- Home
- A-Z Publications
- Publications
Publications
A Novel LH2/GH2/Battery Multi-energy Vehicle Supply Station using 100% Local Wind Energy, Technical, Economic and Environmental Perspectives
Feb 2023
Publication
With the gradual maturity of wind power technology China’s wind power generation has grown rapidly over the recent years. However due to the on-site inconsumable electricity the phenomenon of large-scale “wind curtailment” occurs in some areas. In this paper a novel hybrid hydrogen/electricity refueling station is built near a wind farm and a part of the surplus wind power is used to charge electric trucks and the other part of the surplus power is used to produce “green hydrogen”. According to real-time load changes different amounts of liquid hydrogen and gas hydrogen can be properly coordinated to provide timely energy supply for hydrogen trucks. For a 400 MW wind farm in the western Inner Mongolia China the feasibility of the proposed system has been carried out based on the sensitivity and reliability analysis the static and dynamic economic modeling with an entire life cycle analysis. Compared to the conventional technology the initial investment of the proposed scheme (700.07 M$) decreases by 13.97% and the dynamic payback period (10.93 years) decreases by 25.87%. During the life cycle of the proposed system the accumulative NPV reaches 184.63 M$ which increases by 3.14 times compared to the case by conventional wind technology.
Optimization of Renewable Energy Supply Chain for Sustainable Hydrogen Energy Production from Plastic Waste
Dec 2023
Publication
Disposing of plastic waste through burial or burning leads to air pollution issues while also contributing to gas emissions and plastic waste spreading underground into seas via springs. Henceforth this research aims at reducing plastic waste volume while simultaneously generating clean energy. Hydrogen energy is a promising fuel source that holds great value for humanity. However achieving clean hydrogen energy poses challenges including high costs and complex production processes especially on a national scale. This research focuses on Iran as a country capable of producing this energy examining the production process along with related challenges and the general supply chain. These challenges encompass selecting appropriate raw materials based on chosen technologies factory capacities storage methods and transportation flow among different provinces of the country. To deal with these challenges a mixed-integer linear programming model is developed to optimize the hydrogen supply chain and make optimal decisions about the mentioned problems. The supply chain model estimates an average cost—IRR 4 million (approximately USD 8)—per kilogram of hydrogen energy that is available in syngas during the initial period; however subsequent periods may see costs decrease to IRR 1 million (approximately USD 2) factoring in return-on-investment rates.
Cost Modelling-based Route Applicablity Analysis of United Kingdom Pasenger Railway Decarbonization Options
Jun 2024
Publication
The UK government plans to phase out pure diesel trains by 2040 and fully decarbonize railways by 2050. Hydrogen fuel cell (HFC) trains electrified trains using pantographs (Electrified Trains) and battery electric multiple unit (BEMU) trains are considered the main solutions for decarbonizing railways. However the range of these decarbonization options’ line upgrade cost advantages is unclear. This paper analyzes the upgrade costs of three types of trains on different lines by constructing a cost model and using particle swarm optimization (PSO) including operating costs and fixed investment costs. For the case of decarbonization of the London St. Pancras to Leicester line the electrified train option is more cost-effective than the other two options under the condition that the service period is 30 years. Then the traffic density range in which three new energy trains have cost advantages on different line lengths is calculated. For route distances under 100 km and with a traffic density of less than 52 trips/day BEMU trains have the lowest average cost while electrified trains are the most costeffective in other ranges. For route distances over 100 km the average cost of HFC trains is lower than that of electrified trains at traffic densities below about 45 trips/day. In addition if hydrogen prices fall by 26 % the cost advantage range of HFC trains will increase to 70 trips per day. For route distances under 100 km BEMU trains still maintain their advantages in terms of lower traffic density.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
Social Risk Approach for Assessing Public Safety of Large-scale Hydrogen Systems
Sep 2023
Publication
Social risk is a comprehensive concept that considers not only internal/external physical risks but also risks (which are multiple varied and diverse) associated with social activity. It should be considered from diverse perspectives and requires a comprehensive evaluation framework that takes into account the synergistic impact of each element on others rather than evaluating each risk individually. Social risk assessment is an approach that is not limited to internal system risk from an engineering perspective but also considers the stakeholders development stage and societal readiness and resilience to change. This study aimed to introduce a social risk approach to assess the public safety of large-scale hydrogen systems. Guidelines for comprehensive social risk assessment were developed to conduct appropriate risk assessments for advanced science and technology activities with high uncertainties to predict major impacts on society before an accident occurs and to take measures to mitigate the damage and to ensure good governance are in place to facilitate emergency response and recovery in addition to preventive measures. In a case study this approach was applied to a hydrogen refueling station in Japan and risk-based multidisciplinary approaches were introduced. These approaches can be an effective supporting tool for social implementation with respect to large-scale hydrogen systems such as liquefied hydrogen storage tanks. The guidelines for social risk assessment of large-scale hydrogen systems are under the International Energy Agency Technology Collaboration Program Hydrogen Safety Task 43. This study presents potential case studies of social risk assessment for large-scale hydrogen systems for future.
Composition Tracking of Natural Gas-Hydrogen Mixtures in Pipeline Flow Using High-resolution Schemes
Jul 2024
Publication
A transient pipeline flow model with gas composition tracking is solved for studying the operation of a natural gas pipeline under nonisothermal flow conditions in a hydrogen injection scenario. Two approaches to high-resolution pipeline flow modeling based on the WENO scheme are presented and compared with the implicit finite difference method. The high-resolution models are capable of capturing fast fluid transients and tracking the step changes in the composition of the transported mixture. The implicit method assumes the decoupling of the flow model components in order to enhance calculation efficiency. The validation of the composition tracking results against actual gas transmission pipeline indicates that both models exhibit good prediction performance with normalized root mean square errors of 0.406% and 1.48% respectively. Under nonisothermal flow conditions the prediction response of the reduced model against a high-resolution flow model with respect to the mass and energy linepack is at most 3.20%.
Integration of Renewable Energy Sources in Tandem with Electrolysis: A Technology Review for Green Hydrogen Production
Jun 2024
Publication
The global shift toward sustainable energy solutions emphasises the urgent need to harness renewable sources for green hydrogen production presenting a critical opportunity in the transition to a low-carbon economy. Despite its potential integrating renewable energy with electrolysis to produce green hydrogen faces significant technological and economic challenges particularly in achieving high efficiency and cost-effectiveness at scale. This review systematically examines the latest advancements in electrolysis technologies—alkaline proton exchange membrane electrolysis cell (PEMEC) and solid oxide—and explores innovative grid integration and energy storage solutions that enhance the viability of green hydrogen. The study reveals enhanced performance metrics in electrolysis processes and identifies critical factors that influence the operational efficiency and sustainability of green hydrogen production. Key findings demonstrate the potential for substantial reductions in the cost and energy requirements of hydrogen production by optimising electrolyser design and operation. The insights from this research provide a foundational strategy for scaling up green hydrogen as a sustainable energy carrier contributing to global efforts to reduce greenhouse gas emissions and advance toward carbon neutrality. The integration of these technologies could revolutionise energy systems worldwide aligning with policy frameworks and market dynamics to foster broader adoption of green hydrogen.
Freshwater Supply for Hydrogen Production: An Underestimated Challenges
Jun 2024
Publication
This paper presents a thorough critical literature review aimed at understanding the challenges associated with freshwater supply associated with rapidly growing global hydrogen economies. The review has been prompted by the fact that the hydrogen production projected for 2030 will create at least an additional demand of 2.1 billion cubic meters for freshwater which needs to be addressed to support sustainable development of emerging hydrogen economies. The key solutions explored by this study include seawater and wastewater treatment methods for large-scale freshwater generation along with the newly introduced technique of direct seawater-fed electrolysis. Prior research indicates that desalination technologies including reverse osmosis and membrane distillation also offer promising avenues for large-scale freshwater production at costs comparable to other desalination techniques. Additionally low-temperature desalination methods such as membrane distillation could play a significant role in freshwater production for electrolysis underscoring the importance of exploring waste recovery opportunities within the system (e.g. fuel cell heat recovery). This review also identifies research gaps that need to be addressed to overcome freshwater supply challenges and enhance the sustainability and techno-economic viability of large-scale hydrogen energy systems.
Environmental Implications and Levelized Cost Analysis of E-fuel Production under Photovoltaic Energy, Direct Air Capture, and Hydrogen
Jan 2024
Publication
The ecological transition in the transport sector is a major challenge to tackle environmental pollution and European legislation will mandate zero-emission new cars from 2035. To reduce the impact of petrol and diesel vehicles much emphasis is being placed on the potential use of synthetic fuels including electrofuels (e-fuels). This research aims to examine a levelised cost (LCO) analysis of e-fuel production where the energy source is renewable. The energy used in the process is expected to come from a photovoltaic plant and the other steps required to produce e-fuel: direct air capture electrolysis and Fischer-Tropsch process. The results showed that the LCOe-fuel in the baseline scenario is around 3.1 €/l and this value is mainly influenced by the energy production component followed by the hydrogen one. Sensitivity scenario and risk analyses are also conducted to evaluate alternative scenarios and it emerges that in 84% of the cases LCOe-fuel ranges between 2.8 €/l and 3.4 €/l. The findings show that the current cost is not competitive with fossil fuels yet the development of e-fuels supports environmental protection. The concept of pragmatic sustainability incentive policies technology development industrial symbiosis economies of scale and learning economies can reduce this cost by supporting the decarbonisation of the transport sector.
Energy Consumption and Saved Emissions of a Hydrogen Power System for Ultralight Aviation: A Case Study
Jul 2024
Publication
The growing concern about climate change and the contemporary increase in mobility requirements call for faster cheaper safer and cleaner means of transportation. The retrofitting of fossil-fueled piston engine ultralight aerial vehicles to hydrogen power systems is an option recently proposed in this direction. The goal of this investigation is a comparative analysis of the environmental impact of conventional and hydrogen-based propulsive systems. As a case study a hybrid electric configuration consisting of a fuel cell with a nominal power of about 30 kW a 6 kWh LFP battery and a pressurized hydrogen vessel is proposed to replace a piston prop configuration for an ultralight aerial vehicle. Both power systems are modeled with a backward approach that allows the efficiency of the main components to be evaluated based on the load and altitude at every moment of the flight with a time step of 1 s. A typical 90 min flight mission is considered for the comparative analysis which is performed in terms of direct and indirect emissions of carbon dioxide water and pollutant substances. For the hydrogen-based configuration two possible strategies are adopted for the use of the battery: charge sustaining and charge depleting. Moreover the effect of the altitude on the parasitic power of the fuel cell compressor and consequently on the net efficiency of the fuel cell system is taken into account. The results showed that even if the use of hydrogen confines the direct environmental impact to the emission of water (in a similar quantity to the fossil fuel case) the indirect emissions associated with the production transportation and delivery of hydrogen and electricity compromise the desired achievement of pollutant-free propulsion in terms of equivalent emissions of CO2 and VOCs if hydrogen is obtained from natural gas reforming. However in the case of green hydrogen from electrolysis with wind energy the total (direct and indirect) emissions of CO2 can be reduced up to 1/5 of the fossil fuel case. The proposed configuration has the additional advantage of eliminating the problem of lead which is used as an additive in the AVGAS 100LL.
A Computational Study of Hydrogen Dispersion and Explosion after Large-Scale Leakage of Liquid Hydrogen
Nov 2023
Publication
This study employs the FLACS code to analyze hydrogen leakage vapor dispersion and subsequent explosions. Utilizing pseudo-source models a liquid pool model and a hybrid model combining both we investigate dispersion processes for varying leak mass flow rates (0.225 kg/s and 0.73 kg/s) in a large open space. We also evaluate explosion hazards based on overpressure and impulse effects on humans. The computational results compared with experimental data demonstrated reasonable hydrogen vapor cloud concentration predictions especially aligned with the wind direction. For higher mass flow rate of 0.73 kg/s the pseudo-source model exhibited the most reasonable predictive performance for locations near the leak source despite the hybrid model yielded similar results to the pseudo-source model while the liquid pool model was more suitable for lower mass flow rate of 0.225 kg/s. Regarding explosion analyses using overpressure-impulse diagram higher mass flow rates leaded to potentially fatal overpressure and impulse effects on humans. However lower mass flow rates may cause severe eardrum damage at the maximum overpressure point.
Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production
Jul 2024
Publication
This paper presents an assessment of the levelized cost of clean hydrogen produced in Sicily a region in Southern Italy particularly rich in renewable energy and where nearly 50% of Italy’s refineries are located making a comparison between on-site production that is near the end users who will use the hydrogen and centralized production comparing the costs obtained by employing the two types of electrolyzers already commercially available. In the study for centralized production the scale factor method was applied on the costs of electrolyzers and the optimal transport modes were considered based on the distance and amount of hydrogen to be transported. The results obtained indicate higher prices for hydrogen produced locally (from about 7 €/kg to 10 €/kg) and lower prices (from 2.66 €/kg to 5.80 €/kg) for hydrogen produced in centralized plants due to economies of scale and higher conversion efficiencies. How-ever meeting the demand for clean hydrogen at minimal cost requires hydrogen distribution pipelines to transport it from centralized production sites to users which currently do not exist in Sicily as well as a significant amount of renewable energy ranging from 1.4 to 1.7 TWh per year to cover only 16% of refineries’ hydrogen needs.
A Parametric Study on In-situ Hydrogen Production from Hydrocarbon Reservoirs - Effect of Reservoir and Well Properties
Jul 2024
Publication
Energy transition is a key driver to combat climate change and achieve zero carbon future. Sustainable and costeffective hydrogen production will provide valuable addition to the renewable energy mix and help minimize greenhouse gas emissions. This study investigates the performance of in-situ hydrogen production (IHP) process using a full-field compositional model as a precursor to experimental validation The reservoir model was simulated as one geological unit with a single point uniform porosity value of 0.13 and a five-point connection type between cell to minimize computational cost. Twenty-one hydrogen forming reactions were modelled based on the reservoir fluid composition selected for this study. The thermodynamic and kinetic parameters for the reactions were obtained from published experiments due to the absence of experimental data specific to the reservoir. A total of fifty-four simulation runs were conducted using CMG STARS software for 5478 days and cumulative hydrogen produced for each run was recorded. Results generated were then used to build a proxy model using Box-Behnken design of experiment method and Support Vector Machine with RBF kernel. To ascertain accuracy of the proxy models analysis of variance (ANOVA) was conducted on the variables. The average absolute percentage error between the proxy model and numerical simulation was calculated to be 10.82%. Optimization of the proxy model was performed using genetic algorithm to maximize cumulative hydrogen produced. Based on this optimized model the influence of porosity permeability well location injection rate and injection pressure were studied. Key results from this study reveals that lower permeability and porosity reservoirs supports more hydrogen yield injection pressure had a negligible effect on hydrogen yield and increase in oxygen injection rate corelated strongly with hydrogen production until a threshold value beyond which hydrogen yield decreased. The framework developed in the study could be used as tool to assess candidate reservoirs for in-situ hydrogen production.
Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response
Jan 2024
Publication
A regional integrated energy system (RIES) synergizing multiple energy forms is pivotal for enhancing renewable energy use and mitigating the greenhouse effect. Considering that the equipment of the current regional comprehensive energy system is relatively simple there is a coupling relationship linking power generation refrigeration and heating in the cogeneration system which is complex and cannot directly meet various load demands. This article proposes a RIES optimization model for bottom-source heat pumps and hydrogen storage systems in the context of comprehensive demand response. First P2G electric hydrogen production technology was introduced into RIES to give full play to the high efficiency advantages of hydrogen energy storage system and the adjustable thermoelectric ratio of the HFC was considered. The HFC could adjust its own thermoelectric ratio according to the system load and unit output. Second through the groundsource heat pump’s cleaning efficiency function further separation and cooling could be achieved. The heat and electrical output of RIES improved the operating efficiency of the system. Thirdly a comprehensive demand response model for heating cooling and electricity was established to enable users to reasonably adjust their own energy use strategies to promote the rational distribution of energy in the system. The model integrates power-to-gas (P2G) technology leveraging the tunable thermoelectric ratio of a hydrogen fuel cell (HFC) to optimize the generation of electricity and heat while maximizing the efficiency of the hydrogen storage system. Empirical analysis substantiated the proposed RIES model’s effectiveness and economic benefits when integrating ground-source HP and electric hydrogen production with IDR. Compared with the original model the daily operating cost of the proposed model was reduced by RMB 1884.16.
Assessing the Potential of Decarbonization Options for Industrial Sectors
Jan 2024
Publication
Industry emits around a quarter of global greenhouse gas (GHG) emissions. This paper presents the first comprehensive review to identify the main decarbonization options for this sector and their abatement potentials. First we identify the important GHG emitting processes and establish a global average baseline for their current emissions intensity and energy use. We then quantify the energy and emissions reduction potential of the most significant abatement options as well as their technology readiness level (TRL). We find that energy-intensive industries have a range of decarbonization technologies available with medium to high TRLs and mature options also exist for decarbonizing low-temperature heat across a wide range of industrial sectors. However electrification and novel process change options to reduce emissions from high-temperature and sector-specific processes have much lower TRLs in comparison. We conclude by highlighting important barriers to the deployment of industrial decarbonization options and identifying future research development and demonstration needs.
OIES Podcast - Key Energy Themes for 2024
Jan 2024
Publication
In this latest OIES podcast James Henderson talks to Bill Farren-Price the new Head of the Gas Programme about some of Key Themes identified by OIES research fellows for 2024. After a review of the outcomes from 2023 we look at the oil and gas markets and discuss a common theme around the contrast between the fundamental tightness in both markets compared with the relative softness of prices. We then move onto a number of energy transition issues starting with some of the key actions from COP28 that need to be implemented in 2024 and following with a review of the outlook for carbon markets hydrogen developments and offshore wind. We also consider the impact of emerging competition between regions over green industrial policy. Finally we consider some of the key geopolitical drivers for 2024 with the influence of China being the most critical. However in an election year for so many countries it will be critical to follow the key policy announcements of the main candidates and of most critically the outcome of the US election in November.
The podcast can be found on their website
The podcast can be found on their website
Steam Electrolysis for Green Hydrogen Generation. State of the Art and Research Perspective
Jul 2024
Publication
With renewable energy sources projected to become the dominant source of electricity hydrogen has emerged as a crucial energy carrier to mitigate their intermittency issues. Water electrolysis is the most developed alternative to generate green hydrogen so far. However in the past two decades steam electrolysis has attracted increasing interest and aims to become a key player in the portfolio of electrolytic hydrogen. In practice steam electrolysis follows two distinct operational approaches: Solid Oxide Electrolysis Cell (SOEC) and Proton Exchange Membrane (PEM) at high temperature. For both technologies this work analyses critical cell components outlining material characteristics and degradation issues. The influence of operational conditions on the performance and cell durability of both technologies is thoroughly reviewed. The analytical comparison of the two electrolysis alternatives underscores their distinct advantages and drawbacks highlighting their niche of applications: SOECs thrive in high temperature industries like steel production and nuclear power plants whereas PEM steam electrolysis suits lower temperature applications such as textile and paper. Being PEM steam electrolysis less explored this work ends up by suggesting research lines in the domain of i) cell components (membranes catalysts and gas diffusion layers) to optimize and scale the technology ii) integration strategies with renewable energies and iii) use of seawater as feedstock for green hydrogen production.
Technoeconomic, Environmental and Multi-criteria Decision Making Investigations for Optimisation of Off-grid Hybrid Renewable Energy System with Green Hydrogen Production
Jan 2024
Publication
The current study presents a comprehensive investigation of different energy system configurations for a remote village community in India with entirely renewable electricity. Excess electricity generated by the systems has been stored using two types of energy storage options: lithium-ion batteries and green hydrogen production through the electrolysers. The hybrid renewable energy system (HRES) configurations have been sized by minimising the levelised cost of energy (LCOE). In order to identify the best-performing HRES configuration economic and environmental performance indicators has been analysed using the multi-criteria decision-making method (MCDM) TOPSIS. Among the evaluated system configurations system-1 with a photovoltaic panel (PV) size of 310.24 kW a wind turbine (WT) size of 690 kW a biogas generator (BG) size of 100 kW a battery (BAT) size of 174 kWh an electrolyser (ELEC) size of 150 kW a hydrogen tank (HT) size of 120 kg and a converter (CONV) size of 106.24 kW has been found to be the best-performing system since it provides the highest relative closeness (RC) value (∼0.817) and also has the lowest fuel consumption rate of 2.31 kg/kWh. However system-6 shows the highest amount of CO2 (143.97 kg/year) among all the studied system configurations. Furthermore a detailed technical economic and environmental analysis has been conducted on the optimal HRES configuration. The minimum net present cost (NPC) LCOE and cost of hydrogen (COH) for system 1 has been estimated to be $1960584 $0.44/kWh and $22.3/kg respectively.
Development of Electric Power Generator by Using Hydrogen
Nov 2023
Publication
In this research we developed a hydrogen (H2 ) electric generator in an H2 generation system based on chemical reactions. In the experiment we tested the performance of the H2 electric generator and measured the amount of H2 generated. The maximum output was 700 W and the thermal efficiency was 18.2%. The theoretical value and measured value were almost the same and the maximum error was 4%.
Hydrogen Import and Export: Unlocking the UK's Hydrogen Trade Potential
May 2024
Publication
Hydrogen trade is an emerging area of interest for hydrogen developers end-users traders and governments around the world. It can enhance system flexibility energy security and clean growth enabling decarbonisation at a lower cost and faster pace. Thanks to its competitive advantage in existing ports terminals and interconnectors the UK is well placed to be the European trade hub for hydrogen and its carriers. With its access to world leading offshore wind generation capacity and geological storage the UK will almost certainly be a net exporter of hydrogen in the future delivering economic value and creating jobs. However hydrogen trade will not be a one-way process. In order to best position the UK as a future hydrogen trade hub there could be value in investing in small scale hydrogen imports and exports to ‘wet the pipes’ and stimulate investment in infrastructure. Imports could also enhance our energy security as a part of a diverse energy mix and support demand whilst domestic production gets up to speed. Both imports and exports will be key to build supply chains and skills and enhance clean growth. With major European economies having established their hydrogen trade strategy there is growing uncertainty as to how the United Kingdom will capitalise on its competitive advantage and position itself in the global hydrogen market. This is the first qualitative report released by Hydrogen UK’s Import and Export Taskforce. This report aims to provide a high-level overview of Hydrogen UK’s vision and recommendations with subsequent reports exploring this topic in further detail.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Green Hydrogen Cooperation between Egypt and Europe: The Perspective of Locals in Suez and Port Said
Jun 2024
Publication
Hydrogen produced by renewable energy sources (green hydrogen) is at the centrepiece of European decarbonization strategies necessitating large imports from third countries. Egypt potentially stands out as major production hub. While technical and economic viability are broadly discussed in literature analyses of local acceptance are absent. This study closes this gap by surveying 505 locals in the Suez Canal Economic Zone (Port Said and Suez) regarding their attitudes towards renewable energy development and green hydrogen production. We find overall support for both national deployment and export to Europe. Respondents see a key benefit in rising income thereby strongly underlying the economic argument. Improved trade relationships or improved political relationships are seen as potential benefits of export but as less relevant for engaging in cooperation putting a spotlight on local benefits. Our study suggests that the local population is more positive than negative towards the development and scaling up of green hydrogen projects in Egypt.
A Perspective on Broad Deployment of Hydrogen-fueled Vehicles for Ground Freight Transportation with a Comparison to Electric Vehicles
Oct 2024
Publication
The pressing global challenge of climate change necessitates a concerted effort to limit greenhouse gas emissions particularly carbon dioxide. A critical pathway is to replace fossil fuel sources by electrification including transportation. While electrification of light-duty vehicles is rapidly expanding the heavy-duty vehicle sector is subject to challenges notably the logistical drawbacks of the size and weight of high-capacity batteries required for range as well as the time for battery charging. This Perspective highlights the potential of hydrogen fuel-cell vehicles as a viable alternative for heavy-duty road transportation. We evaluate the implications of hydrogen integration into the freight economy energy dynamics and CO2 mitigation and envision a roadmap for a holistic energy transition. Our critical opinion presented in this Perspective is that federal incentives to produce hydrogen could foster growth in the nascent hydrogen economy. The pathway that we propose is that initial focus on operators of large fleets that could control their own fueling infrastructure. This opinion was formed from private discussions with numerous stakeholders during the formation of one of the awarded hydrogen hubs if they focus on early adopters that could leverage the hydrogen supply chain.
Optimization of the Joint Operation of an Electricity–Heat– Hydrogen–Gas Multi-Energy System Containing Hybrid Energy Storage and Power-to-Gas–Combined Heat and Power
Jun 2024
Publication
With the continuous development of hydrogen storage systems power-to-gas (P2G) and combined heat and power (CHP) the coupling between electricity–heat–hydrogen–gas has been promoted and energy conversion equipment has been transformed from an independent operation with low energy utilization efficiency to a joint operation with high efficiency. This study proposes a low-carbon optimization strategy for a multi-energy coupled IES containing hydrogen energy storage operating jointly with a two-stage P2G adjustable thermoelectric ratio CHP. Firstly the hydrogen energy storage system is analyzed to enhance the wind power consumption ability of the system by dynamically absorbing and releasing energy at the right time through electricity–hydrogen coupling. Then the two-stage P2G operation process is refined and combined with the CHP operation with an adjustable thermoelectric ratio to further improve the low-carbon and economic performance of the system. Finally multiple scenarios are set up and the comparative analysis shows that the addition of a hydrogen storage system can increase the wind power consumption capacity of the system by 4.6%; considering the adjustable thermoelectric ratio CHP and the twostage P2G the system emissions reduction can be 5.97% and 23.07% respectively and the total cost of operation can be reduced by 7.5% and 14.5% respectively.
Electrochemical Devices to Power a Sustainable Energy Transition—An Overview of Green Hydrogen Contribution
Mar 2024
Publication
This work discusses the current scenario and future growth of electrochemical energy devices such as water electrolyzers and fuel cells. It is based on the pivotal role that hydrogen can play as an energy carrier to replace fossil fuels. Moreover it is envisaged that the scaled-up and broader deployment of the technologies can hold the potential to address the challenges associated with intermittent renewable energy generation. From a sustainability perspective this synergy between hydrogen and electricity from renewable sources is particularly attractive: electrolyzers convert the excess energy from renewables into green hydrogen and fuel cells use this hydrogen to convert it back into electricity when it is needed. Although this transition endorses the ambitious goal to supply greener energy for all it also entails increased demand for the materials that are essential for developing such cleaner energy technologies. Herein several economic and environmental issues are highlighted besides a critical overview regarding each technology. The aim is to raise awareness and provide the reader (a non-specialist in the field) with useful resources regarding the challenges that need to be overcome so that a green hydrogen energy transition and a better life can be fully achieved.
The Cost of Clean Hydrogen from Offshore Wind and Electrolysis
Feb 2024
Publication
The decarbonization of industry heating and transportation is a major challenge for many countries’ energy transition. Hydrogen is a direct low-carbon fuel alternative to natural gas offering a higher flexibility in the range of possible applications yet currently most hydrogen is produced using carbonintensive steam methane reforming due to cost considerations. Therefore this study explores the economics of a prominent low-carbon method of hydrogen production comparing the cost of hydrogen generation from offshore wind farms with and without grid electricity imports to conventional hydrogen production methods. A novel techno-economic model for offshore electrolysis production costs is presented which makes hydrogen production fully dispatchable leveraging geological salt-cavern storage. This model determines the lifetime costs aportioned across the system components as well as the Levelized Cost of Hydrogen (LCOH). Using the United Kingdom as a case study LCOH from offshore wind power is calculated to be €8.68 /kgH2 using alkaline electrolysis (AEL) €10.49 /kgH2 using proton exchange membrane electrolysis (PEMEL) and €10.88 /kgH2 with grid electricity to backup the offshore wind power. A stochastic Monte-Carlo model is used to asses the uncertainty on costs and identify the cost of capital electrolyser and wind farm capital costs and cost of electricity as the most important drivers of LCOH across the different scenarios. Reducing the capital cost to comparative levels observed on today’s wind farms alone could see AEL LCOH fall to €5.32 /kgH2 near competitive with conventional generation methods.
Optimal Design of Hydrogen Delivery Infrastructure for Multi-sector End Uses at Regional Scale
Jul 2024
Publication
Hydrogen is a promising solution for the decarbonisation of several hard-to-abate end uses which are mainly in the industrial and transport sectors. The development of an extensive hydrogen delivery infrastructure is essential to effectively activate and deploy a hydrogen economy connecting production storage and demand. This work adopts a mixed-integer linear programming model to study the cost-optimal design of a future hydrogen infrastructure in presence of cross-sectoral hydrogen uses taking into account spatial and temporal variations multiple production technologies and optimised multi-mode transport and storage. The model is applied to a case study in the region of Sicily in Italy aiming to assess the infrastructural needs to supply the regional demand from transport and industrial sectors and to transfer hydrogen imported from North Africa towards Europe thus accounting for the region’s role as transit point. The analysis integrates multiple production technologies (electrolysis supplied by wind and solar energy steam reforming with carbon capture) and transport options (compressed hydrogen trucks liquid hydrogen trucks pipelines). Results show that the average cost of hydrogen delivered to demand points decreases from 3.75 €/kgH2 to 3.49 €/kgH2 when shifting from mobilityonly to cross-sectoral end uses indicating that the integrated supply chain exploits more efficiently the infrastructural investments. Although pipeline transport emerges as the dominant modality delivery via compressed hydrogen trucks and liquid hydrogen trucks remains relevant even in scenarios characterised by large hydrogen flows as resulting from cross-sectoral demand demonstrating that the system competitiveness is maximised through multi-mode integration.
Large Eddy Simulations of a Hydrogen-Air Explosion in an Obstructed Chamber Using Adaptive Mesh Refinement
Sep 2023
Publication
Following the growing use of hydrogen in the industry gas explosions have become a critical safety issue. Computational Fluid Dynamic (CFD) and in particular the Large Eddy Simulation (LES) approach have already shown their great potential to reproduce such scenarios with high fidelity. However the computational cost of this approach is an obvious limiting factor since fine grid resolutions are often required in the whole computational domain to ensure a correct numerical resolution of the deflagration front all along its propagation. In this context Adaptive Mesh Refinement (AMR) is of great interest to reduce the computational cost as it allows to dynamically refine the mesh throughout the explosion scenario only in regions where Quantities of Interest (QoI) are detected. This study aims to demonstrate the strong potential of AMR for the LES of explosions. The target scenario is a hydrogen-air explosion in the GraVent explosion channel [1]. Using the massively parallel Navier- Stokes compressible solver AVBP a reference simulation is first obtained on a uniform and static unstructured mesh. The comparison with the experiments shows a good agreement in terms of absolute flame front speed overpressure and flow visualisation. Then an AMR simulation is performed targeting the same resolution as the reference simulation only in regions where QoI are detected i.e. inside the reaction zones and vortical structures. Results show that the accuracy of the reference simulation is recovered with AMR for only 12% of its computational cost.
Flame Acceleration in Stoichiometric Methane/Hydrogen/Air Mixtures in an Obstructed Channel: Effect of Hydrogen Blend Ratio
Sep 2023
Publication
Experiments and numerical simulations were conducted to study the flame acceleration (FA) in stoichiometric CH4/H2/air mixtures with various hydrogen blend ratios (i.e. Hbr = 0% 20% 50% 80% and 100%). In the experiments high-speed photography was used to record the FA process. In the calculations the two-dimensional fully-compressible reactive Navier-Stokes equations were solved using a high-order algorithm on a dynamically adapting mesh. The chemical reaction and diffusive transport of the mixtures were described by a calibrated chemical-diffusive model. The numerical predictions are in good agreement with the experimental measurements. The results show that the mechanism of FA is similar in all cases that is the flame is accelerated by the thermal expansion effects various fluid-dynamic instabilities flame-vortex interactions and the interactions of flame with pressure waves. The hydrogen blend ratio has a significant impact on the propagation speed and the morphological evolution of the flame during FA. A larger hydrogen blend ratio leads to a faster FA and the difference in FA mainly depends on the increase of flame surface area and the interactions between flame and pressure waves. In addition as the hydrogen blend ratio increases there are fewer pockets of the unburned funnels in the combustion products when the flame propagates to the end of the channel.
CFD Modelling of Large Scale Liquid Hydrogen Experiments Indoors and Outdoors
Sep 2023
Publication
The use of liquid hydrogen in maritime applications is expected to grow in the coming years in order to meet the decarbonisation goals that EU countries and countries worldwide have set for 2050. In this context The Norwegian Public Roads Administration commissioned large-scale LH2 dispersion and explosion experiments both indoors and outdoors which were conducted by DNG GL in 2019 to better understand safety aspects of LH2 in the maritime sector. In this work the DNV unignited outdoor and indoor tests have been simulated and compared with the experiments with the aim to validate the ADREA-HF Computational Fluid Dynamics (CFD) code in maritime applications. Three tests two outdoors and one indoors were chosen for the validation. The outdoor tests (test 5 and 6) involved liquid hydrogen release vertically downwards and horizontal to simulate an accidental leakage during bunkering. The indoor test (test 9) involved liquid hydrogen release inside a closed room to simulate an accident inside a tank connection space (TCS) connected to a ventilation mast.
The Hydrogen Economy can Reduce Costs of Climate Change Mitigation by up to 22%
May 2024
Publication
In response to the urgent need to mitigate climate change via net-zero targets many nations are renewing their interest in clean hydrogen as a net-zero energy carrier. Although clean hydrogen can be directly used in various sectors for deep decarbonization the relatively low energy density and high production costs have raised doubts as to whether clean hydrogen development is worthwhile. Here we improve on the GCAM model by including a more comprehensive and detailed representation of clean hydrogen production distribution and demand in all sectors of the global economy and simulate 25 scenarios to explore the costeffectiveness of integrating clean hydrogen into the global energy system. We show that due to costly technical obstacles clean hydrogen can only provide 3%–9% of the 2050 global final energy use. Nevertheless clean hydrogen deployment can reduce overall energy decarbonization costs by 15%–22% mainly via powering ‘‘hard-to-electrify’’ sectors that would otherwise face high decarbonization expenditures. Our work provides practical references for cost-effective clean hydrogen planning.
Hydrogen Energy and Fuel Cells: A Vision of our Future
Jan 2003
Publication
This report of the High Level Group for Hydrogen and Fuel Cell Technologies sets out a vision for these technologies in future sustainable energy systems - improving energy security of supply and air quality whilst mitigating climate change. The report recommends actions for developing world-class European hydrogen technologies and fostering their commercial exploitation.
Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review
Aug 2023
Publication
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power which typically include photovoltaic modules a proton exchange membrane (PEM) electrolyzer hydrogen gas storage and PEM fuel cells the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode URFCs function similarly to stand-alone electrolyzers. However in fuel cell mode the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past present and future of URFCs with details on the operating modes of URFCs limitations and technical challenges and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
Merging the Green-H2 Production with Carbon Recycling for Stepping Towards the Carbon Cyclic Economy
Jan 2024
Publication
Hydrogen Economy and Cyclic Economy are advocated together with the use of perennial (solar wind hydro geo-power SWHG) and renewable (biomass) energy sources for defossilizing anthropic activities and mitigating climate change. Each option has intrinsic limits that prevent a stand-alone success in reaching the target. Humans have recycled goods (metals water paper and now plastics) to a different extent since very long time. Recycling carbon (which is already performed at the industrial level in the form of CO2 utilization and with recycling paper and plastics) is a key point for the future. The conversion of CO2 into chemicals and materials is carried out since the late 1800s (Solvay process) and is today performed at scale of 230 Mt/y. It is time to implement on a scale of several Gt/y the conversion of CO2 into energy products possibly mimicking Nature which does not use hydrogen. In the short term a few conditions must be met to make operative on a large scale the production of fuels from recycled-C namely the availability of low-cost: i. abundant pure concentrated streams of CO2 ii. non-fossil primary energy sources and iii. non-fossil-hydrogen. The large-scale production of hydrogen by Methane Steam Reforming with CO2 capture (Blue-H2) seems to be a realistic and sustainable solution. Green-H2 could in principle be produced on a large scale through the electrolysis of water powered by perennial primary sources but hurdles such as the availability of materials for the construction of long-living robust electrochemical cells (membranes electrodes) must be abated for a substantial scale-up with respect to existing capacity. The actual political situation makes difficult to rely on external supplies. Supposed that cheap hydrogen will be available its direct use in energy production can be confronted with the indirect use that implies the hydrogenation of CO2 into fuels (E-fuels) an almost ready technology. The two strategies have both pros and cons and can be integrated. E-Fuels can also represent an option for storing the energy of intermittent sources. In the medium-long term the direct co-processing of CO2 and water via co-electrolysis may avoid the production/transport/ use of hydrogen. In the long term coprocessing of CO2 and H2O to fuels via photochemical or photoelectrochemical processes can become a strategic technology.
Selecting Appropriate Energy Source Options for an Arctic Research Ship
Dec 2023
Publication
Interest in more sustainable energy sources has increased rapidly in the maritime industry and ambitious goals have been set for decreasing ship emissions. All industry stakeholders have reacted to this with different approaches including the optimisation of ship power plants the development of new energy-improving sub-systems for existing solutions or the design of entirely novel power plant concepts employing alternative fuels. This paper assesses the feasibility of different ship energy sources for an icebreaking Arctic research ship. To that end possible energy sources are assessed based on fuel infrastructure availability and operational endurance criteria in the operational area of interest. Promising alternatives are analysed further using the evidence-based Strengths Weaknesses Opportunities and Threats (SWOT) method. Then a more thorough investigation with respect to the required fuel tank space life cycle cost and CO2 emissions is implemented. The results demonstrate that marine diesel oil (MDO) is currently still the most convenient solution due to the space operational range and endurance limitations although it is possible to use liquefied natural gas (LNG) and methanol if the ship’s arrangement is radically redesigned which will also lead to reduced emissions and life cycle costs. The use of liquefied hydrogen as the only energy solution for the considered vessel was excluded from the potential options due to low volumetric energy density and high life cycle and capital costs. Even if it is used with MDO for the investigated ship the reduction in CO2 emissions will not be as significant as for LNG and methanol at a much higher capital and lifecycle cost. The advantage of the proposed approach is that unrealistic alternatives are eliminated in a systematic manner before proceeding to detailed techno-economic analysis facilitating the decision-making and investigation of various options in a more holistic manner.
Recent Progress and Techno-economic Analysis of Liquid Organic Hydrogen Carriers for Australian Renewable Energy Export - A Critical Review
Jan 2024
Publication
Hydrogen as a primary carbon-free energy carrier is confronted by challenges in storage and transportation. However liquid organic hydrogen carriers (LOHCs) present a promising solution for storing and transporting hydrogen at ambient temperature and atmospheric pressure. Unlike circular energy carriers such as methanol ammonia and synthetic natural gas LOHCs do not produce by-products during hydrogen recovery. LOHCs only act as hydrogen carriers and the carriers can also be recycled for reuse. Although there are considerable advantages to LOHCs there are also some drawbacks especially relative to the energy consumption during the dehydrogenation step of the LOHC recycling. This review summarizes the recent progresses in LOHC technologies focusing on catalyst developments process and reactor designs applications and techno-economic assessments (TEA). LOHC technologies can potentially offer significant benefits to Australia especially in terms of hydrogen as an export commodity. LOHCs can help avoid capital costs associated with infrastructure such as transportation vessels while reducing hydrogen loss during transportation such as in the case of liquid hydrogen (LH2). Additionally it minimises CO2 emissions as observed in methane and methanol reforming. Thus it is essential to dedicate more efforts to explore and develop LOHC technologies in the Australian context.
Developing a Generalized Framework for Assessing Safety of Hydrogen Vehicles in Tunnels
Sep 2023
Publication
For widespread adoption of hydrogen fuel cell powered vehicles such vehicles need to be able to provide similar transportation capabilities as their gasoline/diesel powered counterparts. Meeting this requirement in many regions will necessitate access to tunnels. Previous work completed at Sandia National Laboratories provided high-fidelity consequence modeling of hydrogen vehicle tunnel crashes for a specific fire scenario in selected Massachusetts tunnels. To consider additional tunnels a generalized tunnel safety analysis framework is being developed. This framework aims to be broader than specific fire scenarios in specific tunnels allowing it to be applied to a range of tunnel geometries vehicle types and crash scenarios. Initial steps in the development of the generalized framework are reported within this work. Representative tunnel characteristics are derived based on data for tunnels in the U.S. Tunnel dimensions shapes and traffic levels are among the many characteristics reported within the data that can be used to inform crash scenario specification. Various crash scenario parameters are varied using lower-fidelity consequence modeling to quantify the impact on resulting safety hazards for time-dependent releases. These lower-fidelity models consider the unignited dispersion of hydrogen gas the thermal effects of jet fires and potential impacts of overpressures. Different sizes/classes of vehicles are considered as the total amount of hydrogen onboard may greatly affect scenario-specific consequences. The generalized framework will allow safety assessments to be both more agile and consistent when applied to different types of tunnels.
Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen
Nov 2023
Publication
Offshore electricity production mainly by wind turbines and eventually floating PV is expected to increase renewable energy generation and their dispatchability. In this sense a significant part of this offshore electricity would be directly used for hydrogen generation. The integration of offshore energy production into the hydrogen economy is of paramount importance for both the techno-economic viability of offshore energy generation and the hydrogen economy. An analysis of this integration is presented. The analysis includes a discussion about the current state of the art of hydrogen pipelines and subsea cables as well as the storage and bunkering system that is needed on shore to deliver hydrogen and derivatives. This analysis extends the scope of most of the previous works that consider port-to-port transport while we report offshore to port. Such storage and bunkering will allow access to local and continental energy networks as well as to integrate offshore facilities for the delivery of decarbonized fuel for the maritime sector. The results of such state of the art suggest that the main options for the transport of offshore energy for the production of hydrogen and hydrogenated vectors are through direct electricity transport by subsea cables to produce hydrogen onshore or hydrogen transport by subsea pipeline. A parametric analysis of both alternatives focused on cost estimates of each infrastructure (cable/pipeline) and shipping has been carried out versus the total amount of energy to transport and distance to shore. For low capacity (100 GWh/y) an electric subsea cable is the best option. For high-capacity renewable offshore plants (TWh/y) pipelines start to be competitive for distances above approx. 750 km. Cost is highly dependent on the distance to land ranging from 35 to 200 USD/MWh.
Investigation of Hybrid Power-to-hydrogen/Nautral Gas and Hydrogen-to-X System in Cameroon
May 2024
Publication
In Sub-Saharan Africa (SSA) the capacity to generate energy faces significant hurdles. Despite efforts to integrate renewable energy sources and natural gas power plants into the energy portfolio the desired reduction in environmental impact and alleviation of energy poverty remain elusive. Hence exploring a spectrum of hybrid technologies encompassing storage and hydrogen-based solutions is imperative to optimize energy production while mitigating harmful emissions. To exemplify this necessity the 216 MW Kribi gas power plant in Cameroon is the case study. The primary aim is to investigate cutting-edge emissions and energy schemes within the SSA. This paper assessed the minimum complaint load technique and four power-to-fuel options from technical financial and environmental perspectives to assess the viability of a natural gas fuel system powered with hydrogen in a hybrid mode. The system generates hydrogen by using water electrolysis with photovoltaic electricity and gas power plant. This research also assesses process efficiency storage capacity annual costs carbon avoided costs and production prices for various fuels. Results showed that the LCOE from a photovoltaic solar plant is 0.19$/kWh with the Power-to-Hydrogen process (76.2% efficiency) being the most efficient followed by the ammonia and urea processes. The study gives a detailed examination of the hybrid hydrogen natural gas fuel system. According to the annual cost breakdown the primary costs are associated with the acquisition of electrical energy and electrolyser CAPEX and OPEX which account for 95% of total costs. Urea is the cheapest mass fuel. However it costs more in terms of energy. Hydrogen is the most cost-effective source of energy. In terms of energy storage and energy density by volume the methane resulted as the most suitable solution while the ammonia resulted as the best H2 storage medium in terms of kg of H2 per m3 of storage (108 kgH2/m3 ). By substituting the fuel system with 15% H2 the environmental effects are reduced by 1622 tons per year while carbon capture technology gathered 16664 tons of CO2 for methanation and urea operations yielding a total carbon averted cost of 21 $/ton.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Cost Projection of Global Green Hydrogen Production Scenarios
Nov 2023
Publication
A sustainable future hydrogen economy hinges on the development of green hydrogen and the shift away from grey hydrogen but this is highly reliant on reducing production costs which are currently too high for green hydrogen to be competitive. This study predicts the cost trajectory of alkaline and proton exchange membrane (PEM) electrolyzers based on ongoing research and development (R&D) scale effects and experiential learning consequently influencing the levelized cost of hydrogen (LCOH) projections. Electrolyzer capital costs are estimated to drop to 88 USD/kW for alkaline and 60 USD/kW for PEM under an optimistic scenario by 2050 or 388 USD/kW and 286 USD/kW respectively under a pessimistic scenario with PEM potentially dominating the market. Through a combination of declining electrolyzer costs and a levelized cost of electricity (LCOE) the global LCOH of green hydrogen is projected to fall below 5 USD/kgH2 for solar onshore and offshore wind energy sources under both scenarios by 2030. To facilitate a quicker transition the implementation of financial strategies such as additional revenue streams a hydrogen/carbon credit system and an oxygen one (a minimum retail price of 2 USD/kgO2 ) and regulations such as a carbon tax (minimum 100 USD/tonCO2 for 40 USD/MWh electricity) and a contract-for-difference scheme could be pivotal. These initiatives would act as financial catalysts accelerating the transition to a greener hydrogen economy.
Safety Risk and Strategy Analysis of On-Board Hydrogen System of Hydrogen Fuel Cell Vehicles in China
Nov 2023
Publication
Hydrogen fuel cell vehicles (HFCVs) represent an important breakthrough in the hydrogen energy industry. The safe utilization of hydrogen is critical for the sustainable and healthy development of hydrogen fuel cell vehicles. In this study risk factors and preventive measures are proposed for on-board hydrogen systems during the process of transportation storage and use of fuel cell vehicles. The relevant hydrogen safety standards in China are also analyzed and suggestions involving four safety strategies and three safety standards are proposed.
Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
Nov 2023
Publication
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants leading to net-zero carbon emissions by 2050. Hydrogen (H2 ) fuel cells particularly proton exchange membrane fuel cell (PEMFC) and ammonia (NH3 ) are screened out to be the feasible marine gaseous alternative fuels. Green hydrogen can reduce the highest carbon emission which might amount to 100% among those 5 types of hydrogen. The main hurdles to the development of H2 as a marine alternative fuel include its robust and energy-consuming cryogenic storage system highly explosive characteristics economic transportation issues etc. It is anticipated that fossil fuel used for 35% of vehicles such as marine vessels automobiles or airplanes will be replaced with hydrogen fuel in Europe by 2040. Combustible NH3 can be either burned directly or blended with H2 or CH4 to form fuel mixtures. In addition ammonia is an excellent H2 carrier to facilitate its production storage transportation and usage. The replacement of promising alternative fuels can move the marine industry toward decarbonization emissions by 2050.
CFD Simulations of Hydrogen Tank Fuelling: Sensitivity to Turbulence Model and Grid Resolution
Dec 2023
Publication
CFD modelling of compressed hydrogen fuelling provides information on the hydrogen and tank structure temperature dynamics required for onboard storage tank design and fuelling protocol development. This study compares five turbulence models to develop a strategy for costeffective CFD simulations of hydrogen fuelling while maintaining a simulation accuracy acceptable for engineering analysis: RANS models k-ε and RSM; hybrid models SAS and DES; and LES model. Simulations were validated against the fuelling experiment of a Type IV 29 L tank available in the literature. For RANS with wall functions and blended models with near-wall treatment the simulated average hydrogen temperatures deviated from the experiment by 1–3% with CFL ≈ 1–3 and dimensionless wall distance y + ≈ 50–500 in the tank. To provide a similar simulation accuracy the LES modelling approach with near-wall treatment requires mesh with wall distance y + ≈ 2–10 and demonstrates the best-resolved flow field with larger velocity and temperature gradients. LES simulation on this mesh however implies a ca. 60 times longer CPU time compared to the RANS modelling approach and 9 times longer compared to the hybrid models due to the time step limit enforced by the CFL ≈ 1.0 criteria. In all cases the simulated pressure histories and inlet mass flow rates have a difference within 1% while the average heat fluxes and maximum hydrogen temperature show a difference within 10%. Compared to LES the k-ε model tends to underestimate and DES tends to overestimate the temperature gradient inside the tank. The results of RSM and SAS are close to those of LES albeit of 8–9 times faster simulations.
Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Sep 2022
Publication
Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials including organic wastes is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore optimizing the operating parameters such as the initial pH value operating temperature N/C ratio and organic concentration (xylose) plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex expensive and lengthy. The present research used an experimental data asset adaptive network fuzzy inference system (ANFIS) modeling and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Hydrogen Equipment Enclosure Risk Reduction through Earlier Detection of Component Failures
Sep 2023
Publication
Hydrogen component reliability and the hazard associated with failure rates is a critical area of research for the successful implementation and growth of hydrogen technology across the globe. The research team has partnered to quantify system risk reduction through earlier detection of hydrogen component failures. A model of hydrogen dispersion in a hydrogen equipment enclosure has been developed utilizing experimentally quantified hydrogen component leak rates as inputs. This model provides insight into the impact of hydrogen safety sensors and ventilation on the flammable mass within a hydrogen equipment enclosure. This model also demonstrates the change in safety sensor response time due to detector placement under various leak scenarios. The team looks to improve overall hydrogen system safety through an improved understanding of hydrogen component reliability and risk mitigation methods. This collaboration fits under the work program of IEA Hydrogen Task 43 Subtask E Hydrogen System Safety.
Technical and Economic Viability of Underground Hydrogen Storage
Nov 2023
Publication
Considering the mismatch between the renewable source availability and energy demand energy storage is increasingly vital for achieving a net-zero future. The daily/seasonal disparities produce a surplus of energy at specific moments. The question is how can this “excess” energy be stored? One promising solution is hydrogen. Conventional hydrogen storage relies on manufactured vessels. However scaling the technology requires larger volumes to satisfy peak demands enhance the reliability of renewable energies and increase hydrogen reserves for future technology and infrastructure development. The optimal solution may involve leveraging the large volumes of underground reservoirs like salt caverns and aquifers while minimizing the surface area usage and avoiding the manufacturing and safety issues inherent to traditional methods. There is a clear literature gap regarding the critical aspects of underground hydrogen storage (UHS) technology. Thus a comprehensive review of the latest developments is needed to identify these gaps and guide further R&D on the topic. This work provides a better understanding of the current situation of UHS and its future challenges. It reviews the literature published on UHS evaluates the progress in the last decades and discusses ongoing and carried-out projects suggesting that the technology is technically and economically ready for today’s needs.
Flame Acceleration, Detonation Limit and Heat Loss for Hydrogen-Oxygen Mixture at Cryogenic Temperature of 77 K
Sep 2023
Publication
Experiments are performed in hydrogen-oxygen mixtures at the cryogenic temperature of 77 K with the equivalence ratio of 1.5 and 2.0. The optical fibers pressure sensors and the smoked foils are used to record the flame velocity overpressure evolution curve and detonation cells respectively. The 1st and 2nd shock waves are captured and they finally merge to form a stronger precursor shock wave prior to the onset of detonation. The cryogenic temperature will cause the larger expansion ratio which results in the occurrence of strong flame acceleration. The stuttering mode the galloping mode and the deflagration mode are observed when the initial pressure decreases from 0.50 atm to 0.20 atm with the equivalence ratio of 1.5 and the detonation limit is within 0.25-0.30 atm. The heat loss effect on the detonation limit is analysed. In addition the regularity of detonation cell is investigated and the larger post-shock specific heat ratio !"" and the lower normalized activation energy # at lower initial pressure will cause the more regular detonation cell. Also the detonation cell width is predicted by a model of = ($) ⋅ Δ# and the prediction results are mainly consistent with the experimental results.
A Review of Hydrogen-based Hybrid Renewable Energy Systems: Simulation and Optimization with Artificial Intelligence
Nov 2021
Publication
With the massive use of traditional fossil fuels greenhouse gas emissions are increasing and environmental pollution is becoming an increasingly serious problem which led to an imminent energy transition. Therefore the development and application of renewable energy are particularly important. This paper reviews a wide range of issues associated with hybrid renewable energy systems (HRESs). The issues concerning system configurations energy storage options simulation and optimization with artificial intelligence are discussed in detail. Storage technology options are introduced for stand-alone (off-grid) and grid-connected (on-grid) HRESs. Different optimization methodologies including classical techniques intelligent techniques hybrid techniques and software tools for sizing system components are presented. Besides the artificial intelligence methods for optimizing the solar/wind HRESs are discussed in detail.
Energy Storage in Urban Areas: The Role of Energy Storage Facilities, a Review
Feb 2024
Publication
Positive Energy Districts can be defined as connected urban areas or energy-efficient and flexible buildings which emit zero greenhouse gases and manage surpluses of renewable energy production. Energy storage is crucial for providing flexibility and supporting renewable energy integration into the energy system. It can balance centralized and distributed energy generation while contributing to energy security. Energy storage can respond to supplement demand provide flexible generation and complement grid development. Photovoltaics and wind turbines together with solar thermal systems and biomass are widely used to generate electricity and heating respectively coupled with energy system storage facilities for electricity (i.e. batteries) or heat storage using latent or sensible heat. Energy storage technologies are crucial in modern grids and able to avoid peak charges by ensuring the reliability and efficiency of energy supply while supporting a growing transition to nondepletable power sources. This work aims to broaden the scientific and practical understanding of energy storage in urban areas in order to explore the flexibility potential in adopting feasible solutions at district scale where exploiting the space and resource-saving systems. The main objective is to present and critically discuss the available options for energy storage that can be used in urban areas to collect and distribute stored energy. The concerns regarding the installation and use of Energy Storage Systems are analyzed by referring to regulations and technical and environmental requirements as part of broader distribution systems or as separate parts. Electricity heat energy and hydrogen are the most favorable types of storage. However most of them need new regulations technological improvement and dissemination of knowledge to all people with the aim of better understanding the benefits provided.
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
No more items...