- Home
- A-Z Publications
- Publications
Publications
On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen
Sep 2022
Publication
Latin America is starting its energy transition. In Colombia with its abundant natural resources and fossil fuel reserves hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential besides allowing a more sustainable use of non-renewable resources would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios respectively which could supply up to 1.5% of the global H2 demand by 2050. However while feedstock availability is promising for blue H2 production carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050 and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture utilization and storage capacity implementation of a clear public policy and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.
Value of Green Hydrogen When Curtailed to Provide Grid Balancing Services
Aug 2022
Publication
This paper evaluates the potential of grid services in France Italy Norway and Spain to provide an alternative income for electrolysers producing hydrogen from wind power. Grid services are simulated with each country's data for 2017 for energy prices grid services and wind power profiles from relevant wind parks. A novel metric is presented the value of curtailed hydrogen which is independent from several highly uncertain parameters such as electrolyser cost or hydrogen market price. Results indicate that grid services can monetise the unused spare capacity of electrolyser plants improving their economy in the critical deployment phase. For most countries up-regulation yields a value of curtailed hydrogen above 6 V/kg over 3 times higher than the EU's 2030 price target (without incentives). However countries with large hydro power resources such as Norway yield far lower results below 2 V/kg. The value of curtailed hydrogen also decreases with hydrogen production corresponding to the cases of symmetric and down-regulation.
Review on the Status of the Research on Power‐to‐Gas Experimental Activities
Aug 2022
Publication
In recent years power‐to‐gas technologies have been gaining ground and are increasingly proving their reliability. The possibility of implementing long‐term energy storage and that of being able to capture and utilize carbon dioxide are currently too important to be ignored. However sys‐ tems of this type are not yet experiencing extensive realization in practice. In this study an overview of the experimental research projects and the research and development activities that are currently part of the power‐to‐gas research line is presented. By means of a bibliographical and sitographical analysis it was possible to identify the characteristics of these projects and their distinctive points. In addition the main research targets distinguishing these projects are presented. This provides an insight into the research direction in this regard where a certain technological maturity has been achieved and where there is still work to be done. The projects found and analyzed amount to 87 mostly at laboratory scale. From these what is most noticeable is that research is currently focusing heavily on improving system efficiency and integration between components.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles
Mar 2021
Publication
Nowadays we face a series of global challenges including the growing depletion of fossil energy environmental pollution and global warming. The replacement of coal petroleum and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2 ) energy is considered the ultimate energy in the 21st century because of its diverse sources cleanliness low carbon emission flexibility and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops H2 fuel supply especially H2 quality attracts increasing attention. Compared with H2 for industrial use the H2 purity requirements for fuel cells are not high. Still the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore we analyze the causes and developing trends for the changes in these standards in detail. On the other hand according to characteristics of H2 for fuel cell vehicles standard H2 purification technologies such as pressure swing adsorption (PSA) membrane separation and metal hydride separation were analyzed and the latest research progress was reviewed.
Life Cycle Analysis of Hydrogen Powered Marine Vessels—Case Ship Comparison Study with Conventional Power System
Aug 2023
Publication
The latest International Maritime Organization strategies aim to reduce 70% of the CO2 emissions and 50% of the Greenhouse Gas (GHG) emissions from maritime activities by 2050 compared to 2008 levels. The EU has set up goals to reduce GHG emissions by at least 55% by 2030 compared to 1990 and achieve net-zero GHG emissions by 2050. The UK aims to achieve more than 68% GHG emission reduction by 2030 and net-zero GHG emissions by 2050. There are many solutions under development to tackle the challenge of meeting the latest decarbonization strategies from the IMO EU and UK among which are hydrogen powered marine vessels. This paper presents a life cycle analysis study for hydrogen fuelled vessels by evaluating their performance in terms of environmental friendliness and economic feasibility. The LCA study will consider the gas emissions and costs during the life stages of the ships including the construction operation maintenance and recycling phases of the selected vessels. The results of the comparisons with the conventional version of the ships (driven by diesel generators) demonstrate the benefits of using hydrogen for marine transportation: over 80% emission reduction and around 60% life cycle cost savings. A sensitivity analysis shows that the prices of fuels and carbon credits can affect the life cycle cost and recommendations for low H2 price and high carbon credit in the future are provided to attract the industry to adopt the new fuel.
Systems-Based Safety Analysis for Hydrogen-Driven Autonomous Ships
Jun 2024
Publication
In the maritime domain hydrogen fuel cell propulsion and autonomous vessels are two important issues that are yet to be implemented together because of a few challenges. It is obvious that there are several individual safety studies on Maritime Autonomous Surface Ships and hydrogen storage as well as fuel cells based on various risk assessment tools but the combined safety studies that include hydrogen fuel cells on autonomous vessels with recent risk analysis methods are extremely limited. This research chooses the “System-Theoretic Process Analysis” (STPA) method which is a recent method for potential risk identification and mitigation. Both hydrogen and autonomous vessels are analyzed and assessed together with the STPA method. Results are not speculative but rather flexible compared to conventional systems. The study finds a total of 44 unsafe control actions (UCAs) evolved from human and central control unit controllers through STPA. Further the loss scenarios (LS) are identified that lead to those UCAs so that loss scenarios can be assessed and UCAs can be mitigated for safe operation. The objective of this study is to ensure adequate safety for hydrogen fuel cell propulsion on autonomous vessels.
A Systems-Level Study of Ammonia and Hydrogen for Maritime Transport
Aug 2023
Publication
An energy systems comparison of grid-electricity derived liquid hydrogen (LH2) and liquid ammonia (LNH3) is conducted to assess their relative potential in a low-carbon future. Under various voyage weather conditions their performance is analysed for use in cargo transport energy vectors for low-carbon electricity transport and fuel supply. The analysis relies on literature projections for technological development and grid decarbonisation towards 2050. Various voyages are investigated from regions such as North America (NA) Europe (E) and Latin America (LA) to regions projected to have a higher electricity and fuel grid carbon intensity (CI) (i.e. Asia Pacific Africa the Middle-East and the CIS). In terms of reducing the CI of electricity and fuel at the destination port use of LH2 is predicted to be favourable relative to LNH3 whereas LNH3 is favourable for low-carbon transport of cargo. As targeted by the International Maritime Organisation journeys of LNH3 cargo ships originating in NA E and LA achieve a reduction in volumetric energy efficiency design index (kg-CO2/m3 -km) of at least 70% relative to 2008 levels. The same targets can be met globally if LH2 is supplied to high CI regions for production of LNH3 for cargo transport. A future shipping system thus benefits from the use of both LH2 and LNH3 for different functions. However there are additional challenges associated with the use of LH2. Relative to LNH3 1.6 to 1.7 times the number of LH2 ships are required to deliver the same energy. Even when reliquefaction is employed their success is reliant on the avoidance of rough sea states (i.e. Beaufort Numbers >= 6) where fuel depletion rates during a voyage are impractical.
Exploring Decentralized Ammonia Synthesis for Hydrogen Storage and Transport: A Comprehensive CFD Investigation with Experimental Validation and Parametric Study
Sep 2023
Publication
Hydrogen energy plays a vital role in the transition towards a carbon-neutral society but faces challenges in storage and transport as well as in production due to fluctuations in renewable electricity generation. Ammonia (NH3 ) as a carbon-neutral hydrogen carrier offers a promising solution to the energy storage and transport problem. To realize its potential and support the development of a hydrogen economy exploring NH3 synthesis in a decentralized form that integrates with distributed hydrogen production systems is highly needed. In this study a computational fluid dynamics (CFD) model for the Ruthenium (Ru) catalysts-based Haber– Bosch reactor is developed. First a state-of-the-art kinetic model comprehensively describing the complex catalytic reaction is assessed for its sensitivity and applicability to temperature pressure and conversion. Then the kinetic model is integrated into the CFD model and its accuracy is verified through comparison with experimental data obtained from different Ru-based catalysts and operation conditions. Detailed CFD results for a given case are presented offering a visual understanding of thermal gradients and species distributions inside the reactor. Finally a CFD-based parametric study is performed to reveal the impacts of key operation parameters and optimize the NH3 synthesis reactor. The results show that the NH3 production rate is predominantly influenced by temperature with a two-fold difference observed for every 30 ◦C variation while pressure primarily affects the equilibrium. Additionally the affecting mechanism of space velocity is thoroughly discussed and the best value for efficient NH3 synthesis is found to be 180000 h−1. In conclusion the CFD model and simulation results provide valuable insights for the design and control of decentralized NH3 synthesis reactor and operation contributing to the advancement of sustainable energy technologies.
Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community
Oct 2023
Publication
Installations of decentralised renewable energy systems (RES) are becoming increasing popular as governments introduce ambitious energy policies to curb emissions and slow surging energy costs. This work presents a novel model for optimal sizing for a decentralised renewable generation and hybrid storage system to create a renewable energy community (REC) developed in Python. The model implements photovoltaic (PV) solar and wind turbines combined with a hybrid battery and regenerative hydrogen fuel cell (RHFC). The electrical service demand was derived using real usage data from a rural island case study location. Cost remuneration was managed with an REC virtual trading layer ensuring fair distribution among actors in accordance with the European RED(III) policy. A multi-objective genetic algorithm (GA) stochastically determines the system capacities such that the inherent trade-off relationship between project cost and decarbonisation can be observed. The optimal design resulted in a levelized cost of electricity (LCOE) of 0.15 EUR/kWh reducing costs by over 50% compared with typical EU grid power with a project internal rate of return (IRR) of 10.8% simple return of 9.6%/year and return on investment (ROI) of 9 years. The emissions output from grid-only use was reduced by 72% to 69 gCO2 e/kWh. Further research of lifetime economics and additional revenue streams in combination with this work could provide a useful tool for users to quickly design and prototype future decentralised REC systems.
Thermal Design and Heat Transfer Optimisation of a Liquid Organic Hydrogen Carrier Batch Reactor for Hydrogen Storage
Aug 2023
Publication
Liquid organic hydrogen carriers (LOHCs) are considered a promising hydrogen storage technology. Heat must be exchanged with an external medium such as a heat transfer fluid for the required chemical reactions to occur. Batch reactors are simple but useful solutions for small-scale storage applications which can be modelled with a lumped parameter approach adequately reproducing their dynamic performance. For such reactors power is consumed to circulate the external heat transfer fluid and stir the organic liquid inside the reactor and heat transfer performance and power consumption are two key parameters in reactor optimisation. Therefore with reference to the hydrogen release phase this paper describes a procedure to optimise the reactor thermal design based on a lumped-parameter model in terms of heat transfer performance and minimum power consumption. Two batch reactors are analysed: a conventional jacketed reactor with agitation nozzles and a half-pipe coil reactor. Heat transfer performance is evaluated by introducing a newly defined dimensionless parameter the Heat Transfer Ratio (HTR) whose value directly correlates to the heat rate required by the carrier's dehydrogenation reaction. The resulting model is a valid tool for adequately reproducing the hydrogen storage behaviour within dynamic models of complex and detailed energy systems.
Routes for Hydrogen Introduction in the Industrial Hard-to-Abate Sectors for Promoting Energy Transition
Aug 2023
Publication
This paper offers a set of comprehensive guidelines aimed at facilitating the widespread adoption of hydrogen in the industrial hard-to-abate sectors. The authors begin by conducting a detailed analysis of these sectors providing an overview of their unique characteristics and challenges. This paper delves into specific elements related to hydrogen technologies shedding light on their potential applications and discussing feasible implementation strategies. By exploring the strengths and limitations of each technology this paper offers valuable insights into its suitability for specific applications. Finally through a specific analysis focused on the steel sector the authors provide in-depth information on the potential benefits and challenges associated with hydrogen adoption in this context. By emphasizing the steel sector as a focal point the authors contribute to a more nuanced understanding of hydrogen’s role in decarbonizing industrial processes and inspire further exploration of its applications in other challenging sectors.
Suitability and Energy Sustainability of Atmospheric Water Generation Technology for Green Hydrogen Production
Sep 2023
Publication
This research investigated the suitability of air-to-water generator (AWG) technology to address one of the main concerns in green hydrogen production namely water supply. This study specifically addresses water quality and energy sustainability issues which are crucial research questions when AWG technology is intended for electrolysis. To this scope a reasoned summary of the main findings related to atmospheric water quality has been provided. Moreover several experimental chemical analyses specifically focused on meeting electrolysis process requirements on water produced using a real integrated AWG system equipped with certified materials for food contact were discussed. To assess the energy sustainability of AWGs in green hydrogen production a case study was presented regarding an electrolyzer plant intended to serve as energy storage for a 2 MW photovoltaic field on Iriomote Island. The integrated AWG used for the water quality analyses was studied in order to determine its performance in the specific island climate conditions. The production exceeded the needs of the electrolyzer; thus the overproduction was considered for the panels cleaning due to the high purity of the water. Due to such an operation the efficiency recovery was more than enough to cover the AWG energy consumption. This paper on the basis of the quantity results provides the first answers to the said research questions concerning water quality and energy consumption establishing the potential of AWG as a viable solution for addressing water scarcity and enhancing the sustainability of electrolysis processes in green hydrogen production.
A Holistic Framework for the Optimal Design and Operation of Electricity, Heating, Cooling and Hydrogen Technologies in Buildings
Jun 2024
Publication
In this work the Design and Operation of Integrated Technologies (DO-IT) framework is developed a comprehensive tool to support short- and long-term technology investment and operation decisions for integrated energy generation conversion and storage technologies in buildings. The novelty of this framework lies in two key aspects: firstly it integrates essential open-source modelling tools covering energy end uses in buildings technology performance and cost and energy system design optimisation into a unified and easily-reproducible framework. Secondly it introduces a novel optimisation tool with a concise and generic mathematical formulation capable of modelling multi-energy vector systems capturing interdependencies between different energy vectors and technologies. The model formulation which captures both short- and long-term energy storage facilitates the identification of smart design and operation strategies with low computational cost. Different building energy demand and price scenarios are investigated and the economic and energy benefits of using a holistic multi-energy-vector approach are quantified. Technology combinations under consideration include: (i) a photovoltaic-electric heat pump-battery system (ii) a photovoltaic-electric heat pump-battery-hot water cylinder system (iii) a photovoltaic-electrolyser‑hydrogen storage-fuel cell system and (iv) a system with all above technology options. Using a university building as a case study it is shown that the smart integration of electricity heating cooling and hydrogen generation and storage technologies results in a total system cost which is >25% lower than the scenario of only importing grid electricity and using a fuel oil boiler. The battery mitigates intra-day fluctuations in electricity demand and the hot-water cylinder allows for efficiently managing heat demand with a small heat pump. In order to avoid PV curtailment excess PV-generated electricity can also be stored in the form of green hydrogen providing a long-term energy storage solution spanning days weeks or even seasons. Results are useful for end-users investment decision makers and energy policy makers when selecting building-integrated low-carbon technologies and relevant policies.
Lightweight Type-IV Hydrogen Storage Vessel Boss Based on Optimal Sealing Structure
Jun 2024
Publication
The seal and weight of the Type IV hydrogen storage vessel are the key problems restricting the safety and driving range of fuel cell vehicles. The boss as a metal medium connecting the inner liner of the Type IV hydrogen storage vessel with the external pipeline affects the sealing performance of the Type IV hydrogen storage vessel and there is no academic research on the weight of the boss. Therefore according to the force characteristics of the boss this paper divides the upper and lower areas (valve column and plate). The valve column with seal optimization and light weight is manufactured with a 3D printing additive while the plate bearing and transferring the internal pressure load is manufactured by forging. Firstly a two-dimensional axisymmetric simulation model of the sealing ring was established and the effects of different compression rates on its seal performance were analyzed. Then the size and position of the sealing groove were sampled simulated and optimized based on the Latin Hypercube method and the reliability of the optimal seal structure was verified by experiments. Finally the Solid Isotropic Material with Penalization (SIMP) topology method was used to optimize the weight of the boss with optimal sealing structure and the reconstructed model was checked and analyzed. The results show that the weight of the optimized boss is reduced by 9.6%.
A Technology Review of Decarbonization: Efficient Techniques for Producing Hydrogen as Fuel
Aug 2023
Publication
Climate change is obvious in many ways. The weather changes rapidly from day to day reaching high temperatures such as 28 ◦C one day and heavy rain the next with temperatures below 18 ◦C. There are also very strong storms caused by this phenomenon. The way the environment acts is different than the current epoch would predict indicating a long-term shift in weather and temperature patterns. The mean temperature of earth is rising due to the greenhouse effect that is caused by human activity and mostly by the burning of fossil fuel emitting CO2 and other pollutant gasses. Nowadays every country is trying to lower CO2 emissions from everyday human activities a movement called “decarbonization”. Since the 18th century there has been a great deal of research carried out on possible alternatives to fossil fuels. Some of the work was just to discover ways to power heaters or automotive vehicle but there is a great deal of work remaining to complete regarding this issue after discovering the greenhouse effect and its impact on the planet’s climate in order to eliminate it by using fuel whose combustion emissions are more environmentally friendly. In the present work many discoveries will be presented that use hydrogen (H2 ) or hydroxy (H-OH) as fuel. The main reason for this is the emission of pure water after combustion but the most interesting part is the approach every scientist uses to create the fuel gas from water.
Study Progress on the Pipeline Transportation Safety of Hydrogen-blended Natural Gas
Oct 2023
Publication
The core of carbon neutrality is the energy structure adjustment and economic structure transformation. Hydrogen energy as a kind of clean energy with great potential has provided important support for the implementation of the carbon peaking and carbon neutrality goals of China. How to achieve the large-range safe and reliable transportation of hydrogen energy with good economic benefits remains the key to limiting the development of hydrogen energy. Using the existing natural gas pipeline network can save many infrastructure construction costs to transport hydrogen-blended natural gas. However due to great differences in the physical and chemical properties of hydrogen and natural gas the transportation of hydrogen-blended natural gas will bring safety risks to the pipeline network operation to a certain extent. In this paper the influences of pipeline transportation of hydrogen-blended natural gas on existing pipelines and parts along the pipelines are analyzed from two aspects of pipe compatibility and hydrogen blending ratio and the safety of pipeline transportation of hydrogen-blended natural gas is summarized from two aspects of leakage and accumulation as well as combustion and explosion. In addition the integrity management of hydrogen-blended natural gas pipelines and the existing relevant standards and specifications are reviewed. This paper points out the shortcomings of current hydrogen-blended natural gas pipeline transportation and gives some relevant suggestions. Hopefully this work can provide a useful reference for developing a hydrogen-blended natural gas pipeline transportation system.
LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures
Sep 2023
Publication
Fuel cell electric vehicles are a promising solution for reducing the environmental impacts of the automotive sector; however there are still some key points to address in finding the most efficient and less impactful implementation of this technology. In this work three electrical architectures of fuel cell electric vehicles were modeled and compared in terms of the environmental impacts of their manufacturing and use phases. The three architectures differ in terms of the number and position of the DC/DC converters connecting the battery and the fuel cell to the electric motor. The life cycle assessment methodology was employed to compute and compare the impacts of the three vehicles. A model of the production of the main components of vehicles and fuel cell stacks as well as of the production of hydrogen fuel was constructed and the impacts were calculated using the program SimaPro. Eleven impact categories were considered when adopting the ReCiPe 2016 midpoint method and the EF (adapted) method was exploited for a final comparison. The results highlighted the importance of the converters and their influence on fuel consumption which was identified as the main factor in the comparison of the environmental impacts of the vehicle.
Assessing Opportunities and Weaknesses of Green Hydrogen Transport via LOHC through a Detailed Techno-economic Analysis
Aug 2023
Publication
In the transition towards a more sustainable energy system hydrogen is seen as the key low-emission energy source. However the limited H2 volumetric density hinders its transportation. To overcome this issue liquid organic hydrogen carriers (LOHCs) molecules that can be hydrogenated and upon arrival dehydrogenated for H2 release have been proposed as hydrogen transport media. Considering toluene and dibenzyltoluene as representative carriers this work offers a systematic methodology for the analysis and the comparison of LOHCs in view of identifying cost-drivers of the overall value-chain. A detailed Aspen Plus process simulation is provided for hydrogenation and dehydrogenation sections. Simulation results are used as input data for the economic assessment. The process economics reveals that dehydrogenation is the most impactful cost-item together with the carrier initial loading the latter related to the LOHC transport distance. The choice of the most suitable molecule as H2 carrier ultimately is a trade-off between its hydrogenation enthalpy and cost.
Model-based Economic Analysis of Off-grid Wind/Hydrogen Systems
Sep 2023
Publication
Hydrogen has emerged in the context of large-scale renewable uptake and deep decarbonization. However the high cost of splitting water into hydrogen using renewable energy hinders the development of green hydrogen. Here we provide a cost analysis of hydrogen from off-grid wind. It is found that the current cost evaluation can be improved by examining the operational details of electrolysis. Instead of using low-resolution wind-speed data and linear electrolysis models we generate 5-min resolution wind data and utilize detailed electrolysis models that can describe the safe working range startup time and efficiency variation. Economic assessments are performed over 112 locations in seven countries to demonstrate the influence of operational models. It is shown that over-simplified models lead to less reliable results and the relative error can be 63.65% at most. Further studies have shown the global picture of producing green hydrogen. Based on the improved model we find that the levelized cost of hydrogen ranges from 1.66$/kg to 13.61$/kg. The wind-based hydrogen is cost-competitive in areas with abundant resources and lower investment cost such as China and Denmark. However it is still costly in most of the studied cases. An optimal sizing strategy or involving a battery as electricity storage can further reduce the hydrogen cost the effectiveness of which is location-specific. The sizing strategies of electrolyzers differ by country and rely on the specific wind resource. In contrast the sizing of batteries presents similar trends. Smaller batteries are preferred in almost all the investigated cases.
No more items...