- Home
- A-Z Publications
- Publications
Publications
A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems
Mar 2020
Publication
Various concepts have been proposed to use hydrocarbon fuels in solid oxide fuel cell (SOFC) systems. A combination of either allothermal or adiabatic pre-reforming and water recirculation (WR) or anode off-gas recirculation (AOGR) is commonly used to convert the fuel into a hydrogen rich mixture before it is electrochemically oxidised in the SOFC. However it is unclear how these reforming concepts affect the electrochemistry and temperature gradients in the SOFC stack. In this study four reforming concepts based on either allothermal or adiabatic pre-reforming and either WR or AOGR are modelled on both stack and system level. The electrochemistry and temperature gradients in the stack are simulated with a one-dimensional SOFC model and the results are used to calculate the corresponding system efficiencies. The highest system efficiencies are obtained with allothermal pre-reforming and WR. Adiabatic pre-reforming and AOGR result in a higher degree of internal reforming which reduces the cell voltage compared to allothermal pre-reforming and WR. Although this lowers the stack efficiency higher degrees of internal reforming reduce the power consumption by the cathode air blower as well leading to higher system efficiencies in some cases. This illustrates that both stack and system operation need to be considered to design an efficient SOFC system and predict potentially deteriorating temperature gradients in the stack.
Everything About Hydrogen Podcast: Building Europe's Hydrogen Mobility Network
Jan 2020
Publication
On this weeks episode the team are talking all things hydrogen with Jacob Krogsgaard the CEO of Everfuel a leading supplier of green hydrogen for mobility and industry in Europe. Since its establishment by Nel and a Consortium of parties and investors Everfuel has become a market leader in establishing green hydrogen solutions for mobility in Europe and has recently expanded into areas such as power-to-gas as well. The team catch up with Jacob on Everfuels business model the establishment of the H2Bus Consortium Jacob’s views on how the market for green hydrogen is evolving in Europe and where he sees the greatest early potential for scaling.…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: A New Hope for Hydrogen?
Apr 2020
Publication
On this weeks episode the team discuss the Hydrogen Council the global stakeholder forum that has been at the forefront of efforts to advance the role of hydrogen and fuel cell technologies globally. We are excited to have as our guests Pierre-Etienne Franc Vice President for the Hydrogen Energy World Business Unit at Air Liquide and Stephan Herbst General Manager at Toyota Motor Europe. On the show we discuss why Air Liquide and Toyota decided to engage with the Council its strategy vision and perspective on the role that hydrogen can play in the energy transition and how companies can work with policymakers to enable this process. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Hydrogen-powered Aviation and its Reliance on Green Hydrogen Infrastructure - Review and Research Gaps
Oct 2021
Publication
Aircraft powered by green hydrogen (H2) are a lever for the aviation sector to reduce the climate impact. Previous research already focused on evaluations of H2 aircraft technology but analyses on infrastructure related cost factors are rarely undertaken. Therefore this paper aims to provide a holistic overview of previous efforts and introduces an approach to assess the importance of a H2 infrastructure for aviation. A short and a medium-range aircraft are modelled and modified for H2 propulsion. Based on these a detailed cost analysis is used to compare both aircraft and infrastructure related direct operating costs (DOC). Overall it is shown that the economy of H2 aviation highly depends on the availability of low-cost green liquid hydrogen (LH2) supply infrastructure. While total DOC might even slightly decrease in a best LH2 cost case total DOC could also increase between 10 and 70% (short-range) and 15e102% (medium-range) due to LH2 costs alone.
Impacts of Load Profiles on the Optimization of Power Management of a Green Building Employing Fuel Cells
Dec 2018
Publication
This paper discusses the performance improvement of a green building by optimization procedures and the influences of load characteristics on optimization. The green building is equipped with a self-sustained hybrid power system consisting of solar cells wind turbines batteries proton exchange membrane fuel cell (PEMFC) electrolyzer and power electronic devices. We develop a simulation model using the Matlab/SimPowerSystemTM and tune the model parameters based on experimental responses so that we can predict and analyze system responses without conducting extensive experiments. Three performance indexes are then defined to optimize the design of the hybrid system for three typical load profiles: the household the laboratory and the office loads. The results indicate that the total system cost was reduced by 38.9% 40% and 28.6% for the household laboratory and office loads respectively while the system reliability was improved by 4.89% 24.42% and 5.08%. That is the component sizes and power management strategies could greatly improve system cost and reliability while the performance improvement can be greatly influenced by the characteristics of the load profiles. A safety index is applied to evaluate the sustainability of the hybrid power system under extreme weather conditions. We further discuss two methods for improving the system safety: the use of sub-optimal settings or the additional chemical hydride. Adding 20 kg of NaBH4 can provide 63 kWh and increase system safety by 3.33 2.10 and 2.90 days for the household laboratory and office loads respectively. In future the proposed method can be applied to explore the potential benefits when constructing customized hybrid power systems.
Numerical Study of Combustion and Emission Characteristics for Hydrogen Mixed Fuel in the Methane-Fueled Gas Turbine Combustor
Jan 2023
Publication
The aeroderivative gas turbine is widely used as it demonstrates many advantages. Adding hydrogen to natural gas fuels can improve the performance of combustion. Following this the effects of hydrogen enrichment on combustion characteristics were analyzed in an aeroderivative gas turbine combustor using CFD simulations. The numerical model was validated with experimental results. The conditions of the constant mass flow rate and the constant energy input were studied. The results indicate that adding hydrogen reduced the fuel residues significantly (fuel mass at the combustion chamber outlet was reduced up to 60.9%). In addition the discharge of C2H2 and other pollutants was reduced. Increasing the volume fraction of hydrogen in the fuel also reduced CO emissions at the constant energy input while increasing CO emissions at the constant fuel mass flow rate. An excess in the volume fraction of added hydrogen changed the combustion mode in the combustion chamber resulting in fuel-rich combustion (at constant mass flow rate) and diffusion combustion (at constant input power). Hydrogen addition increased the pattern factor and NOx emissions at the outlet of the combustion chamber.
Detection of Contaminants in Hydrogen Fuel for Fuel Cell Electrical Vehicles with Sensors—Available Technology, Testing Protocols and Implementation Challenges
Dec 2021
Publication
Europe’s low-carbon energy policy favors a greater use of fuel cells and technologies based on hydrogen used as a fuel. Hydrogen delivered at the hydrogen refueling station must be compliant with requirements stated in different standards. Currently the quality control process is performed by offline analysis of the hydrogen fuel. It is however beneficial to continuously monitor at least some of the contaminants onsite using chemical sensors. For hydrogen quality control with regard to contaminants high sensitivity integration parameters and low cost are the most important requirements. In this study we have reviewed the existing sensor technologies to detect contaminants in hydrogen then discussed the implementation of sensors at a hydrogen refueling stations described the state-of-art in protocols to perform assessment of these sensor technologies and finally identified the gaps and needs in these areas. It was clear that sensors are not yet commercially available for all gaseous contaminants mentioned in ISO14687:2019. The development of standardized testing protocols is required to go hand in hand with the development of chemical sensors for this application following a similar approach to the one undertaken for air sensors.
Cost Benefits of Optimizing Hydrogen Storage and Methanation Capacities for Power-to-Gas Plants in Dynamic Operation
Oct 2019
Publication
Power-to-Gas technologies offer a promising approach for converting renewable electricity into a molecular form (fuel) to serve the energy demands of non-electric energy applications in all end-use sectors. The technologies have been broadly developed and are at the edge of a mass roll-out. The barriers that Power-to-Gas faces are no longer technical but are foremost regulatory and economic. This study focuses on a Power-to-Gas pathway where electricity is first converted in a water electrolyzer into hydrogen which is then synthetized with carbon dioxide to produce synthetic natural gas. A key aspect of this pathway is that an intermittent electricity supply could be used which could reduce the amount of electricity curtailment from renewable energy generation. Interim storages would then be necessary to decouple the synthesized part from hydrogen production to enable (I) longer continuous operation cycles for the methanation reactor and (II) increased annual full-load hours leading to an overall reduction in gas production costs. This work optimizes a Power-to-Gas plant configuration with respect to the cost benefits using a Monte Carlo-based simulation tool. The results indicate potential cost reductions of up to 17% in synthetic natural gas production by implementing well-balanced components and interim storages. This study also evaluates three different power sources which differ greatly in their optimal system configuration. Results from time-resolved simulations and sensitivity analyses for different plant designs and electricity sources are discussed with respect to technical and economic implications so as to facilitate a plant design process for decision makers.
Rising To the Challenge of a Hydrogen Economy: The Outlook for Emerging Hydrogen Value Chains, From Production to Consumption
Jul 2021
Publication
For many a large-scale hydrogen economy is essential to a a clean energy future with three quarters of the more than 1100 senior energy professionals we surveyed saying Paris Agreement targets will not be possible without it.
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
Safety Planning and Management in EU Hydrogen and Fuel Cells Projects - Guidance Document
Sep 2021
Publication
The document provides information on safety planning implementation and reporting for projects involving hydrogen and/or fuel cell technologies. It does not intend to replace or contradict existing regulations which prevail under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist projects and project partners in identifying hazards and associated risks in prevention and/or mitigation of them through a proper safety plan in implementing the safety plan and reporting safety related events. This shall help in safely delivering the project and ultimately producing inherently safer systems processes and infrastructure.
Milford Haven: Energy Kingdom - System Architecture Report: A Prospering from the Energy Revolution Project
Nov 2021
Publication
Milford Haven: Energy Kingdom is a two-year project exploring what a decarbonised smart local energy system could look like for Milford Haven Pembroke and Pembroke Dock.
The project explores the potential of hydrogen as part of a multi-vector approach to decarbonisation. Central to the project and to achieving Net Zero is a commitment to engage with the community and local industry providing insight and opportunities for growth.
The ambition is to gather detailed insight into the whole energy system around Milford Haven to identify and design a future smart local energy system based on a truly multi-vector approach and comprehensive energy systems architecture.
The transition to Net Zero requires action across the economy. As the UK’s largest energy port Milford Haven is an industrial cluster that can handle 30% of total UK gas demand is home to Europe’s largest gas power station powering 3.5 million homes and businesses has ambitions to build 90MW of floating offshore wind supports 5000 jobs and injects £324m to the Pembrokeshire economy.
This work describes the outcomes of the effort to define designs of future energy system architectures combining; technology the interconnectivity between them and data; with markets trading platforms and policies; with business models and defined organisational governance. The aim of these designs is to provide:
The project explores the potential of hydrogen as part of a multi-vector approach to decarbonisation. Central to the project and to achieving Net Zero is a commitment to engage with the community and local industry providing insight and opportunities for growth.
The ambition is to gather detailed insight into the whole energy system around Milford Haven to identify and design a future smart local energy system based on a truly multi-vector approach and comprehensive energy systems architecture.
The transition to Net Zero requires action across the economy. As the UK’s largest energy port Milford Haven is an industrial cluster that can handle 30% of total UK gas demand is home to Europe’s largest gas power station powering 3.5 million homes and businesses has ambitions to build 90MW of floating offshore wind supports 5000 jobs and injects £324m to the Pembrokeshire economy.
This work describes the outcomes of the effort to define designs of future energy system architectures combining; technology the interconnectivity between them and data; with markets trading platforms and policies; with business models and defined organisational governance. The aim of these designs is to provide:
- The basis for a roadmap for the next phases of development and implementation
- Confidence to innovators and investors in the future longevity of investments in hydrogen and
- A common basis of understanding for all stakeholders wishing to contribute to the Milford Haven: Energy Kingdom.
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
Hydrogen Direct Injection: Optical Investigation of Premixed and Jet-guided Combustion Modes
Mar 2024
Publication
The classical approach to use hydrogen as a fuel for Internal Combustion Engines (ICEs) is premixed combustion. In order to avoid knocking and to limit NOx emissions very lean mixtures are employed thus resulting in a high boost pressure demand or low specific engine power. To overcome these limitations the possibility of a diesellike jet-guided combustion of hydrogen is explored. The approach is to ignite a directly injected hydrogen jet at its periphery by means of a conventional spark discharge followed by a diffusion-controlled combustion while injection remains active. An optically accessible Rapid Compression Expansion Machine (RCEM) is used to investigate ignition and combustion of underexpanded hydrogen jets in air by means of simultaneous Schlieren visualization and OH chemiluminescence. Different injection and ignition timing are investigated resulting in premixed partially premixed and diffusion-controlled (jet-guided) combustion conditions. The possibility of ignition and combustion of the hydrogen jets in diffusion-controlled conditions is investigated for different orientations of the incoming fuel jet with respect to spark location. The combustion tests are analyzed in terms of ignition success rate ignition delay reacting surface and heat release rate and an optimal orientation of the jet is assessed. The present study provides insights for optimizing hydrogen direct injection ignition and combustion for later application in ICEs.
Techno-economic Assessment of Low-carbon Hydrogen Export from Western Canada to Eastern Canada, the USA, the Asia-Pacific, and Europe
Dec 2021
Publication
The use of low-carbon hydrogen is being considered to help decarbonize several jurisdictions around the world. There may be opportunities for energy-exporting countries to supply energy-importing countries with a secure source of low-carbon hydrogen. The study objective is to assess the delivered cost of gaseous hydrogen export from Canada (a fossil-resource rich country) to the Asia-Pacific Europe and inland destinations in North America. There is a data gap on the feasibility of inter-continental export of hydrogen from an energy-producing jurisdiction to energy-consuming jurisdictions. This study is aimed at addressing this gap and includes an assessment of opportunities across the Pacific Ocean and the Atlantic Ocean based on fundamental engineering-based models. Techno-economics were used to determine the delivered cost of hydrogen to these destinations. The modelling considers energy material and capacity-sizing requirements for a five-stage supply chain comprising hydrogen production with carbon capture and storage hydrogen pipeline transportation liquefaction shipping and regasification at the destinations. The results show that the delivered cost of hydrogen to inland destinations in North America is between CAD$4.81/kg and CAD$6.03/kg to the Asia-Pacific from CAD$6.65/kg to CAD$6.99/kg and at least CAD$8.14/kg for exports to Europe. Delivering hydrogen by blending in existing long-distance natural gas pipelines reduced the delivered cost to inland destinations by 17%. Exporting ammonia to the Asia-Pacific provides cost savings of 28% compared to shipping liquified hydrogen. The developed information may be helpful to policymakers in government and the industry in making informed decisions about international trade of low-carbon hydrogen in both energy-exporting and energy-importing jurisdictions globally.
Decarbonising Heat in Buildings: Putting Consumers First
Apr 2021
Publication
From an evaluation of the GB housing stock it is clear that a mosaic of low carbon heating technologies will be needed to reach net zero. While heat pumps are an important component of this mix our analysis shows that it is likely to be impractical to heat many GB homes with heat pumps only. A combination of lack of exterior space and/or the thermal properties of the building fabric mean that a heat pump is not capable of meeting the space heating requirement of 8 to 12m homes (or 37% to 54% of the 22.7m homes assessed in this report) or can do so only through the installation of highly disruptive and intrusive measures such as solid wall insulation. Hybrid heat pumps that are designed to optimise efficiency of the system do not have the same requirements of a heat pump and may be a suitable solution for some of these homes. This is likely to mean that decarbonised gas networks are therefore critical to delivery of net zero. 3 to 4m homes1 (or 14% to 18% of homes assessed in our analysis) could be made suitable for heat pump retrofit through energy efficiency measures such as cavity wall insulation. For 7 to 10m homes there are no limiting factors and they require minimal/no upgrade requirements to be made heat pump-ready. Nevertheless given firstly the levels of disruption to the floors and interiors of homes caused by the installation of heat pumps and secondly the cost and disruption associated with the requirement to significantly upgrade the electricity distribution networks to cope with large numbers of heat pumps operating at peak demand times - combined with the availability of a decarbonised gas network which requires a simple like-for-like boiler replacement - is likely to mean that many of these ‘swing’ properties will be better served through a gas based technology such as hydrogen (particularly when consumer choice is factored in) or a hybrid system. A recent trial run in winter 2018-19 by the Energy System Catapult revealed that all participants were reluctant to make expensive investments to improve the energy efficiency of their homes just to enhance the performance of their heat pump. They were more interested in less costly upgrades and tangible benefits such as lower bills or greater comfort. This means that renewable gases including hydrogen as heating fuels are a crucial component of the journey to net zero and the UK’s hydrogen ambitions should be reflective of this. The analysis presented in this paper focuses on the external fabric of the buildings further analysis should be undertaken to consider the internal system changes that would be required for heat pumps and hydrogen boilers for example BEIS Domestic Heat Distribution Systems: Gathering Report from February 2021 which considers the suitability of radiators for the low carbon transition.
Petroleum Sector-Driven Roadmap for Future Hydrogen Economy
Nov 2021
Publication
In the climate change mitigation context based on the blue hydrogen concept a narrative frame is presented in this paper to build the argument for solving the energy trilemma which is the possibility of job loss and stranded asset accumulation with a sustainable energy solution in gas- and oil-rich regions especially for the Persian Gulf region. To this aim scientific evidence and multidimensional feasibility analysis have been employed for making the narrative around hydrogen clear in public and policy discourse so that choices towards acceleration of efforts can begin for paving the way for the future hydrogen economy and society. This can come from natural gas and petroleum-related skills technologies experience and infrastructure. In this way we present results using multidimensional feasibility analysis through STEEP and give examples of oil- and gas-producing countries to lead the transition action along the line of hydrogen-based economy in order to make quick moves towards cost effectiveness and sustainability through international cooperation. Lastly this article presents a viewpoint for some regional geopolitical cooperation building but needs a more full-scale assessment.
A Review of Energy Systems Models in the UK: Prevalent Usage and Categorisation
Feb 2016
Publication
In this paper a systematic review of academic literature and policy papers since 2008 is undertaken with an aim of identifying the prevalent energy systems models and tools in the UK. A list of all referenced models is presented and the literature is analysed with regards sectoral coverage and technological inclusion as well as mathematical structure of models. The paper compares available models using an appropriate classification schema the introduction of which is aimed at making the model landscape more accessible and perspicuous thereby enhancing the diversity of models within use. The distinct classification presented in this paper comprises three sections which specify the model purpose and structure technological detail and mathematical approach. The schema is not designed to be comprehensive but rather to be a broad classification with pertinent level of information required to differentiate between models. As an example the UK model landscape is considered and 22 models are classified in three tables as per the proposed schema.
Development of a Hydrogen Supplement for use with IGEM/SR/25
Jun 2022
Publication
In response to the UK Government’s commitment to achieve net-zero carbon emissions by 2050 a range of research and demonstration projects are underway to investigate the feasibility of using hydrogen in place of natural gas within the national transmission and distribution system. In order for these projects to achieve their full scope of work a mechanism for performing hazardous area classification for hydrogen installations is required. At present IGEM/SR/25 is used to undertake such assessments for natural gas installations but the standard is not currently applicable to hydrogen or hydrogen/natural gas blends.<br/>This report presents updated data and a summary of the recommended methodologies for hazardous area classification of installations using hydrogen or blends of up to 20% hydrogen in natural gas. The contents of this report are intended to provide a technical commentary and the data for a hydrogen-specific supplement to IGEM/SR/25. The supplement will specifically cover 100% hydrogen and a 20/80% by volume blend of hydrogen/natural gas. Reference to intermediate blends is included in this report where appropriate to cover the anticipated step-wise introduction of hydrogen into the natural gas network.<br/>This report is divided into a series of appendices each of which covers a specific area of the IGEM standard. Each appendix includes a summary of specific recommendations made to enable IGEM/SR/25 to be applied to hydrogen and blends of up to 20% hydrogen in natural gas. The reader is encouraged to review the individual appendices for specific conclusions associated with the topic areas addressed in this report.<br/>In general the existing methodologies and approaches used for area classification in IGEM/SR/25 have been deemed appropriate for installations using either hydrogen or blends of up to 20% hydrogen in natural gas. Where necessary revised versions of the equations and zoning distances used in the standard are presented which account for the influence of material property differences between natural gas and the two alternative fuels considered in this work.
Everything About Hydrogen Podcast: FCEV's "Down Under"
Dec 2020
Publication
On today's show the EAH team will be joined by Brendan Norman to talk about deployment of sustainable FCEV technologies across many different segments of the transport sector and utility vehicles. Brendan is the CEO of H2X a new vehicle manufacturing company based in Sydney with a manufacturing facility in Port Kembla will deliver its first hydrogen FCEVs to market beginning in 2022 before expanding its vehicle offerings in subsequent years. Brendan joined the EAH team via SquadCast from Kuala Lumpur to talk fuel cells with us and you don't want to miss the excellent discussion that we had on this week's episode.
The podcast can be found on their website
The podcast can be found on their website
Is Hydrogen the Future of Nuclear Energy?
Jan 2008
Publication
The traditionally held belief is that the future of nuclear energy is electricity production. However another possible future exists: nuclear energy used primarily for the production of hydrogen. The hydrogen in turn would be used to meet our demands for transport fuels (including liquid fuels) materials such as steel and fertilizer and peak-load electricity production. Hydrogen would become the replacement for fossil fuels in these applications that consume more than half the world’s energy. Such a future would follow from several factors: (a) concerns about climatic change that limit the use of fossil fuels (b) the fundamental technological differences between hydrogen and electricity that may preferentially couple different primary energy sources with either hydrogen or electricity and (c) the potential for other technologies to competitively produce electricity but not hydrogen. Electricity (movement of electrons) is not fundamentally a large-scale centralized technology that requires centralized methods of production distribution or use. In contrast hydrogen (movement of atoms) is intrinsically a large-scale centralized technology. The large-scale centralized characteristics of nuclear energy as a primary energy source hydrogen production systems and hydrogen storage systems naturally couple these technologies. This connection suggests that serious consideration be given to hydrogen as the ultimate product of nuclear energy and that nuclear systems be designed explicitly for hydrogen production.
No more items...