnector System’ (HIS) as a novel method 7 for transporting electrical energy over long distances. The system takes electricity from 8 stranded renewable energy assets converts it to hydrogen in an electrolyser plant transports 9 hydrogen to the demand centre via pipeline where it is reconverted to electricity in either a 10 gas turbine or fuel cell plant. This paper evaluates the competitiveness of the technology with 11 High Voltage Direct Current (HVDC) systems calculating the following techno-economic 12 indicators; Levelised Cost Of Electricity (LCOE) and Levelised Cost Of Storage (LCOS). The 13 results suggest that the LCOE of the HIS is competitive with HVDC for construction in 2050 14 with distance beyond 350km in case of all scenarios for a 1GW system. The LCOS is lower 15 than an HVDC system using large scale hydrogen storage in 6 out of 12 scenarios analysed 16 including for construction from 2025. The HIS was also applied to three case studies with 17 the results showing that the system outperforms HVDC from LCOS perspectives in all cases 18 and has 15-20% lower investment costs in 2 studies analysed.
Pathways to Net-Zero: Decarbonising the Gas Networks in Great Britain
Oct 2019
Publication
Natural gas plays a central role in the UK energy system today but it is also a significant source of greenhouse gas (GHG) emissions. The UK committed in 2008 to reduce GHG emissions by at least 80% compared to 1990 levels by 2050. In June 2019 a more ambitious target was adopted into law and the UK became the first major economy to commit to “net-zero” emissions by 2050. In this context the Energy Networks Association (ENA) commissioned Navigant to explore the role that the gas sector can play in the decarbonisation of the Great Britain (GB) energy system. In this report we demonstrate that low carbon and renewable gases can make a fundamental contribution to the decarbonisation pathway between now and 2050.
Analysis Methodology for Hydrogen Behaviour in Accident Scenarios
Sep 2005
Publication
Hydrogen is not more dangerous than current fossil energy carriers but it behaves differently. Therefore hydrogen specific analyses and countermeasures will be needed to support the development of safe hydrogen technologies. A systematic step-by-step procedure for the mechanistic analysis of hydrogen behaviour and mitigation in accidents is presented. The procedure can be subdivided into four main parts:<br/>1) 3D modelling of the H2-air mixture generation<br/>2) hazard evaluation for this mixture based on specifically developed criteria for flammability flame acceleration and detonation on-set<br/>3) numerical simulation of the appropriate combustion regime using verified 3D-CFD codes and<br/>4) consequence analysis based on the calculated pressure and temperature loads.
Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production
Oct 2021
Publication
Developing renewable energy-driven water splitting for sustainable hydrogen production plays a key role in achieving the carbon neutrality goal. Nevertheless the efficiency of traditional pure water electrolysis is severely hampered by the anodic oxygen evolution reaction (OER) due to its sluggish kinetics. In this context replacing OER with thermodynamically more favorable oxidation reactions to produce hydrogen via hybrid water electrolysis becomes an energy-saving hydrogen production scheme. Here the recent advances in hybrid water electrolysis are critically reviewed. First the fundamentals of electrochemical oxidation of typical organic molecules such as urea hydrazine and biomass are presented. Then the recent achievements in electrocatalysts for hybrid water electrolysis are introduced with an emphasis on outlining catalyst design strategies and the correlation between catalyst structure and performance. Finally future perspectives in this field for a sustainable hydrogen economy are proposed.
Quantitative Evaluations of Hydrogen Diffusivity in V-X (X = Cr, Al, Pd) Alloy Membranes Based on Hydrogen Chemical Potential
Jan 2021
Publication
Vanadium (V) has higher hydrogen permeability than Pd-based alloy membranes but exhibits poor resistance to hydrogen-induced embrittlement. The alloy elements are added to reduce hydrogen solubility and prevent hydrogen-induced embrittlement. To enhance hydrogen permeability the alloy elements which improve hydrogen diffusivity in V are more suitable. In the present study hydrogen diffusivity in V-Cr V-Al and V-Pd alloy membranes was investigated in view of the hydrogen chemical potential and compared with the previously reported results of V-Fe alloy membranes. The additions of Cr and Fe to V improved the mobility of hydrogen atoms. In contrast those of Al and Pd decreased hydrogen diffusivity. The first principle calculations revealed that the hydrogen atoms cannot occupy the first-nearest neighbour T sites (T1 sites) of Al and Pd in the V crystal lattice. These blocking effects will be a dominant contributor to decreasing hydrogen diffusivity by the additions of Al and Pd. For V-based alloy membranes Fe and Cr are more suitable alloy elements compared with Al and Pd in view of hydrogen diffusivity.
Theoretical Insights into the Hydrogen Evolution Reaction on the Ni3N Electrocatalyst
Jun 2021
Publication
Ni-based catalysts are attractive alternatives to noble metal electrocatalysts for the hydrogen evolution reaction (HER). Herein we present a dispersion-corrected density functional theory (DFT-D3) insight into HER activity on the (111) (110) (001) and (100) surfaces of metallic nickel nitride (Ni3N). A combination of water and hydrogen adsorption was used to model the electrode interactions within the water splitting cell. Surface energies were used to characterise the stabilities of the Ni3N surfaces along with adsorption energies to determine preferable sites for adsorbate interactions. The surface stability order was found to be (111) < (100) < (001) < (110) with calculated surface energies of 2.10 2.27 2.37 and 2.38 Jm−2 respectively. Water adsorption was found to be exothermic at all surfaces and most favourable on the (111) surface with Eads = −0.79 eV followed closely by the (100) (110) and (001) surfaces at −0.66 −0.65 and −0.56 eV respectively. The water splitting reaction was investigated at each surface to determine the rate determining Volmer step and the activation energies (Ea) for alkaline HER which has thus far not been studied in detail for Ni3N. The Ea values for water splitting on the Ni3N surfaces were predicted in the order (001) < (111) < (110) < (100) which were 0.17 0.73 1.11 and 1.60 eV respectively overall showing the (001) surface to be most active for the Volmer step of water dissociation. Active hydrogen adsorption sites are also presented for acidic HER evaluated through the ΔGH descriptor. The (110) surface was shown to have an extremely active Ni–N bridging site with ΔGH = −0.05 eV.
Effect of Hydrogen on the Deformation Behavior and Localization of Plastic Deformation of the Ultrafine-Grained Zr–1Nb Alloy
Oct 2020
Publication
In this paper comparison studies of the hydrogen effect on the structural and phase state deformation behavior and mechanical properties of the fine- (average grain size 4 µm) and ultrafine-grained (average element size 0.3 and 0.4 µm) Zr–1wt.%Nb (hereinafter Zr–1Nb) alloy under tension at temperatures in the range of 293–873 K were conducted. The formation of an ultrafine-grained structure is established to increase the strength characteristics of the Zr–1Nb alloy by a factor of 1.5–2 with a simultaneous reduction of its resistance to the localization of plastic deformation at the macro level and the value of deformation to failure. The presence of hydrogen in the Zr–1Nb alloy in the form of a solid solution and hydride precipitates increases its resistance to the localization of plastic deformation at the macro level if the alloy has an ultrafine-grained structure and decreases if the structure of the alloy is fine-grained. In the studied temperature range the Zr–1Nb alloy in the ultrafine-grained state has a higher resistance to hydrogen embrittlement than the alloy in the fine-grained state.
PRD Hydrogen Release and Dispersion, a Comparison of CFD Results Obtained from Using Ideal and Real Gas Law Properties.
Sep 2005
Publication
In this paper CFD techniques were applied to the simulations of hydrogen release from a 400-bar tank to ambient through a Pressure Relieve Device (PRD) 6 mm (¼”) opening. The numerical simulations using the TOPAZ software developed by Sandia National Laboratory addressed the changes of pressure density and flow rate variations at the leak orifice during release while the PHOENICS software package predicted extents of various hydrogen concentration envelopes as well as the velocities of gas mixture for the dispersion in the domain. The Abel-Noble equation of state (AN-EOS) was incorporated into the CFD model implemented through the TOPAZ and PHOENICS software to accurately predict the real gas properties for hydrogen release and dispersion under high pressures. The numerical results were compared with those obtained from using the ideal gas law and it was found that the ideal gas law overestimates the hydrogen mass release rates by up to 35% during the first 25 seconds of release. Based on the findings the authors recommend that a real gas equation of state be used for CFD predictions of high-pressure PRD releases.
Hydrogen Embrittlement of Medium Mn Steels
Feb 2021
Publication
Recent research efforts to develop advanced–/ultrahigh–strength medium-Mn steels have led to the development of a variety of alloying concepts thermo-mechanical processing routes and microstructural variants for these steel grades. However certain grades of advanced–/ultrahigh–strength steels (A/UHSS) are known to be highly susceptible to hydrogen embrittlement due to their high strength levels. Hydrogen embrittlement characteristics of medium–Mn steels are less understood compared to other classes of A/UHSS such as high Mn twinning–induced plasticity steel because of the relatively short history of the development of this steel class and the complex nature of multiphase fine-grained microstructures that are present in medium–Mn steels. The motivation of this paper is to review the current understanding of the hydrogen embrittlement characteristics of medium or intermediate Mn (4 to 15 wt pct) multiphase steels and to address various alloying and processing strategies that are available to enhance the hydrogen-resistance of these steel grades.
Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments
May 2018
Publication
Direct internal reforming enables optimal heat integration and reduced complexity in solid oxide fuel cell (SOFC) systems but thermal stresses induced by the increased temperature gradients may inflict damage to the stack. Therefore the development of adequate control strategies requires models that can accurately predict the temperature profiles in the stack. A 1D dynamic modelling platform is developed in this study and used to simulate SOFCs in both single cell and stack configurations. The single cell model is used to validate power law and Hougen-Watson reforming kinetics derived from experiments in previous work. The stack model based on the same type of cells accounts for heat transfer in the inactive area and to the environment and is validated with data reported by the manufacturer. The reforming kinetics are then implemented in the stack model to simulate operation with direct internal reforming. Although there are differences between the temperature profiles predicted by the two kinetic models both are more realistic than assuming chemical equilibrium. The results highlight the need to identify rate limiting steps for the reforming and hydrogen oxidation reactions on anodes of functional SOFC assemblies. The modelling approach can be used to study off-design conditions transient operation and system integration as well as to develop adequate energy management and control strategies.
Study on the Explosion of the Hydrogen Fuel Tank of Fuel Cell Electric Vehicles in Semi-Enclosed Spaces
Dec 2022
Publication
The rise in hydrogen fuel cell electric vehicles (FCEVs) is expected to pose a variety of hazards on the road. Vehicles using hydrogen could cause significant damage owing to hydrogen vapor cloud explosions jet fires caused by leakage or hydrogen tank explosions. This risk is expected to further increase in semi-enclosed spaces such as underground parking lots and road tunnels. Therefore it is necessary to study the fire safety of hydrogen vehicles in semi-enclosed spaces. In this study an experiment on hydrogen tank explosion was performed. In addition the CFD numerical model was verified using the experimental results and the damaging effect due to pressure propagation during hydrogen tank explosions in underground parking lots and road tunnels was analyzed using numerical analysis. From the experiment results the hydrogen tank exploded at about 80 Mpa a maximum incident pressure is generated 267 kPa at a distance of 1.9 m. As a result of numerical analysis based on the experimental results the limit distance that can cause serious injury due to the explosion of a hydrogen tank in a road tunnel or underground parking lot was analyzed up to about 20 m from the point of explosion.
Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production
Mar 2017
Publication
The study is focused on the technology and manipulation of production strategies for the cultivation of biomass from four strains of microalgae. Species of microalgae studied are: Chlorella vulgaris Dunaliella Scenedesmus quadricauda and Synechococcus spp. The effects of the rate and amount of CO2 removal from the atmosphere and sequestration with dissolved oxygen on lipid production from accumulated biomass were studied. Also the rate of sequestration of both total and dissolved carbon was investigated. Daily measurements of total organic and inorganic carbon sequestrated optical densities proximate analysis and kinetic parameters of the growing and cultivated microalga were monitored and carried out during the two phases of cultivation: dark and light phases. The values of maximum rate of carbon (IV) oxide removed rmax varied from 11.73 mg L -1 min -1 to 18.84 mg L -1 min -1 from Chlorella vulgaris to Synechoccocus spp. Important parameters such as biomass productivity maximum pH values obtained at cultivation lipid content of the produced biomass and the hydraulic detection time for all four strains of microalgae were considered and presented in comparison and with their individual and collective effects. The ratios of the rate of CO2 absorption constant and the constant for the CO2 desorption rate (k1/k2) occurred highest in Dunaliella suggesting that with a high uptake of CO2 the algal strain is more effective in CO2 CO2 sequestration. The best biomass producer in this study was the C. vulgaris (Xmax = 5400 mg L-1 and Px = 35.1 mg L h -1) where biomass productivity is Px and the maximum cellular concentration is Xmax. C. vulgaris has the highest lipids productivity of 27% while Synechoccocus has the least (11.72%). In general biomass productivity may be inversely related; this fact may be explained by greater metabolic involvement of lipid biosynthesis. This pioneer study may be advanced further to developing models for strategic manipulation and optimisation approach in micro algal biomass cultivation.
High-stability, High-capacity Oxygen Carriers: Iron Oxide-perovskite Composite Materials for Hydrogen Production by Chemical Looping
Jun 2015
Publication
Iron oxide has been widely used as an oxygen carrier material (OCM) for hydrogen production by chemical looping due to its favourable thermodynamic properties. In spite of this iron oxide loses much of its activity after redox cycling mainly due to sintering and agglomeration. Perovskites such as La0.7Sr0.3FeO3-d (LSF731) have been suggested as potential candidate OCMs for hydrogen production due to their excellent oxygen transport properties and stability under cycling. However hydrogen production per cycle for a similar carrier weight is lower than with iron oxide. This work proposes the use of composite OCMs made of iron oxide clusters embedded in an LSF731 matrix. The perovskite matrix facilitates oxygen transport to the iron oxide clusters while preventing agglomeration. Two preparation methods mechanical mixing and a modified Pechini method were used to obtain composite materials with different iron oxide weight fractions 11 and 30 wt.%. The reactivity of these OCMs was studied in a thermogravimetric analyser. Hydrogen production and carrier stability were investigated in a microreactor over 25 redox cycles while periodically feeding carbon monoxide and water in order to produce carbon dioxide and hydrogen in separate streams. Hydrogen production was stable over 25 cycles for LSF731 and the composite OCM with 30 wt.% iron oxide produced by the modified Pechini method but iron oxide particles alone underwent a decrease in the hydrogen production with cycling. The hydrogen production during the 25th cycle was eight times higher for the composite material than for iron oxide alone and four times higher than for LSF731. The hydrogen production was therefore also higher than that expected from a simple combination of the iron oxide and LSF731 alone indicating a synergetic effect whereby the LSF731 may have a higher effective oxygen capacity when in the form of the composite material.
Electrochemical and Mechanical Stability of Catalyst Layers in Anion Exchange Membrane Water Electrolysis
Dec 2021
Publication
Anion exchange membrane (AEM) water electrolysis is considered a promising solution to future cost reduction of electrochemically produced hydrogen. We present an AEM water electrolyzer with CuCoOx as the anode catalyst and Aemion as membrane and electrode binder. Full cell experiments in pure water and 0.1 M KOH revealed that the optimum binder content depended on the type of electrolyte employed. Online dissolution measurements suggested that Aemion alone was not sufficient to establish an alkaline environment for thermodynamically stabilizing the synthesized CuCoOx in a neutral electrolyte feed. A feed of base is thus indispensable to ensure the thermodynamic stability of such non-noble catalyst materials. Particle loss and delamination of the catalyst layer during MEA operation could be reduced by employing a heat treatment step after electrode fabrication. This work summarizes possible degradation pathways for low-cost anodes in AEMWE and mitigation strategies for enhanced system durability and performance.
Hydrogen Fuelling Station, CEP-Berlin – Safety Risk Assessment and Authority Approval Experience and Lessons Learned
Sep 2005
Publication
The CEP (Clean Energy Partnership) – Berlin is one of the most diversified hydrogen demonstration projects at present. The first hydrogen fuelling station serving 16 cars is fully integrated in an ordinary highly frequented Aral service station centrally located at Messedamm in Berlin. Hydro has supplied and is the owner of the electrolyser with ancillary systems. This unit produces gaseous hydrogen at 12 bar with use of renewable energy presently serving 13 of the cars involved. The CEP project is planned to run for a period of five years and is supported by the German Federal Government and is part of the German sustainability strategy. During the planning and design phase there have been done several safety related assessments and analyses:
- Hydro has carried out a HAZOP (HAZard and OPerability) analysis of the electrolyser and ancillary systems delivered by Hydro Electrolysers.
- Hydro arranged with support from the partners a HAZOP analysis of the interface between the electrolyser and the compressor an interface with two different suppliers on each side.
- A QRA (Quantitative Risk Assessment) of the entire fuelling station has been carried out.
- Hydro has carried out a quantitative explosion risk analysis of the electrolyser container supplied by Hydro Electrolysers.
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
Decentral Hydrogen
Apr 2022
Publication
This concept study extends the power-to-gas approach to small combined heat and power devices in buildings that alternately operate fuel cells and electrolysis. While the heat is used to replace existing fossil heaters on-site the power is either fed into the grid or consumed via heatcoupled electrolysis to balance the grid power at the nearest grid node. In detail the power demand of Germany is simulated as a snapshot for 2030 with 100% renewable sourcing. The standard load profile is supplemented with additional loads from 100% electric heat pumps 100% electric cars and a fully electrified industry. The renewable power is then scaled up to match this demand with historic hourly yield data from 2018/2019. An optimal mix of photovoltaics wind biomass and hydropower is calculated in respect to estimated costs in 2030. Hydrogen has recently entered a large number of national energy roadmaps worldwide. However most of them address the demands of heavy industry and heavy transport which are more difficult to electrify. Hydrogen is understood to be a substitute for fossil fuels which would be continuously imported from non-industrialized countries. This paper focuses on hydrogen as a storage technology in an all-electric system. The target is to model the most cost-effective end-to-end use of local renewable energies including excess hydrogen for the industry. The on-site heat coupling will be the principal argument for decentralisation. Essentially it flattens the future peak from massive usage of electric heat pumps during cold periods. However transition speed will either push the industry or the prosumer approach in front. Batteries are tried out as supplementary components for short-term storage due to their higher round trip efficiencies. Switching the gas net to hydrogen is considered as an alternative to overcome the slow power grid expansions. Further decentral measures are examined in respect to system costs.
Local Degradation Effects in Automotive Size Membrane Electrode Assemblies Under Realistic Operating Conditions
Dec 2019
Publication
In automotive applications the operational parameters for fuel cell (FC) systems can vary over a wide range. To analyze their impact on fuel cell degradation an automotive size single cell was operated under realistic working conditions. The parameter sets were extracted from the FC system modelling based on on-road customer data. The parameter variation included simultaneous variation of the FC load gas pressures cell temperature stoichiometries and relative humidity. Current density distributions and the overall cell voltage were recorded in real time during the tests. The current densities were low at the geometric anode gas outlet and high at the anode gas inlet. After electrochemical tests post mortem analysis was conducted on the membrane electrode assemblies using scanning electron microscopy. The ex-situ analysis showed significant cathode carbon corrosion in areas associated with low current densities. This suggests that fuel starvation close to the anode outlet is the origin of the cathode electrode degradation. The results of the numerical simulations reveal high relative humidity at that region and therefore water flooding is assumed to cause local anode fuel starvation. Even though the hydrogen oxidation reaction has low kinetic overpotentials “local availability” of H2 plays a significant role in maintaining a homogeneous current density distribution and thereby in local degradation of the cathode catalyst layer. The described phenomena occurred while the overall cell voltage remained above 0.3 V. This indicates that only voltage monitoring of fuel cell systems does not contain straightforward information about this type of degradation.
Explosion Characteristics of Hydrogen Gas in Varying Ship Ventilation Tunnel Geometries: An Experimental Study
Apr 2022
Publication
Hydrogen is widely regarded as a key element of prospective energy solutions for alleviating environmental emission problems. However hydrogen is classified as a high-risk gas because of its wide explosive range high overpressure low ignition energy and fast flame propagation speed compared with those of hydrocarbon-based gases. In addition deflagration can develop into detonation in ventilation or explosion guide tunnels if explosion overpressure occurs leading to the explosion of all combustible gases. However quantitative evidence of an increase in the explosion overpressure of ventilation tunnels is unavailable because the explosive characteristics of hydrogen gas are insufficiently understood. Therefore this study investigated an explosion chamber with the shape of a ventilation pipe in a ship compartment. The effect of tunnel length on explosion overpressure was examined experimentally. For quantitative verification the size of the hydrogen gas explosion overpressure was analyzed and compared with experimental values of hydrocarbon-based combustible gases (butane and LPG (propane 98%)). The experimental database can be used for explosion risk analyses of ships when designing ventilation holes and piping systems and developing new safety guidelines for hydrogen carriers and hydrogen-fueled ships.
Optimized Operation Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Dec 2022
Publication
The cost reduction of hydrogen refueling stations (HRSs) is very important for the popularization of hydrogen vehicles. This paper proposes an optimized operation algorithm based on hydrogen energy demand estimation for on-site hydrogen refueling stations. Firstly the user’s hydrogen demand was estimated based on the simulation of their hydrogenation behavior. Secondly mixed integer linear programming method was used to optimize the operation of the hydrogen refueling station to minimize the unit hydrogen energy cost by using the peak–valley difference of the electricity price. We then used three typical scenario cases to evaluate the optimized operation method. The results show that the optimized operation method proposed in this paper can effectively reduce the rated configuration of electrolyzer and storage tank for HRS and can significantly reduce the unit hydrogen energy cost considering the construction cost compared with the traditional method. Therefore the optimization operation method of a local hydrogen production and hydrogen refueling station proposed in this paper can reduce the cost of a hydrogen refueling station and accelerate the popularization of hydrogen energy vehicles. Finally the scope of application of the proposed optimization method and the influence of the variation of the electricity price curve and the unit cost of the electrolyzer are discussed.
Sustainable Hydrogen Society - Vision, Findings and Development of a Hydrogen Economy Using the Example of Austria
Oct 2021
Publication
Based on technical environmental economic and social facts and recent findings the feasibility of the transition from our current fossil age to the new green age is analyzed in detail at both global and local level. To avert the threats of health problems environmental pollution and climate change to our quality and standard of life a twofold radical paradigm shift is outlined: Green Energy Revolution means the complete change from fossil-based to green primary energy sources such as sun wind water environmental heat and biomass; Green Hydrogen Society means the complete change from fossil-based final energy to green electricity and green hydrogen in all areas of mobility industries households and energy services. Renewable energies offer a green future and are in combination with electrochemical machines such as electrolysers batteries and fuel cells able to achieve higher efficiencies and zero emissions.
Global Energy Review 2020- The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissions
Apr 2020
Publication
In response to the exceptional circumstances stemming from the coronavirus pandemic the annual IEA Global Energy Review has expanded its coverage to include real-time analysis of developments to date in 2020 and possible directions for the rest of the year. In addition to reviewing 2019 energy and CO2 emissions data by fuel and country for this section of the Global Energy Review we have tracked energy use by country and fuel over the past three months and in some cases – such as electricity – in real time. Some tracking will continue on a weekly basis. The uncertainty surrounding public health the economy and hence energy over the rest of 2020 is unprecedented. This analysis therefore not only charts a possible path for energy use and CO2 emissions in 2020 but also highlights the many factors that could lead to differing outcomes. We draw key lessons on how to navigate this once-in-a-century crisis.
Link to Document on IEA websitte
Link to Document on IEA websitte
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations from the events are described. The lessons learned have been divided into four categories including system design; system manufacturing installation and modification; human factors and emergency response. An overarching lesson learned is that minor events which occurred simultaneously could still result in serious consequences echoing James Reason's Swiss Cheese theory. Recommendations were formulated in relation to the established safety principles adapted for hydrogen by the European Hydrogen Safety Panel considering operational modes industrial sectors and human factors. This work provide an important contribution to the safety of systems involving hydrogen benefitting technical safety engineers emergency responders and emergency services. The lesson learned and the discussion derived from the statistics can also be used in training and risk assessment studies being of equal importance to promote and assist the development of sound safety culture in organisations.
Effect of Hydrogen-diesel Fuel Co-combustion on Exhaust Emissions with Verification Using an Inecylinder Gas Sampling Technique
Aug 2014
Publication
The paper presents an experimental investigation of hydrogen-diesel fuel co-combustion carried out on a naturally aspirated direct injection diesel engine. The engine was supplied with a range of hydrogen-diesel fuel mixture proportions to study the effect of hydrogen addition (aspirated with the intake air) on combustion and exhaust emissions. The tests were performed at fixed diesel injection periods with hydrogen added to vary the engine load between 0 and 6 bar IMEP. In addition a novel inecylinder gas sampling technique was employed to measure species concentrations in the engine cylinder at two inecylinder locations and at various instants during the combustion process. The results showed a decrease in the particulates CO and THC emissions and a slight increase in CO2 emissions with the addition of hydrogen with fixed diesel fuel injection periods. NOx emissions increased steeply with hydrogen addition but only when the combined diesel and hydrogen co-combustion temperatures exceeded the threshold temperature for NOx formation. The inecylinder gas sampling results showed higher NOx levels between adjacent spray cones in comparison to sampling within an individual spray cone.
Vertical Turbulent Buoyant Helium Jet - CFD Modelling and Validation
Sep 2005
Publication
In this paper a vertical turbulent round jet of helium was studied numerically using the PHOENICS software package. The flow was assumed to be steady incompressible and turbulent. The jet discharge Froude number was 14000 and the turbulent Schmidt number was 0.7. The incompressible Reynolds average Navier-Stokes equations and helium transport equation expressed in 2-D axisymmetric domain were applied to model the underlying helium release. The k-e RNG turbulence model was used for the calculations of the corresponding turbulent viscosity diffusivity velocity and concentration fields in the domain. The simulation results are compared with the experimental measurements from the earlier published studies on helium jets in non-buoyant jet region (NBJ) intermediate region (I) and buoyant plume region (BP). The numerical results show that the radial profiles of mean velocity and mean concentration are consistent with the empirical data scaled by the effective diameter and density-ratio dependence. The mean velocity and concentration fields along the axis of the jet agree with the decay laws correlated from the previous experiments. The discrepancy between the numerical and experimental data is within 10% proving that the current CFD model for gas release and dispersion is robust accurate and reliable and that the CFD technique can be used as an alternative to the experiments with similar helium jets. The authors believe that the current CFD model is well validated through this study and can be further extended to predict similar hydrogen releases and dispersion if the model is properly applied with hydrogen properties.
Decarbonizing Vehicle Transportation with Hydrogen from Biomass Gasification: An Assessment in the Nigerian Urban Environment
Apr 2022
Publication
Tailpipe emissions from vehicles consist of CO2 and other greenhouse gases which con‐ tribute immensely to the rise in global temperatures. Green hydrogen produced from the gasification of biomass can reduce the amount of CO2 emissions to zero. This study aims to provide a modelling framework to optimize the production of hydrogen from biomass waste obtained from different cities for use in the road transport sector in Nigeria. A gasification model with post‐treatment shift conversion and CO2 removal by adsorption is proposed. In this study six cities are simulated based on technical and environmental considerations using the Aspen Plus software package. The results revealed that Kaduna has the highest hydrogen generation potential of 0.148 million metric tons per year which could reduce CO2 emissions to 1.60 and 1.524 million metric tons by the dis‐ placement of an equivalent volume of gasoline and diesel. This amounts to cost savings of NGN 116 and 161.8 billion for gasoline and diesel respectively. In addition the results of the sensitivity analysis revealed that the steam‐to‐biomass ratio and the temperature of gasification are positively correlated with the amount of avoided CO2 emissions while the equivalence ratio shows a negative correlation.
Everything About Hydrogen Podcast: Is This the End of the Diesel Train?
Jan 2020
Publication
For this show the team are taking a dive into the world of hydrogen trains and who better to speak to this space than Mike Muldoon Head of Business Development and Marketing for Alstom UK&I. Alstom have been the pioneers of hydrogen powered rail and in addition to two operating trains in Germany have secured over Eur500 million of orders for hydrogen trains. On the show we talk to Mike about why Alstom see hydrogen as a key part of the evolution of the rail industry towards zero emissions and why hydrogen today is such a compelling proposition for operators and investors.
The podcast can be found on their website
The podcast can be found on their website
Optimal Scheduling of Electricity-Hydrogen Coupling Virtual Power Plant Considering Hydrogen Load Response
Mar 2024
Publication
With the rapid development of hydrogen production by water electrolysis the coupling between the electricity-hydrogen system has become closer providing an effective way to consume surplus new energy generation. As a form of centralized management of distributed energy resources virtual power plants can aggregate the integrated energy production and consumption segments in a certain region and participate in electricity market transactions as a single entity to enhance overall revenue. Based on this this paper proposes an optimal scheduling model of an electricity-hydrogen coupling virtual power plant (EHC-VPP) considering hydrogen load response relying on hydrogen to ammonia as a flexibly adjustable load-side resource in the EHC-VPP to enable the VPP to participate in the day-ahead energy market to maximize benefits. In addition this paper also considers the impact of the carbon emission penalty to practice the green development concept of energy saving and emission reduction. To validate the economy of the proposed optimization scheduling method in this paper the optimization scheduling results under three different operation scenarios are compared and analyzed. The results show that considering the hydrogen load response and fully exploiting the flexibility resources of the EHC-VPP can further reduce the system operating cost and improve the overall operating efficiency.
A Coupled Transient Gas Flow Calculation with a Simultaneous Calorific-value-gradient Improved Hydrogen Tracking
Apr 2022
Publication
Gas systems can provide considerable flexibility in integrated energy systems to accommodate hydrogen produced from Power-to-Hydrogen units using excess volatile renewable energy generation. To use the flexibility in integrated energy systems while ensuring a secure and reliable system operation gas system operators need to accurately and easily analyze the effects of varying hydrogen levels on the dynamic gas behavior and vice versa. Existing methods for hydrogen tracking however either solve the hydrogen propagation and dynamic gas behavior separately or must cope with a large inaccuracy. Hence existing methods do not allow an accurate and coupled analysis of gas systems in integrated energy systems considering varying hydrogen levels. This paper proposes a calorific-value-gradient method which can accurately track the propagation of varying hydrogen levels in a gas system even with large simulation time increments of up to one hour. The new method is joined and simultaneously solved with an implicit finite difference scheme describing the transient gas behavior in a single equation system in a coupled Newton–Raphson gas flow calculation. As larger simulation time increments can be chosen without reducing the accuracy the computation time can be strongly reduced compared to existing Euler-based methods. With its high accuracy and its coupled approach this paper provides gas system operators a method to accurately analyze how the propagation of hydrogen affects the entire gas system. With its coupled approach the presented method can enhance the investigation of integrated energy systems as the transient gas behavior and varying hydrogen propagation of the gas system can be easily included in such analyses.
Net Zero – Technical Report
May 2019
Publication
This technical report accompanies the ‘Net Zero’ advice report which is the Committee’s recommendation to the UK Government and Devolved Administrations on the date for a net-zero emissions target in the UK and revised long-term targets in Scotland and Wales.<br/>The conclusions in our advice report are supported by detailed analysis that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals. The purpose of this technical report is to lay out that analysis.
Addressing H-Material Interaction in Fast Diffusion Materials—A Feasibility Study on a Complex Phase Steel
Oct 2020
Publication
Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials only direct observation during in-situ charging allows for addressing H effects on materials. Different plasma charging conditions were analysed yet there was not a pronounced effect on the mechanical properties. The H concentration was calculated while using a simple analytical model as well as a simulation approach resulting in consistent low H values below the critical concentration to produce embrittlement. However the dimple size decreased in the presence of H and with increasing charging time the crack propagation rate increased. The rate dependence of flow properties of the material was also investigated proving that the material has no strain rate sensitivity which confirmed that the crack propagation rate increased due to H effects. Even though the H concentration was low in the experiments that are presented here different technological alternatives can be implemented in order to increase the maximum solute concentration.
Modelling of H2 Dispersion and Combustion Phenomena Using CFD Codes
Sep 2005
Publication
Computational Fluid Dynamics codes are increasingly being considered for safety assessment demonstrations in many industrial fields as tools to model accidental phenomena and to design mitigation (risk reducing) systems. Thus they naturally complement experimental programmes which may be expensive to run or difficult to set up. However to trust numerical simulations the validity of the codes must be firmly established and a certain number of error sources (user effect modelling errors discretization errors etc) reduced to the minimum. Code validation and establishment of “best practice guidelines” in the application of simulation tools to hydrogen safety assessment are some of the objectives pursued by the HYSAFE Network of Excellence. This paper will contribute to these goals by describing some of the validation efforts that CEA is making in the areas of release dispersion combustion and mitigation thereby proposing the outline of a validation matrix for hydrogen safety problems.
Vented Explosion Overpressures From Combustion of Hydrogen and Hydrocarbon Mixtures
Sep 2009
Publication
Experimental data obtained for hydrogen mixtures in a room-size enclosure are presented and compared with data for propane and methane mixtures. This set of data was also used to develop a three-dimensional gas dynamic model for the simulation of gaseous combustion in vented enclosures. The experiments were performed in a 64 m3 chamber with dimensions of 4.6 × 4.6 × 3.0 m and a vent opening on one side and vent areas of either 2.7 or 5.4 m2 were used. Tests were performed for three ignition locations at the wall opposite the vent at the center of the chamber or at the center of the wall containing the vent. Hydrogen–air mixtures with concentrations close 18% vol. were compared with stoichiometric propane–air and methane–air mixtures. Pressure data as function of time and flame time-of-arrival data were obtained both inside and outside the chamber near the vent. Modelling was based on a Large Eddy Simulation (LES) solver created using the OpenFOAM CFD toolbox using sub-grid turbulence and flame wrinkling models. A comparison of these simulations with experimental data is discussed.
Prediction of Third Party Damage Failure Frequency for Pipelines Transporting Mixtures of Natural Gas and Hydrogen
Sep 2009
Publication
As Europe is gradually moving towards a hydrogen based society it has been acknowledged that adding certain amount of hydrogen as a clean energy carrier to the existing natural gas pipeline will help reduce the CO2 emissions which contribute to the greenhouse effect. On the other hand hydrogen has been demonstrated to be able to change the behaviour of the pipeline steel such as lower toughness and faster crack growth due to hydrogen embrittlement. Therefore it is necessary that the risks associated with the failure of the pipeline carrying mixtures of natural gas and hydrogen be assessed.<br/>The study reported in this paper is part of European NATURALHY project whose aim is to investigate the possibility of using the existing natural gas transmission pipelines to convey natural gas/hydrogen mixtures. According to the EGIG database the most common cause of failure for the existing natural gas pipelines is third party damage which mainly refers to a gouge a dent/gouge combination of known geometry. Among third party damage failures 90% are the result of immediate failure i.e. leakage or rupture of the pipeline and only 10% of them are the result of delayed failure. While its not expected that hydrogen will impact the immediate failure it could increase the vulnerability of the pipe to delayed failure through the initiation or activation of crack like defects.<br/>This paper will present a methodology to predict the probability of increased failures and describe a software tool that has been developed to perform the calculations.
No more items...