- Home
- A-Z Publications
- Publications
Publications
Initial Assessment of the Impact of Jet Flame Hazard from Hydrogen Cars in Road Tunnels and the Implication on Hydrogen Car Design
Sep 2007
Publication
Underground or partial underground tunnels form a very important part of modern road transportation systems. As the development of hydrogen cars advancing into the markets it is unavoidable in the near future that hydrogen cars would become the users of ordinary road tunnels. This paper discusses potential fire scenarios and fire hazards of hydrogen cars in road tunnels and implications on the fire safety measures and ventilation systems in existing tunnels. The information needed for carry out risk assessment of hydrogen cars in road tunnels are discussed. hydrogen has a low ignition energy and wide flammable range suggesting that leaks have a high probability of ignition and result hydrogen flame. CFD simulations of hydrogen fires in a full scale 5m by 5m square cross-section tunnel were carried out. The effect of the ventilation on controlling the back-layering and the downstream flame are discussed.
Visualisation of Jet Fires from Hydrogen Release
Sep 2009
Publication
In order to achieve a high level of safety while using hydrogen as a vehicle fuel the possible hazards must be estimated. Especially hydrogen release tests with defined ignition represent a very important way to characterize the basics of hydrogen combustion in a potential accident. So ICT participated on a hydrogen jet release campaign at HSL (Buxton) in 2008 to deploy their measurement techniques and evaluation methods to visualize jets ignition and subsequent flames. The following paper shows the application of high speed cinematography in combination with image processing techniques the Background Oriented Schlieren (BOS) and a difference method to visualize the shape of hydrogen jet. In addition these methods were also used to observe ignition and combustion zone after defined initiation. In addition the combustion zone was recorded by a fast spectral radiometer and a highspeed-IR-camera. The IR-camera was synchronized with a rotating filter wheel to generate four different motion pictures at 100Hz each on a defined spectral range. The results of this preliminary evaluation provide some detailed information that might be used for improving model predictions.
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Ignition Limits For Combustion of Unintended Hydrogen Releases- Experimental and Theoretical Results
Sep 2009
Publication
The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead integration of probability density functions (PDFs) of local fuel concentration within the quiescent flammability limits termed the flammability factor (FF) was shown to provide a better representation of ignition probability (PI). Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration) did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the FF approach to the prediction of ignition in hydrogen leak scenarios. The PI within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The FF is obtained through direct integration of local PDFs. A model was developed to predict the FF using a presumed PDF with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite PDF. By comparing the computed FF with the measured PI we have validated the flammability factor approach for application to ignition of hydrogen jets.
A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies
Aug 2016
Publication
This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar) that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California) and high penetration rates of residential solar photovoltaics (PV) (Germany). Therefore Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.
Experimental Characterization and Modelling of Helium Dispersion in a ¼ - Scale Two-Car Residential Garage
Sep 2009
Publication
A series of experiments are described in which helium was released at a constant rate into a 1.5 m × 1.5 m × 0.75 m enclosure designed as a ¼-scale model of a two car garage. The purpose was to provide reference data sets for testing and validating computational fluid dynamics (CFD) models and to experimentally characterize the effects of a number of variables on the mixing behaviour within an enclosure and the exchange of helium with the surroundings. Helium was used as a surrogate for hydrogen and the total volume released was scaled as the amount that would be released by a typical hydrogen fuelled automobile with a full tank. Temporal profiles of helium were measured at seven vertical locations within the enclosure during and following one hour and four hour releases. Idealized vents in one wall sized to provide air exchange rates typical of actual garages were used. The effects of vent size number and location were investigated using three different vent combinations. The dependence on leak location was considered by releasing helium from three different points within the enclosure. It is shown that the National Institute of Standards and Technology (NIST) CFD code Fire Dynamics Simulator (FDS) provides time resolved predictions for helium concentrations that agree well with the experimental measurements.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
The Interaction of Hydrogen Jet Releases With Walls and Barriers
Sep 2009
Publication
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes (1) suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones.<br/>This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at protecting from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak. The work was primarily focused on compressed H2 storage for stationary fuel cell systems which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks and all releases were made were from storage at 200 bar.<br/>Overall conclusions on barrier performance were made based on the recorded measurements.
Experimental Study on a Hydrogen Stratification Induced by PARs Installed in a Containment
Oct 2020
Publication
Hydrogen can be produced in undesired ways such as a high temperature metal oxidation during an accident. In this case the hydrogen must be carefully managed. A hydrogen mitigation system (HMS) should be installed to protect a containment of a nuclear power plant (NPP) from hazards of hydrogen produced by an oxidation of the fuel cladding during a severe accident in an NPP. Among hydrogen removal devices passive auto-catalytic recombiners (PARs) are currently applied to many NPPs because of passive characteristics such as not requiring a power supply nor an operators’ manipulations. However they offer several disadvantages resulting in issues related to hydrogen control by PARs. One of the issues is a hydrogen stratification in which hydrogen is not well-mixed in a compartment due to the high temperature exhaust gas of PARs and accumulation in the lower part. Therefore experimental simulation on hydrogen stratification phenomenon by PARs is required. When the hydrogen stratification by PARs is observed in the experiment the verification and improvement of a PAR analysis model using the experimental results can be performed and the hydrogen removal characteristics by PARs installed in an NPP can be evaluated using the improved PAR model. View Full-Text
Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO2 Emissions Analysis
Apr 2022
Publication
A techno-economic analysis has been used to evaluate three processes for hydrogen production from advanced steam reforming (SR) of bio-oil as an alternative route to hydrogen with BECCS: conventional steam reforming (C-SR) C-SR with CO2 capture (C-SR-CCS) and sorption-enhanced chemical looping (SE-CLSR). The impacts of feed molar steam to carbon ratio (S/C) temperature pressure the use of hydrodesulphurisation pretreatment and plant production capacity were examined in an economic evaluation and direct CO2 emissions analysis. Bio-oil C-SR-CC or SE-CLSR may be feasible routes to hydrogen production with potential to provide negative emissions. SE-CLSR can improve process thermal efficiency compared to C-SR-CCS. At the feed molar steam to carbon ratio (S/C) of 2 the levelised cost of hydrogen (USD 3.8 to 4.6 per kg) and cost of carbon avoided are less than those of a C-SR process with amine-based CCS. However at higher S/C ratios SE-CLSR does not have a strong economic advantage and there is a need to better understand the viability of operating SE-CLSR of bio-oil at high temperatures (>850 ◦C) with a low S/C ratio (e.g. 2) and whether the SE-CLSR cycle can sustain low carbon deposition levels over a long operating period.
Vented Confined Explosions Involving Methane/Hydrogen Mixtures
Sep 2009
Publication
The EC funded Naturalhy project is assessing the potential for using the existing gas infrastructure for conveying hydrogen as a mixture with natural gas (methane). The hydrogen could then be removed at a point of use or the natural gas/hydrogen mixture could be burned in gas-fired appliances thereby providing reduced carbon emissions compared to natural gas. As part of the project the impact on the safety of the gas system resulting from the addition of hydrogen is being assessed. A release of a natural gas/hydrogen mixture within a vented enclosure (such as an industrial housing of plant and equipment) could result in a flammable mixture being formed and ignited. Due to the different properties of hydrogen the resulting explosion may be more severe for natural gas/hydrogen mixtures compared to natural gas. Therefore a series of large scale explosion experiments involving methane/hydrogen mixtures has been conducted in a 69.3 m3 enclosure in order to assess the effect of different hydrogen concentrations on the resulting explosion overpressures. The results showed that adding up to 20% by volume of hydrogen to the methane resulted in a small increase in explosion flame speeds and overpressures. However a significant increase was observed when 50% hydrogen was added. For the vented confined explosions studied it was also observed that the addition of obstacles within the enclosure representing congestion caused by equipment and pipework etc. increased flame speeds and overpressures above the levels measured in an empty enclosure. Predictions of the explosion overpressure and flame speed were also made using a modified version of the Shell Global Solutions model SCOPE. The modifications included changes to the burning velocity and other physical properties of methane/hydrogen mixtures. Comparisons with the experimental data showed generally good agreement.
Hydrogen Release and Atmospheric Dispersion- Experimental Studies and Comparison With Parametric Simulations
Sep 2009
Publication
In our society the use of hydrogen is continually growing and there will be a widespread installation of plants with high capacity storages in our towns as automotive refuelling stations. For this reason it is necessary to make accurate studies on the safety of these kinds of plants to protect our town inhabitants Moreover hydrogen is a highly flammable chemical that can be particularly dangerous in case of release since its mixing with air in the presence of an ignition source could lead to fires or explosions. Generally most simulation models whether or not concerned with fluid dynamics used in safety and risk studies are not validated for hydrogen use. This aspect may imply that the results of studies on safety cannot be too accurate and realistic. This paper introduces an experimental activity which was performed by the Department of Energetics of Politecnico of Torino with the collaboration of the University of Pisa. Accidental hydrogen release and dispersion were studied in order to acquire a set of experimental data to validate simulation models for such studies. At the laboratories of the Department of Mechanical Nuclear and Production Engineering of the University of Pisa a pilot plant called Hydrogen Pipe Break Test was built. The apparatus consisted of a 12 m3 tank which was fed by high pressure cylinders. A 50 m long pipe moved from the tank to an open space and at the far end of the pipe there was an automatic release system that could be operated by remote control. During the experimental activity data was acquired regarding hydrogen concentration as a function of distance from the release hole also lengthwise and vertically. In this paper some of the experimental data acquired during the activity have been compared with the integral models Effects and Phast. In the future experimental results will be used to calibrate a more sophisticated model to atmospheric dispersion studies.
The Effect of Electrolytic Hydrogenation on Mechanical Properties of T92 Steel Weldments under Different PWHT Conditions
Aug 2020
Publication
In the present work the effects of electrolytic hydrogen charging of T92 steel weldments on their room-temperature tensile properties were investigated. Two circumferential weldments between the T92 grade tubes were produced by gas tungsten arc welding using the matching Thermanit MTS 616 filler material. The produced weldments were individually subjected to considerably differing post-welding heat treatment (PWHT) procedures. The first-produced weldment was conventionally tempered (i.e. short-term annealed below the Ac1 critical transformation temperature of the T92 steel) whereas the second one was subjected to its full renormalization (i.e. appropriate reaustenitization well above the T92 steel Ac3 critical transformation temperature and subsequent air cooling) followed by its conventional subcritical tempering. From both weldments cylindrical tensile specimens of cross-weld configuration were machined. The room-temperature tensile tests were performed for the individual welds’ PWHT states in both hydrogen-free and electrolytically hydrogen-charged conditions. The results indicated higher hydrogen embrittlement susceptibility for the renormalized-and-tempered weldments compared to the conventionally tempered ones. The obtained findings were correlated with performed microstructural and fractographic observations.
Synthesis and Performance of Photocatalysts for Photocatalytic Hydrogen Production: Future Perspectives
Dec 2021
Publication
Photocatalysis for “green” hydrogen production is a technology of increasing importance that has been studied using both TiO2–based and heterojunction composite-based semiconductors. Different irradiation sources and reactor units can be considered for the enhancement of photocatalysis. Current approaches also consider the use of electron/hole scavengers organic species such as ethanol that are “available” in agricultural waste in communities around the world. Alternatively organic pollutants present in wastewaters can be used as organic scavengers reducing health and environmental concerns for plants animals and humans. Thus photocatalysis may help reduce the carbon footprint of energy production by generating H2 a friendly energy carrier and by minimizing water contamination. This review discusses the most up-to-date and important information on photocatalysis for hydrogen production providing a critical evaluation of: (1) The synthesis and characterization of semiconductor materials; (2) The design of photocatalytic reactors; (3) The reaction engineering of photocatalysis; (4) Photocatalysis energy efficiencies; and (5) The future opportunities for photocatalysis using artificial intelligence. Overall this review describes the state-of-the-art of TiO2–based and heterojunction composite-based semiconductors that produce H2 from aqueous systems demonstrating the viability of photocatalysis for “green” hydrogen production.
Effects of Surface on the Flammable Extent of Hydrogen Jets
Sep 2009
Publication
The effect of surfaces on the extent of high pressure horizontal unignited jets of hydrogen and methane is studied using CFD numerical simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm PRD from 100 barg and 700 barg storage units are presented for horizontal hydrogen and methane jets. To quantify the effect of a horizontal surface on the jet the jet exit is positioned at various heights above the ground ranging from 0.1 m to 10 m. Free jet simulations are performed for comparison purposes.
Health & Safety Laboratory - Gas Detection for Hydrogen Enriched Gas Distribution Networks
Jul 2019
Publication
The UK has committed to significantly reduce greenhouse gas emissions by 2050 to help address climate change. Decarbonising heating is a key part of this and using hydrogen (H2) as a replacement to natural gas (NG) can help in achieving this. The objective of current research including HyDeploy is to demonstrate that NG containing levels of H2 beyond those currently allowed of 0.1 vol% (1000 ppm) [1] can be distributed and utilised safely and efficiently. Initial projects such as HyDeploy are studying the effects of introducing up to 20 vol% H2 in NG but later projects are considering using up to 100 vol% H2.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Medium-Energy Synthesis Gases from Waste as an Energy Source for an Internal Combustion Engine
Dec 2021
Publication
The aim of the presented article is to analyse the influence of synthesis gas composition on the power economic and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3 ) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane hydrogen and carbon monoxide) as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically for the operating speed of the micro-cogeneration unit (1500 L/min) the decrease in power parameters was in the range of 7.1–23.5%; however the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6% which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.
A Review on Advanced Manufacturing for Hydrogen Storage Applications
Dec 2021
Publication
Hydrogen is a notoriously difficult substance to store yet has endless energy applications. Thus the study of long-term hydrogen storage and high-pressure bulk hydrogen storage have been the subject of much research in the last several years. To create a research path forward it is important to know what research has already been done and what is already known about hydrogen storage. In this review several approaches to hydrogen storage are addressed including high-pressure storage cryogenic liquid hydrogen storage and metal hydride absorption. Challenges and advantages are offered based on reported research findings. Since the project looks closely at advanced manufacturing techniques for the same are outlined as well. There are seven main categories into which most rapid prototyping styles fall. Each is briefly explained and illustrated as well as some generally accepted advantages and drawbacks to each style. An overview of hydrogen adsorption on metal hydrides carbon fibers and carbon nanotubes are presented. The hydrogen storage capacities of these materials are discussed as well as the differing conditions in which the adsorption was performed under. Concepts regarding storage shape and materials accompanied by smaller-scale advanced manufacturing options for hydrogen storage are also presented.
Analysis of Composite Hydrogen Storage Cylinders under Transient Thermal Loads
Sep 2007
Publication
In order to ensure safe operation of hydrogen storage cylinders under adverse conditions one should be able to predict the extremities under which these cylinders are capable of operating without failing catastrophically. It is therefore necessary to develop a comprehensive model which can predict the behavior and failure of composite storage cylinders when subjected to various types of loading conditions and operating environments. In the present work a finite element model has been developed to analyze composite hydrogen storage cylinders subjected to transient localized thermal loads and internal pressure. The composite cylinder consists of an aluminium liner that serves as a hydrogen gas permeation barrier. A filament-wound carbon/epoxy composite laminate placed over the liner provides the desired load bearing capacity. A glass/epoxy layer or other material is placed over the carbon/epoxy laminate to provide damage resistance for the carbon/epoxy laminates. A doubly curved composite shell element accounting for transverse shear deformation and geometric nonlinearity is used. A temperature dependent material model has been developed and implemented in ABAQUS using user subroutine. A failure model based on Hashin's failure theory is used to predict the various types of failure in the cylinder. A progressive damage model has also been implemented to account for reduction in modulus due to failure. A sublaminate model has been developed to save computational time and reduce the complications in the analysis. A numerical study is conducted to analyze a typical hydrogen storage cylinder and possible failure trends due to localized thermal loading and internal pressure is presented.
No more items...