- Home
- A-Z Publications
- Publications
Publications
Safety Aspects Related to the Underground Hydrogen Storage
Sep 2023
Publication
The transition from fossil fuels to the renewable energies (wind solar) is a key factor to face climate change and build a sustainable reliable and secure energy system. To balance the intermittent energy demand and supply affecting the renewable sources the surplus of electrical energy may be converted in hydrogen and then storage in geological formations. While the risks associated to the natural gas storage in the sub-surface are well known from decades those associated with hydrogen underground storage (UHS) are relatively underexplored. This paper presents an inventory of risks related to large H2-storage in depleted gas and oil fields salt caverns and aquifers. Different issues such as integrity and durability of materials H2 leakages and interaction with the reservoir H2 uncontrolled outflow from the wellhead with potential combustion of air-hydrogen mixture (fire and explosion) soil subsidence and induced seismicity are analyzed.
Decarbonization Pathways, Strategies, and Use Cases to Achieve Net-Zero CO2 Emissions in the Steelmaking Industry
Oct 2023
Publication
The steelmaking industry is responsible for 7% of global CO2 emissions making decarbonization a significant challenge. This review provides a comprehensive analysis of current steel-production processes assessing their environmental impact in terms of CO2 emissions at a global level. Limitations of the current pathways are outlined by using objective criteria and a detailed review of the relevant literature. Decarbonization strategies are rigorously evaluated across various scenarios emphasizing technology feasibility. Focusing on three pivotal areas—scrap utilization hydrogen integration and electricity consumption—in-depth assessments are provided backed by notable contributions from both industrial and scientific fields. The intricate interplay of technical economic and regulatory considerations substantially affects CO2 emissions particularly considering the EU Emissions Trading System. Leading steel producers have established challenging targets for achieving carbon neutrality requiring a thorough evaluation of industry practices. This paper emphasizes tactics to be employed within short- medium- and long-term periods. This article explores two distinct case studies: One involves a hot rolling mill that utilizes advanced energy techniques and uses H2 for the reheating furnace resulting in a reduction of 229 kt CO2 -eq per year. The second case examines DRI production incorporating H2 and achieves over 90% CO2 reduction per ton of DRI.
OIES Podcast - Hydrogen Pipelines vs. HVDC Lines
Nov 2023
Publication
In this podcast David Ledesma talks to Aliaksei Patonia and Veronika Lenivova about Hydrogen pipelines and high-voltage direct current (HVDC) transmission lines and how Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. The podcast discusses how advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending.
The podcast can be found on their website.
The podcast can be found on their website.
Literature Review of Hydrogen Energy Systems and Renewable Energy Sources
Nov 2023
Publication
The role of hydrogen as a clean energy source is a promising but also a contentious issue. The global energy production is currently characterized by an unprecedented shift to renewable energy sources (RES) and their technologies. However the local and environmental benefits of such RES-based technologies show a wide variety of technological maturity with a common mismatch to local RES stocks and actual utilization levels of RES exploitation. In this literature review the collected documents taken from the Scopus database using relevant keywords have been organized in homogeneous clusters and are accompanied by the registration of the relevant studies in the form of one figure and one table. In the second part of this review selected representations of typical hydrogen energy system (HES) installations in realistic in-field applications have been developed. Finally the main concerns challenges and future prospects of HES against a multi-parametric level of contributing determinants have been critically approached and creatively discussed. In addition key aspects and considerations of the HES-RES convergence are concluded.
Carbon-negative Hydrogen Production (HyBECCS): An Exemplary Techno-economic and Environmental Assessment
Sep 2023
Publication
An exemplary techno-economic and environmental assessment of carbon-negative hydrogen (H2) production is carried out in this work. It is based on the so-called “dark photosynthesis” with carbon dioxide (CO2) capture and geological storage. As a special feature of the assessment the economic consequences due to the impact on the global climate are taken into account. The results indicate that the example project would be capable of generating negative GHG emissions under the assumptions made. The amount is estimated to be 17.72 kgCO2 to be removed from the atmosphere per kilogram of H2 produced. The levelized costs of carbon-negative hydrogen are obtained considering the economic impact of greenhouse gas emissions and removals. They are estimated to be 0.013 EUR/kWhH2. Compared to grey hydrogen from natural gas (0.12 EUR/kWhH2) and green hydrogen from electrolysis using renewable electricity (0.18 EUR/kWhH2) this shows a potential environmental-economic advantage of the considered example. Even without internalization of GHG impacts an economic advantage of the project (0.12 EUR/kWhH2) over green hydrogen (0.17 EUR/kWhH2) is indicated. Compared to other NETs the GHG removal efficiency is at the lower end of both BECCS and DACCS approaches.
Design Investigation of Potential Long-Range Hydrogen Combustion Blended Wing Body Aircraft with Future Technologies
Jun 2023
Publication
Present work investigates the potential of a long-range commercial blended wing body configuration powered by hydrogen combustion engines with future airframe and propulsion technologies. Future technologies include advanced materials load alleviation techniques boundary layer ingestion and ultra-high bypass ratio engines. The hydrogen combustion configuration was compared to the configuration powered by kerosene with respect to geometric properties performance characteristics energy demand equivalent CO2 emissions and Direct Operating Costs. In addition technology sensitivity studies were performed to assess the potential influence of each technology on the configuration. A multi-fidelity sizing methodology using low- and mid-fidelity methods for rapid configuration sizing was created to assess the configuration and perform robust analyses and multi-disciplinary optimizations. To assess potential uncertainties of the fidelity of aerodynamic analysis tools high-fidelity aerodynamic analysis and optimization framework MACHAero was used for additional verification. Comparison of hydrogen and kerosene blended wing body aircraft showed a potential reduction of equivalent CO2 emission by 15% and 81% for blue and green hydrogen compared to the kerosene blended wing body and by 44% and 88% with respect to a conventional B777-300ER aircraft. Advancements in future technologies also significantly affect the geometric layout of aircraft. Boundary layer ingestion and ultra-high bypass ratio engines demonstrated the highest potential for fuel reduction although both technologies conflict with each other. However operating costs of hydrogen aircraft could establish a significant problem if pessimistic and base hydrogen price scenarios are achieved for blue and green hydrogen respectively. Finally configurational problems featured by classical blended wing body aircraft are magnified for the hydrogen case due to the significant volume requirements to store hydrogen fuel.
Future Green Energy: A Global Analysis
Jun 2024
Publication
The main problem confronting the world is human-caused climate change which is intrinsically linked to the need for energy both now and in the future. Renewable (green) energy has been proposed as a future solution and many renewable energy technologies have been developed for different purposes. However progress toward net zero carbon emissions by 2050 and the role of renewable energy in 2050 are not well known. This paper reviews different renewable energy technologies developed by different researchers and their potential and challenges to date and it derives lessons for world and especially African policymakers. According to recent research results the mean global capabilities for solar wind biogas geothermal hydrogen and ocean power are 325 W 900 W 300 W 434 W 150 W and 2.75 MWh respectively and their capacities for generating electricity are 1.5 KWh 1182.5 KWh 1.7 KWh 1.5 KWh 1.55 KWh and 3.6 MWh respectively. Securing global energy leads to strong hope for meeting the Sustainable Development Goals (SDGs) such as those for hunger health education gender equality climate change and sustainable development. Therefore renewable energy can be a considerable contributor to future fuels.
Hydrogen for Harvesting the Potential of Offshore Wind: A North Sea Case Study
Dec 2023
Publication
Economical offshore wind developments depend on alternatives for cost-efficient transmission of the generated energy to connecting markets. Distance to shore availability of an offshore power grid and scale of the wind farm may impede export through power cables. Conversion to H2 through offshore electrolysis may for certain offshore wind assets be a future option to enable energy export. Here we analyse the cost sensitivity of offshore electrolysis for harvesting offshore wind in the North Sea using a technology-detailed multi-carrier energy system modelling framework for analysis of energy export. We include multiple investment options for electric power and hydrogen export including HVDC cables new hydrogen pipelines tie-in to existing pipelines and pipelines with linepacking. Existing hydropower is included in the modelling and the effect on offshore electrolysis from increased pumping capacity in the hydropower system is analysed. Considering the lack of empirical cost data on offshore electrolysis as well as the high uncertainty in future electricity and H2 prices we analyse the cost sensitivity of offshore electrolysis in the North Sea by comparing costs relative to onshore electrolysis and energy prices relative to a nominal scenario. Offshore electrolysis is shown to be particularly sensitive to the electricity price and an electricity price of 1.5 times the baseline assumption was needed to provide sufficient offshore energy for any significant offshore electrolysis investments. On the other hand too high electricity prices would have a negative impact on offshore electrolysis because the energy is more valuable as electricity even at the cost of increased wind power curtailment. This shows that there is a window-of-opportunity in terms of onshore electricity where offshore electrolysis can play a significant role in the production of H2 . Pumped hydropower increases the maximum installed offshore electrolysis at the optimal electricity and H2 prices and makes offshore electrolysis more competitive at low electricity prices. Linepacking can make offshore electrolysis investments more robust against low H2 and high electricity prices as it allow for more variable H2 production through storing excess energy from offshore. The increased electrolysis capacity needed for variable electrolyser operation and linepacking is installed onshore due to its lower CAPEX compared to offshore installations.
Power Cost and CO2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles
Nov 2023
Publication
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2 ) emissions and a power generation cost close to that of conventional power plants. Therefore it is important to study the impact on the environment and the power cost. The proposed microgrid comprises loads RESs (micro-hydro and photovoltaic power plants) a hydrogen storage tank an electric battery and fuel cell vehicles. The power cost and CO2 emissions are calculated and compared for various scenarios including the four seasons of the year compared with the work of other researchers. The purpose of this paper is to continuously supply the loads and vehicles. The results show that the microgrid sources and hydrogen storage can supply consumers during the spring and summer. For winter and autumn the power grid and steam reforming of natural gas must be used to cover the demand. The highest power costs and CO2 emissions are for winter while the lowest are for spring. The power cost increases during winter between 20:00 and 21:00 by 336%. The CO2 emissions increase during winter by 8020%.
The Industry Transformation from Fossil Fuels to Hydrogen will Reorganize Value Chains: Big Picture and Case Studies for Germany
Jan 2024
Publication
In many industries low-carbon hydrogen will substitute fossil fuels in the course of the transformation to climate neutrality. This paper contributes to understanding this transformation. This paper provides an overview of energy- and emission-intensive industry sectors with great potential to defossilize their production processes with hydrogen. An assessment of future hydrogen demand for various defossilization strategies in Germany that rely on hydrogen as a feedstock or as an energy carrier to a different extent in the sectors steel chemicals cement lime glass as well as pulp and paper is carried out. Results indicate that aggregate industrial hydrogen demand in those industries would range between 197 TWh and 298 TWh if production did not relocate abroad for any industry sector. The range for hydrogen demand is mainly due to differences in the extent of hydrogen utilization as compared to alternative transformation paths for example based on electrification. The attractiveness of production abroad is then assessed based on the prospective comparative cost advantage of relocating parts of the value chain to excellent production sites for low-carbon hydrogen. Case studies are provided for the steel industry as well as the chemical industry with ethylene production through methanol and the production of urea on the basis of ammonia. The energy cost of the respective value chains in Germany is then compared to the case of value chains partly located in regions with excellent conditions for renewable energies and hydrogen production. The results illustrate that at least for some processes – as ammonia production – relocation to those favorable regions may occur due to substantial comparative cost advantages.
Hydrogen Production from Low-temperature Geothermal Energy - A Review of Opportunities, Challenges, and Mitigating Solutions
Jun 2024
Publication
This study aims to provide a comprehensive review of the potential of geothermal energy for producing hydrogen with a focus on the Australian context where low-temperature geothermal reservoirs particularly hot sedimentary aquifers (HSAs) are prevalent. The work includes an overview of various geothermal technologies and hydrogen production routes and evaluates potential alternatives for hydrogen production in terms of energy and exergy efficiency economic performance and hydrogen production rate. Values for energy efficiency are reported in the literature to range from 3.51 to 47.04% 7.4–67.5% for exergy efficiency a cost ranging from 0.59 to 5.97 USD/kg of hydrogen produced and a hydrogen production rate ranging from 0.11 to 5857 kg/h. In addition the article suggests and evaluates multiple metrics to appraise the feasibility of HSAs geothermal reservoirs with results tailored to Australia but that can be extended to jurisdictions with similar conditions worldwide. Furthermore the performance of various hydrogen production systems is investigated by considering important operating conditions. Lastly the key factors and possible solutions associated with the hydrogeological and financial conditions that must be considered in developing hydrogen production using lowtemperature geothermal energy are summarised. This study shows that low-temperature HSAs (~100 ◦C) can still be used for hydrogen generation via supplying power to conventional electrolysis processes by implementing several improvements in heat source temperature and energy conversion efficiency of Organic Rankine Cycle (ORC) power plants. Geothermal production from depleted or even active oilfields can reduce the capital cost of a hydrogen production system by up to 50% due to the use of pre-existing wellbores under the right operating conditions. Thus the results of this study bring novel insights in terms of both the opportunities and the challenges in producing clean hydrogen from geothermal energy applicable not only to the hydro-geological and socio-economic conditions in Australia but also worldwide exploring the applicability of geothermal energy for clean hydrogen production with similar geothermal potential.
Numerical Simulation of Pressure Recovery Phenomenon in Liquid Ammonia Tank
Sep 2023
Publication
A phase transition develops when a pressurised ammonia vessel is vented through a relieve valve or as a result of shell cracking. Significant pressure recovery in the vessel can occur as a consequence of this phase transition following initial depressurisation and may lead to complete vessel failure. It is critical for safety engineering to predict the flash boiling behaviour and pressure dynamics during the depressurization of liquid ammonia tank. This research aims to develop and compare against available experimental data a CFD model that can predict two-phase behaviour of ammonia and resulting pressure dynamics in the storage tank during its venting to the atmosphere. The CFD model is based on the Volume-of-Fluid (VOF) method and Lee evaporation/condensation approach. The numerical simulation demonstrated that liquid ammonia which is initially at equilibrium state begins to boil throughout due to the decrease of its saturation temperature with the pressure drop during tank venting. In order to understand phenomena underlying the pressure recovery this paper analyses dynamics of superheated ammonia formation its swelling vaporisation contribution to gaseous ammonia mass and volume in ullage space and gaseous ammonia venting. Performed in the study quantitative analysis demonstrated that the flash boiling and gaseous ammonia produced by this phase change were the major reasons behind the pressure recovery. The simulation results of flash boiling delay accurately matched the analytical calculation of bubble rise time. The developed CFD model can be used as a contemporary tool for inherently safer design of ammonia tanks and their depressurisation process.
Parameterization Proposal to Determine the Feasibility of Geographic Areas for the Green Hydrogen Industry under Socio-environmental and Technical Constraints in Chile
Oct 2023
Publication
Chile abundant in solar and wind energy resources presents significant potential for the production of green hydrogen a promising renewable energy vector. However realizing this potential requires an understanding of the most suitable locations for the installation of green hydrogen industries. This study proposes a quantitative methodology that identifies and ranks potential public lands for industrial use based on a range of technical parameters (such as solar and wind availability) and socio-environmental considerations (including land use restrictions and population density). The results reveal optimal locations that can facilitate informed sustainable decision-making for large-scale green hydrogen implementation in Chile. While this methodology does not replace project-specific technical or environmental impact studies it provides a flexible general classification to guide initial site selection. Notably this approach can be applied to other regions worldwide with abundant solar and wind resources such as Australia and Northern Africa promoting more effective and sustainable global decision-making for green hydrogen production.
Influence of Natural Gas and Hydrogen Properties on Internal Combustion Engine Performance, Combustion, and Emissions: A Review
Jan 2024
Publication
This paper provides a comprehensive overview of the physical properties and applications of natural gas (NG) and hydrogen as fuels in internal combustion (IC) engines. The paper also meticulously examines the use of both NG and hydrogen as a fuel in vehicles their production physical characteristics and combustion properties. It reviews the current experimental studies in the literature and investigates the results of using both fuels. It further covers the challenges associated with injectors needle valves lubrication spark plugs and safety requirements for both fuels. Finally the challenges related to the storage production and safety of both fuels are also discussed. The literature review reveals that NG in spark ignition (SI) engines has a clear and direct positive impact on fuel economy and certain emissions notably reducing CO2 and non-methane hydrocarbons. However its effect on other emissions such as unburnt hydrocarbons (UHC) nitrogen oxides (NOx) and carbon monoxide (CO) is less clear. NG which is primarily methane has a lower carbon-to-hydrogen ratio than diesel fuel resulting in lower CO2 emissions per unit of energy released. In contrast hydrogen is particularly well-suited for use in gasoline engines due to its high self-ignition temperature. While increasing the hydrogen content of NG engines reduces torque and power output higher hydrogen input results in reduced fuel consumption and the mitigation of toxic exhaust emissions. Due to its high ignition temperature hydrogen is not inherently suitable for direct use in diesel engines necessitating the exploration of alternative methods for hydrogen introduction into the cylinder. The literature review suggests that hydrogen in diesel engines has shown a reduction in specific exhaust emissions and fuel consumption and an increase in NOx emissions. Overall the paper provides a valuable and informative overview of the challenges and opportunities associated with using hydrogen and NG as fuels in IC engines. It highlights the need for further research and development to address the remaining challenges such as the development of more efficient combustion chambers and the reduction of NOx emissions.
Optimized Design and Control of an Off Grid solar PV/hydrogen Fuel Cell Power System for Green Buildings
Sep 2017
Publication
Modelling simulation optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction low emissions and low cost of energy. The goal is to manage the energy consumption of the building reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system 73% is produced from the solar PV 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable economically viable and environmentally friendly: High renewable fraction (66.1%) low levelized cost of energy (92 $/MWh) and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition
Oct 2023
Publication
The aim of this article is to review hydrogen combustion applications within the energy transition framework. Hydrogen blends are also included from the well-known hydrogen enriched natural gas (HENG) to the hydrogen and ammonia blends whose chemical kinetics is still not clearly defined. Hydrogen and hydrogen blends combustion characteristics will be firstly summarized in terms of standard properties like the laminar flame speed and the adiabatic flame temperature but also evidencing the critical role of hydrogen preferential diffusion in burning rate enhancement and the drastic reduction in radiative emission with respect to natural gas flames. Then combustion applications in both thermo-electric power generation (based on internal combustion engines i.e. gas turbines and piston engines) and hard-to-abate industry (requiring high-temperature kilns and furnaces) sectors will be considered highlighting the main issues due to hydrogen addition related to safety pollutant emissions and potentially negative effects on industrial products (e.g. glass cement and ceramic).
A Review on Metal Hydride Materials for Hydrogen Storage
Jul 2023
Publication
To achieve the shift to renewable energies efficient energy storage is of the upmost importance. Hydrogen as a chemical energy storage represents a promising technology due to its high gravimetric energy density. However the most efficient form of hydrogen storage still remains an open question. Absorption-based storage of hydrogen in metal hydrides offers high volumetric energy densities as well as safety advantages. In this work technical economic and environmental aspects of different metal hydride materials are investigated. An overview of the material properties production methods as well as possibilities for enhancement of properties are presented. Furthermore impacts on material costs abundance of raw materials and dependency on imports are discussed. Advantages and disadvantages of selected materials are derived and may serve as a decision basis for material selection based on application. Further research on enhancement of material properties as well as on the system level is required for widespread application of metal hydrides.
Green Hydrogen Production through Ammonia Decomposition Using Non-Thermal Plasma
Sep 2023
Publication
Liquid hydrogen carriers will soon play a significant role in transporting energy. The key factors that are considered when assessing the applicability of ammonia cracking in large-scale projects are as follows: high energy density easy storage and distribution the simplicity of the overall process and a low or zero-carbon footprint. Thermal systems used for recovering H2 from ammonia require a reaction unit and catalyst that operates at a high temperature (550–800 ◦C) for the complete conversion of ammonia which has a negative effect on the economics of the process. A non-thermal plasma (NTP) solution is the answer to this problem. Ammonia becomes a reliable hydrogen carrier and in combination with NTP offers the high conversion of the dehydrogenation process at a relatively low temperature so that zero-carbon pure hydrogen can be transported over long distances. This paper provides a critical overview of ammonia decomposition systems that focus on non-thermal methods especially under plasma conditions. The review shows that the process has various positive aspects and is an innovative process that has only been reported to a limited extent.
Macroeconomic Analysis of a New Green Hydrogen Industry using Input-output Analysis: The Case of Switzerland
Sep 2023
Publication
Hydrogen is receiving increasing attention to decarbonize hard-to-abate sectors such as carbon intensive industries and long-distance transport with the ultimate goal of reducing greenhouse gas (GHG) emissions to net-zero. However limited knowledge exists so far on the socio-economic and environmental impacts for countries moving towards green hydrogen. Here we analyse the macroeconomic impacts both direct and indirect in terms of GDP growth employment generation and GHG emissions of green hydrogen production in Switzerland. The results are first presented in gross terms for the construction and operation of a new green hydrogen industry considering that all the produced hydrogen is allocated to passenger cars (final demand). We find that for each kg of green hydrogen produced the operational phase creates 6.0 5.9 and 9.5 times more GDP employment and GHG emissions respectively compared to the construction phase (all values in gross terms). Additionally the net impacts are calculated by assuming replacement of diesel by green hydrogen as fuel for passenger cars. We find that green hydrogen contributes to a higher GDP and employment compared to diesel while reducing GHG emissions. For instance in all the three cases namely ‘Equal Cost’ ‘Equal Energy’ and ‘Equal Service’ we find that a green hydrogen industry generates around 106% 28% and 45% higher GDP respectively; 163% 43% and 65% more full-time equivalent jobs respectively; and finally 45% 18% and 29% lower GHG emissions respectively compared to diesel and other industries. Finally the methodology developed in this study can be extended to other countries using country-specific data.
What Does the Public Know About Technological Solutions for Achieving Carbon Neutrality? Citizens' Knowledge of Energy Transition and the Role of Media
Aug 2023
Publication
The present study explores the relation between media use and knowledge in the context of the energy transition. To identify relevant knowledge categories we relied on the expertise of an interdisciplinary research team. Based on this expertise we identified awareness-knowledge of changes in the energy system and principles-knowledge of hydrogen as important knowledge categories. With data obtained from a nationwide online survey of the German-speaking population (n = 2025) conducted in August 2021 we examined the level of knowledge concerning both categories in the German population. Furthermore we studied its associations with exposure to journalistic media and direct communication from non-media actors (e.g. scientists). Our results revealed a considerable lack of knowledge for both categories. Considering the media variables we found only weak and in some cases even negative relations with the use of journalistic media or other actors that spread information online. However we found comparably strong associations between both knowledge categories and the control variables of sex education and personal interest. We use these results to open up a general discussion of the role of the media in knowledge acquisition processes.
No more items...