- Home
- A-Z Publications
- Publications
Publications
European Hydrogen Safety Training Platform for First Responders- Hyresponse Project
Sep 2013
Publication
The paper presents HyResponse project i.e. a European Hydrogen Safety Training Platform that targets to train First responders to acquire professional knowledge and skills to contribute to FCH permitting process as approving authority. The threefold training program is described: educational training operational-level training on mock-up real scale transport and hydrogen stationary installations and innovative virtual training exercises reproducing entire accident scenarios. The paper highlights how the three pilot sessions for European First Responders in a face to face mode will be organized to get a feedback on the training program. The expected outputs are also presented i.e. the Emergency Response Guide and a public website including teaching material and online interactive virtual training.
Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen
Mar 2020
Publication
Titanium-based alloys are susceptible to hydrogen embrittlement (HE) a phenomenon that deteriorates fatigue properties. Ti-6Al-4V is the most widely used titanium alloy and the effect of hydrogen embrittlement on fatigue crack growth (FCG) was investigated by carrying out crack propagation tests in air and high-pressure H2 environment. The FCG test in hydrogen environment resulted in a drastic increase in crack growth rate at a certain Δ K with crack propagation rates up to 13 times higher than those observed in air. Possible reasons for such behaviour were discussed in this paper. The relationship between FCG results in high-pressure H2 environment and microstructure was investigated by comparison with already published results of cast and forged Ti-6Al-4V. Coarser microstructure was found to be more sensitive to HE. Moreover the electron beam melting (EBM) materials experienced a crack growth acceleration in-between that of cast and wrought Ti-6Al-4V
Status, Gaps and Recommendations Regarding Standardisation and the Use of Hydrogen in Sustainable Buildings
Sep 2013
Publication
The use of and interpretation of Regulations Codes and Standards is important input when developing hydrogen systems and applications. This paper presents the work related to standardisation undertaken by DNV as part of the EU supported project H2SusBuild. During the H2SusBuild project a renewable (solar and wind) based full scale energy system with components for hydrogen storage hydrogen production by electrolysis and hydrogen consumption by fuel cell and burner was built and integrated into an existing office building in Lavrion Greece. The relevant standards identified and applied the standardisation gaps identified and the recommendations made for further standardisation activities are presented.
Cost Effective Inherent Safety Index for Polymer Electrolyte Membrane Fuel Cell Systems
Sep 2013
Publication
There have been many indices available in the process industries to describe rank or quantify hazards to people properties and environments. Most of the developed methods were meant to be applied to large scale and complex systems of process industries. Development of a swift and simple inherent safety index method which is relevant to small scale less complex membrane fuel cell system particularly the one in which to be applied during an early design stage is essential as an alternative to current comprehensive and yet time-consuming indices. In this work a modified version of PIIS modified prototype index for inherent safety (m-PIIS) was developed with the objectives of identifying indicating and estimating inherent safety of fuel cell system at an early design stage. The developed index was tested at four proton exchange membrane (PEM) fuel cell systems namely high pressure PEMFC system low pressure PEMFC system LH2 PEMFC system and on-board Me-OH PEMFC system. The developed index was also benchmarked against the original PIIS and ISI using the published results for the selection of process routes in MMA production. Results have indicated that m-PIIS has strong positive relationship with PIIS and ISI on most of the reaction step in MMA with the most significant are the C4 TBA and C3 reaction steps. Other reaction steps such as C2/MP C2/PA and ACH showed a strong positive relationship as well.
Hydrogen Roadmap: A Commitment to Renewable Hydrogen - Executive Summary
Oct 2020
Publication
This Hydrogen Roadmap aims to identify the challenges and opportunities for the full development of renewable hydrogen in Spain providing a series of measures aimed at boosting investment action taking advantage of the European consensus on the role that this energy vector should play in the context of green recovery. This Roadmap is therefore aligned with the 2021 Annual Sustainable Growth Strategy published by the European Commission which identifies the future Recovery and Resilience Mechanism as an opportunity to create emblematic areas of action at European level making two of these areas of action (Power up and Recharge and Refuel) an explicit mention of the development of renewable hydrogen in the European Union.
Experimental Study of Ignited Unsteady Hydrogen Releases from a High Pressure Reservoir
Sep 2011
Publication
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3 4 and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Simulations of Hydrogen Production by Methanol Steam Reforming
Jan 2019
Publication
Methanol is regarded as an important feedstock for hydrogen production due to its high energy density and superior transportability. A tubular packed-bed reactor performing the methanol steam reforming (MSR) process was modeled by adopting computational fluid dynamics (CFD) software to analyze its performance. Kinetic parameters of the reactions were adjusted according to the literatures and our previous experimental results. The methanol conversion the hydrogen production rate and the CO concentration in the produced mixture were evaluated by considering different levels of the length and temperature of the catalyst bed the steam-to-carbon ratio and the space velocity of the feedstocks. Moreover the correlation between the dimensionless parameter Damköhler number and the methanol conversion was also investigated.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Experimental Investigation of Unconfined Spherical and Cylindrical Flame Propagation in Hydrogen-air Mixtures
Sep 2019
Publication
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
Commercialisation of Energy Storage
Mar 2015
Publication
This report was created to ensure a deeper understanding of the role and commercial viability of energy storage in enabling increasing levels of intermittent renewable power generation. It was specifically written to inform thought leaders and decision-makers about the potential contribution of storage in order to integrate renewable energy sources (RES) and about the actions required to ensure that storage is allowed to compete with the other flexibility options on a level playing field.<br/>The share of RES in the European electric power generation mix is expected to grow considerably constituting a significant contribution to the European Commission’s challenging targets to reduce greenhouse gas emissions. The share of RES production in electricity demand should reach about 36% by 2020 45-60% by 2030 and over 80% in 2050.<br/>In some scenarios up to 65% of EU power generation will be covered by solar photovoltaics (PV) as well as on- and offshore wind (variable renewable energy (VRE) sources) whose production is subject to both seasonal as well as hourly weather variability. This is a situation the power system has not coped with before. System flexibility needs which have historically been driven by variable demand patterns will increasingly be driven by supply variability as VRE penetration increases to very high levels (50% and more).<br/>Significant amounts of excess renewable energy (on the order of TWh) will start to emerge in countries across the EU with surpluses characterized by periods of high power output (GW) far in excess of demand. These periods will alternate with times when solar PV and wind are only generating at a fraction of their capacity and non-renewable generation capacity will be required.<br/>In addition the large intermittent power flows will put strain on the transmission and distribution network and make it more challenging to ensure that the electricity supply matches demand at all times.<br/>New systems and tools are required to ensure that this renewable energy is integrated into the power system effectively. There are four main options for providing the required flexibility to the power system: dispatchable generation transmission and distribution expansion demand side management and energy storage. All of these options have limitations and costs and none of them can solve the RES integration challenge alone. This report focuses on the question to what extent current and new storage technologies can contribute to integrate renewables in the long run and play additional roles in the short term.
H21- Hydrogen Boilers Installed in Demonstration Houses
Nov 2020
Publication
Hydrogen boilers have been developed by Worcester Bosch and Baxi and are being trialled in demonstration houses. They look and feel just like the boilers we use today. Hydrogen produces no carbon when used and a hydrogen gas network could provide the least disruptive route to a net zero carbon future.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2017 Final Report
Dec 2018
Publication
The Programme Review Report ensures that the FCH JU programme is aligned with its strategy and objectives. This year the programme review was performed following a new procedure: it was carried out by the European Commission’s in-house science service the Joint Research Committee (JRC). The 2017 review pays particular attention to the added value effectiveness and efficiency of FCH JU activities. The review is structured around six panels under three pillars: transport energy and cross-cutting projects summarising the FCH JU Project Portfolio
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Fuel Cell Codes and Standards Resource
Jan 2021
Publication
Although hydrogen has been used in industry for decades its use as a fuel for vehicles or stationary power generation in consumer environments is relatively new. As such hydrogen and fuel cell codes and standards are in various stages of development. Industry manufacturers the government and other safety experts are working with codes and standards development organizations to prepare review and promulgate technically-sound codes and standards for hydrogen and fuel cell technologies and systems.
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers
Mar 2024
Publication
Underground hydrogen storage in geological structures is considered appropriate for storing large amounts of hydrogen. Using the geological Konary structure in the deep saline aquifers an analysis of the influence of depth on hydrogen storage was carried out. Hydrogen injection and withdrawal modeling was performed using TOUGH2 software assuming different structure depths. Changes in the relevant parameters for the operation of an underground hydrogen storage facility including the amount of H2 injected in the initial filling period cushion gas working gas and average amount of extracted water are presented. The results showed that increasing the depth to approximately 1500 m positively affects hydrogen storage (flow rate of injected hydrogen total capacity and working gas). Below this depth the trend was reversed. The cushion gas-to-working gas ratio did not significantly change with increasing depth. Its magnitude depends on the length of the initial hydrogen filling period. An increase in the depth of hydrogen storage is associated with a greater amount of extracted water. Increasing the duration of the initial hydrogen filling period will reduce the water production but increase the cushion gas volume.
No more items...