- Home
- A-Z Publications
- Publications
Publications
Evaluation of Green and Blue Hydrogen Production Potential in Saudi Arabia
Sep 2024
Publication
The Kingdom of Saudi Arabia has rich renewable energy resources specifically wind and solar in addition to geothermal beside massive natural gas reserves. This paper investigates the potential of both green and blue hydrogen production for five selected cities in Saudi Arabia. To accomplish the said objective a techno-economic model is formulated. Four renewable energy scenarios are evaluated for a total of 1.9 GW installed capacity to reveal the best scenario of Green Hydrogen Production (GHP) in each city. Also Blue Hydrogen Production (BHP) is investigated for three cases of Steam Methane Reforming (SMR) with different percentages of carbon capture. The economic analysis for both GHP and BHP is performed by calculating the Levelized Cost of Hydrogen (LCOH) and cash flow. The LCOH for GHP range for all cities ($3.27/kg -$12.17/kg)) with the lowest LCOH is found for NEOM city (50% PV and 50% wind) ($3.27/kg). LCOH for BHP are $0.534/kg $0.647/kg and $0.897/kg for SMR wo CCS/U SMR 55% CCS/U and SMR 90% CCS/U respectively.
Optimizing Green Hydrogen Production from Wind and Solar for Hard-to-abate Industrial Sectors Across Multiple Sites in Europe
Jul 2024
Publication
This article analyzes a power-to-hydrogen system designed to provide high-temperature heat to hard-to-abate industries. We leverage on a geospatial analysis for wind and solar availability and different industrial demand profiles with the aim to identify the ideal sizing of plant components and the resulting Levelized Cost of Hydrogen (LCOH). We assess the carbon intensity of the produced hydrogen especially when grid electricity is utilized. A methodology is developed to size and optimize the PV and wind energy capacity the electrolyzer unit and hybrid storage by combining compressed hydrogen storage with lithium-ion batteries. The hydrogen demand profile is generated synthetically thus allowing different industrial consumption profiles to be investigated. The LCOH in a baseline scenario ranges from 3.5 to 8.9 €/kg with the lowest values in wind-rich climates. Solar PV only plays a role in locations with high PV full-load hours. It was found that optimal hydrogen storage can cover the users’ demand for 2–3 days. Most of the considered scenarios comply with the emission intensity thresholds set by the EU. A sensitivity analysis reveals that a lower variability of the demand profile is associated with cost savings. An ideally constant demand profile results in a cost reduction of approximately 11 %.
Sustainable Green Energy Transition in Saudia Arabia: Characterizing Policy Framework, Interrelations and Future Research Directions
Jun 2024
Publication
By 2060 the Kingdom of Saudi Arabia (KSA) aims to achieve net zero greenhouse gas (GHG) emissions targeting 50% renewable energy and reducing 278 million tonnes of CO2 equivalent annually by 2030 under Vision 2030. This ambitious roadmap focuses on economic diversification global engagement and enhanced quality of life. The electricity sector with a 90 GW installed capacity as of 2020 is central to decarbonization aiming for a 55% reduction in emissions by 2030. Saudi Energy Efficiency Centre’s Energy Efficiency Action Plan aims to reduce power intensity by 30% by 2030 while the NEOM project showcases a 4 GW green hydrogen facility reflecting the country’s commitments to sustainability and technological innovation. Despite being the largest oil producer and user Saudi Arabia must align with international CO2 emission reduction targets. Currently there is no state-of-the-art energy policy framework to guide a sustainable energy transition. In the academic literature there is also lack of effort in developing comprehensive energy policy framework. This study provides a thorough and comprehensive analysis of the entire energy industry spanning from the stage of production to consumption incorporating sustainability factors into the wider discussion on energy policy. It establishes a conceptual framework for the energy policy of Saudi Arabia that corresponds with Vision 2030. A total of hundred documents (e.g. 25 original articles and 75 industry reports) were retrieved from Google Scholar Web of Science Core Collection Database and Google Search and then analyzed. Results showed that for advancing the green energy transition areas such as strategies for regional and cross-sectoral collaboration adoption of international models human capital development and public engagement technological innovation and research; and resource conservation environmental protection and climate change should move forward exclusively from an energy policy perspective. This article's main contribution is developing a comprehensive and conceptual policy framework for Saudi Arabia's sustainable green energy transition aligned with Vision 2030. The framework integrates social economic and environmental criteria and provides critical policy implications and research directions for advancing energy policy and sustainable practices in the country.
A Systematic Comparison of the Energy and Emissions Intensity of Hydrogen Production Pathways in the United Kingdom
Sep 2024
Publication
Meeting climate targets requires profound transformations in the energy system. Most energy uses should be electrified but where this is not feasible hydrogen can be part of the solution. However 98% of global hydrogen production involves greenhouse gas emissions with an average of 12 kg CO2e/kg H2. Therefore new hydrogen production pathways are needed in order to make hydrogen production compatible with climate targets. In this work we fill this gap by systematically comparing the energy and emissions intensity of 173 hydrogen production pathways suitable for the UK. Scenarios include onshore and offshore pathways and the use of repurposed infrastructure. Unlike fossil-fuel based pathways the results show that electrolytic hydrogen powered by fixed offshore wind could align with proposed emissions standards either onshore or offshore. However the embodied and fugitive emissions are important to consider for electrolytic pathways as they result in 10–50% of the total emissions intensity.
Hydrogen Engine Conversion Aspects
Oct 2024
Publication
The transition from traditional petrol-based combustion engines to hydrogen-powered systems represents a promising advancement in sustainable and clean energy solutions. This review paper explores the intricacies of converting a conventional internal combustion engine to operate on hydrogen gas. Key topics include the performance limitations of hydrogen engines the role of water injection in combustion modulation and the investigation of direct injection and port injection systems. This review also examines challenges associated with lean and rich mixtures risks of backfire and pre-ignition and the conversion’s overall impact on engine performance and longevity. Additionally this paper discusses hydrogen lubrication to prevent mechanical wear and addresses emission-related considerations.
Local Energy Community to Support Hydrogen Production and Network Flexibility
Jul 2024
Publication
This paper deals with the optimal scheduling of the resources of a renewable energy community whose coordination is aimed at providing flexibility services to the electrical distribution network. The available resources are renewable generation units battery energy storage systems dispatchable loads and power-to-hydrogen systems. The main purposes behind the proposed strategy are enhancement of self-consumption and hydrogen production from local resources and the maximization of the economic benefits derived from both the selling of hydrogen and the subsidies given to the community for the shared energy. The proposed approach is formulated as an economic problem accounting for the perspectives of both community members and the distribution system operator. In more detail a mixed-integer constrained non-linear optimization problem is formulated. Technical constraints related to the resources and the power flows in the electrical grid are considered. Numerical applications allow for verifying the effectiveness of the procedure. The results show that it is possible to increase self-consumption and the production of green hydrogen while providing flexibility services through the exploitation of community resources in terms of active and reactive power support. More specifically the application of the proposed strategy to different case studies showed that daily revenues of up to EUR 1000 for each MW of renewable energy generation installed can be obtained. This value includes the benefit obtained thanks to the provision of flexibility services which contribute about 58% of the total.
Design of a Hydrogen Aircraft for Zero Persistent Contrails
Jul 2023
Publication
Contrails are responsible for a significant proportion of aviation’s climate impact. This paper uses data from the European Centre for Medium-Range Weather Forecasts to identify the altitudes and latitudes where formed contrails will not persist. This reveals that long-lived contrails may be prevented by flying lower in equatorial regions and higher in non-equatorial regions. Subsequently it is found that the lighter fuel and reduced seating capacity of hydrogen-powered aircraft lead to a reduced aircraft weight which increases the optimal operating altitude by about 2 km. In non-equatorial regions this would lift the aircraft’s cruise point into the region where long-lived contrails do not persist unlocking hydrogen-powered low-contrails operation. The baseline aircraft considered is an A320 retrofitted with in-fuselage hydrogen tanks. The impacts of the higher-altitude cruise on fuel burn and the benefits unlocked by optimizing the wing geometry for this altitude are estimated using a drag model based on theory proposed by Cavcar Lock and Mason and verified against existing aircraft. The weight penalty associated with optimizing wing geometry for this altitude is estimated using Torenbeek’s correlation. It is found that thinner wings with higher aspect ratios are particularly suited to this high-altitude operation and are enabled by the relaxation of the requirement to store fuel in the wings. An example aircraft design for the non-equatorial region is provided which cruises at a 14 km altitude at Mach 0.75 with a less than 1% average probability of generating long-lived contrails when operating at latitudes more than 35◦ from the equator. Compared to the A320 this concept design is estimated to have a 20% greater cruise lift–drag ratio due to the 33% thinner wings with a 50% larger aspect ratio enabling just 5% more energy use per passenger-km despite fitting 40% fewer seats.
Fuel Cell-based Hybrid Electric Vehicles: An Integrated Review of Current Status, Key Challenges, Recommended Policies, and Future Prospects
Aug 2023
Publication
Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) whose exhaust pipes emit nothing are examples of zero-emission automobiles. FCEVs should be considered an additional technology that will help battery-powered vehicles to reach the aspirational goal of zero-emissions electric mobility particularly in situations where the customers demand for longer driving ranges and where using batteries would be insufficient due to bulky battery trays and time-consuming recharging. This study stipulates a current evaluation of the status of development and challenges related to (i) research gap to promote fuel-cell based HEVs (ii) key barriers of fuel-cell based HEVs (iii) advancement of electric mobility and their power drive (iv) electrochemistry of fuel cell technology for FCEVs (v) power transformation topologies communication protocols and advanced charging methods (vi) recommendations and future prospects of fuel-cell HEVs and (vii) current research trends of EVs and FCEVs. This article discusses key challenges with fuel cell electric mobility such as low fuel cell performance cold starts problems with hydrogen storage cost-reduction safety concerns and traction systems. The operating characteristics and applications of several fuel-cell technologies are investigated for FCEVs and FCHEVs. An overview of the fuel cell is provided which serves as the primary source of energy for FCHEVs along with comparisons and its electrochemistry. The study of power transformation topologies communication protocols and enhanced charging techniques for FCHEVs has been studied analytically. Recent technology advancements and the prospects for FCHEVs are discussed in order to influence the future vehicle market and to attain the aim of zero emissions.
Optimal Scheduling of an Electric-Hydrogen-Integrated Energy System Considering Virtual Energy Storage
Jan 2024
Publication
In this paper a two-layer optimization approach is proposed to facilitate the multi-energy complementarity and coupling and optimize the system configuration in an electric-hydrogen-integrated energy system (EH-IES). Firstly an EH-IES with virtual energy storage is proposed to reduce the cost of physical energy storage equipment. Secondly a two-layer optimal allocation method is proposed under a multi-timescale strategy to examine the comprehensive evaluation index of environmental protection and economy. The upper layer utilizes the NSGA-II multi-objective optimization method for system capacity allocation while the lower layer performs economic dispatch at the lowest cost. Ultimately the output includes the results of the equipment capacity allocation of the EH-IES that satisfies the reliability constraint interval and the daily scheduling results of the equipment. The results demonstrate that the electric-hydrogen-integrated energy system with the coupling of multiple energy equipment not only enhances the utilization of renewable energy sources but also reduces the usage of fossil energy and improves the system’s reliability.
Offshore Green Hydrogen Production from Wind Energy: Critical Review and Perspective
Feb 2024
Publication
Hydrogen is envisaged to play a major role in decarbonizing our future energy systems. Hydrogen is ideal for storing renewable energy over longer durations strengthening energy security. It can be used to provide electricity renewable heat power long-haul transport shipping and aviation and in decarbonizing several industrial processes. The cost of green hydrogen produced from renewable via electrolysis is dominated by the cost of electricity used. Operating electrolyzers only during periods of low electricity prices will limit production capacity and underutilize high investment costs in electrolyzer plants. Hydrogen production from deep offshore wind energy is a promising solution to unlock affordable electrolytic hydrogen at scale. Deep offshore locations can result in an increased capacity factor of generated wind power to 60–70% 4–5 times that of onshore locations. Dedicated wind farms for electrolysis can use the majority >80% of the produced energy to generate economical hydrogen. In some scenarios hydrogen can be the optimal carrier to transport the generated energy onshore. This review discusses the opportunities and challenges in offshore hydrogen production using electrolysis from wind energy and seawater. This includes the impact of site selection size of the electrolyzer and direct use of seawater without deionization. The review compares overall electrolysis system efficiency cost and lifetime when operating with direct seawater feed and deionized water feed using reverse osmosis and flash evaporation systems. In the short to medium term it is advised to install a reverse osmosis plant with an ion exchanger to feed the electrolysis instead of using seawater directly.
Green Hydrogen Production and Liquefaction Using Offshore Wind Power, Liquid Air, and LNG Cold Energy
Sep 2023
Publication
Coastal regions have abundant off-shore wind energy resources and surrounding areas have large-scale liquefied natural gas (LNG) receiving stations. From the engineering perspectives there are limitations in unstable off-shore wind energy and fluctuating LNG loads. This article offers a new energy scheme to combine these 2 energy units which uses surplus wind energy to produce hydrogen and use LNG cold energy to liquefy and store hydrogen. In addition in order to improve the efficiency of utilizing LNG cold energy and reduce electricity consumption for liquid hydrogen (LH2) production at coastal regions this article introduces the liquid air energy storage (LAES) technology as the intermediate stage which can stably store the cold energy from LNG gasification. A new scheme for LNG-LAES-LH2 hybrid LH2 production is built. The case study is based on a real LNG receiving station at Hainan province China and this article presents the design of hydrogen production/liquefaction process and carries out the optimizations at key nodes and proves the feasibility using specific energy consumption and exergy analysis. In a 100 MW system the liquid air storage round-trip efficiency is 71.0% and the specific energy consumption is 0.189 kWh/kg and the liquid hydrogen specific energy consumption is 7.87 kWh/kg and the exergy efficiency is 46.44%. Meanwhile the corresponding techno-economic model is built and for a LNGLAES-LH2 system with LH2 daily production 140.4 tons the shortest dynamic payback period is 9.56 years. Overall this novel hybrid energy scheme can produce green hydrogen using a more efficient and economical method and also can make full use of surplus off-shore wind energy and coastal LNG cold energy.
Toward Green Steel: Modelling and Environmental Economic Analysis of Iron Direct Reduction with Different Reducing Gases
Sep 2023
Publication
The objective of the paper is to simulate the whole steelmaking process cycle based on Direct Reduced Iron and Electric Arc Furnace technologies by modeling for the first time the reduction furnace based on kinetic approach to be used as a basis for the environmental and techno-economic plant analysis by adopting different reducing gases. In addition the impact of carbon capture section is discussed. A complete profitability analysis has been conducted for the first time adopting a Monte Carlo simulation approach.<br/>In detail the use of syngas from methane reforming syngas and hydrogen from gasification of municipal solid waste and green hydrogen from water electrolysis are analyzed. The results show that the Direct Reduced Iron process with methane can reduce CO2 emissions by more than half compared to the blast furnace based-cycle and with the adoption of carbon capture greenhouse gas emissions can be reduced by an additional 40%. The use of carbon capture by amine scrubbing has a limited economic disadvantage compared to the scenario without it becoming profitable once carbon tax is included in the analysis. However it is with the use of green hydrogen from electrolyzer that greenhouse gas emissions can be cut down almost completely. To have an environmental benefit compared with the methane-based Direct Reduced Iron process the green hydrogen plant must operate for at least 5136 h per year (64.2% of the plant's annual operating hours) on renewable energy.<br/>In addition the use of syngas and separated hydrogen from municipal solid waste gasification is evaluated demonstrating its possible use with no negative effects on the quality of produced steel. The results show that hydrogen use from waste gasification is more economic with respect to green hydrogen from electrolysis but from the environmental viewpoint the latter results the best alternative. Comparing the use of hydrogen and syngas from waste gasification it can be stated that the use of the former reducing gas results preferable from both the economic and environmental viewpoint.
Effects of Hydrogen, Methane, and Their Blends on Rapid-Filling Process of High-Pressure Composite Tank
Feb 2024
Publication
Alternative fuels such as hydrogen compressed natural gas and liquefied natural gas are considered as feasible energy carriers. Selected positive factors from the EU climate and energy policy on achieving climate neutrality by 2050 highlighted the need for the gradual expansion of the infrastructure for alternative fuel. In this research continuity equations and the first and second laws of thermodynamics were used to develop a theoretical model to explore the impact of hydrogen and natural gas on both the filling process and the ultimate in-cylinder conditions of a type IV composite cylinder (20 MPa for CNG 35 MPa and 70 MPa for hydrogen). A composite tank was considered an adiabatic system. Within this study based on the GERG-2008 equation of state a thermodynamic model was developed to compare and determine the influence of (i) hydrogen and (ii) natural gas on the selected thermodynamic parameters during the fast-filling process. The obtained results show that the cylinder-filling time depending on the cylinder capacity is approximately 36–37% shorter for pure hydrogen compared to pure methane and the maximum energy stored in the storage tank for pure hydrogen is approximately 28% lower compared to methane whereas the total entropy generation for pure hydrogen is approximately 52% higher compared to pure methane.
Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources
Jul 2024
Publication
With the increasingly severe climate change situation and the trend of green energy transformation the development and utilization of hydrogen energy has attracted extensive attention from government industry and academia in the past few decades. Renewable energy electrolysis stands out as one of the most promising hydrogen production routes enabling the storage of intermittent renewable energy power generation and supplying green fuel to various sectors. This article reviews the evolution and development of green hydrogen policies in the United States the European Union Japan and China and then summarizes the key technological progress of renewable energy electrolysis while introducing the progress of hydrogen production from wind and photovoltaic power generation. Furthermore the environmental social and economic benefits of different hydrogen production routes are analyzed and compared. Finally it provides a prospective analysis of the potential impact of renewable energy electrolysis on the global energy landscape and outlines key areas for future research and development.
The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading
May 2024
Publication
A key building block of the European Green Deal is the development of a hydrogen commodity market which requires a suitable hydrogen market design and the timely introduction of related policy measures. Using exploratory interviews with five expert groups we contribute to this novel research field by outlining the core market design criteria and proposing suitable regulations for the future European hydrogen market. We identify detailed recommendations along three core market design focus areas: Market development policy measures infrastructure regulations as well as hydrogen and certificate trading. Our findings provide an across-industry view of current policy-related key challenges in the hydrogen commodity market development and mitigation approaches. We therefore support policymakers within the EU in the ongoing detailing of their regulatory hydrogen and green energy packages. Further we promote hydrogen market development by assisting current and future industry players in finding a common understanding of the future hydrogen market design.
Study on Liquid Hydrogen Leakage and Diffusion Behavior in a Hydrogen Production Station
Jun 2024
Publication
Liquid hydrogen storage is an important way of hydrogen storage and transportation which greatly improves the storage and transportation efficiency due to the high energy density but at the same time brings new safety hazards. In this study the liquid hydrogen leakage in the storage area of a hydrogen production station is numerically simulated. The effects of ambient wind direction wind speed leakage mass flow rate and the mass fraction of gas phase at the leakage port on the diffusion behavior of the liquid hydrogen leakage were investigated. The results show that the ambient wind direction directly determines the direction of liquid hydrogen leakage diffusion. The wind speed significantly affects the diffusion distance. When the wind speed is 6 m/s the diffusion distance of the flammable hydrogen cloud reaches 40.08 m which is 2.63 times that under windless conditions. The liquid hydrogen leakage mass flow rate and the mass fraction of the gas phase have a greater effect on the volume of the flammable hydrogen cloud. As the leakage mass flow rate increased from 5.15 kg/s to 10 kg/s the flammable hydrogen cloud volume increased from 5734.31 m3 to 10305.5 m3 . The installation of a barrier wall in front of the leakage port can limit the horizontal diffusion of the flammable hydrogen cloud elevate the diffusion height and effectively reduce the volume of the flammable hydrogen cloud. This study can provide theoretical support for the construction and operation of hydrogen production stations.
Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions
Feb 2024
Publication
One of the key factors of the current energy transition is the use of hydrogen (H2 ) as fuel in energy transformation technologies. This fuel has the advantage of being produced from the most primary forms of energy and has the potential to reduce carbon dioxide (CO2 ) emissions. In recent years hydrogen or hydrogen-rich mixtures in internal combustion engines (ICEs) have gained popularity with numerous reports documenting their use in spark ignition (SI) and compression ignition (CI) engines. Homogeneous charge compression ignition (HCCI) engines have the potential for substantial reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions and the use of hydrogen along with this kind of combustion could substantially reduce CO2 emissions. However there have been few reports using hydrogen in HCCI engines with most studies limited to evaluating technical feasibility combustion characteristics engine performance and emissions in laboratory settings at sea level. This paper presents a study of HCCI combustion using hydrogen in a stationary air-cooled Lombardini 25 LD 425-2 modified diesel engine located at 1495 m above sea level. An experimental phase was conducted to determine the intake temperature requirements and equivalence ratios for stable HCCI combustion. These results were compared with previous research carried out at sea level. To the best knowledge of the authors this is the first report on the combustion and operational limits for an HCCI engine fueled with hydrogen under the mentioned specific conditions. Equivalence ratios between 0.21 and 0.28 and intake temperatures between 188 ◦C and 235 ◦C effectively achieved the HCCI combustion. These temperature values were on average 100 ◦C higher than those reported in previous studies. The maximum value for the indicated mean effective pressure (IMEPn) was 1.75 bar and the maximum thermal efficiency (ITEn) was 34.5%. The achieved results are important for the design and implementation of HCCI engines running solely on hydrogen in developing countries located at high altitudes above sea level.
OIES Podcast - Aviation Fuels and the Potential of Hydrogen
Feb 2024
Publication
In the latest OIES podcast from the Hydrogen Programme James Henderson talks to Abdurahman Alsulaiman about his latest paper entitled “Navigating Turbulence: Hydrogen’s Role in the Decarbonisation of the Aviation Sector.” In the podcast we discuss the current balance of fuels in the aviation sector the importance of increasing efficiency of aero-engines and the impact of increasing passenger miles travelled. The podcast then considers different decarbonisation options for the sector focussing on a change of engine technology to allow the use of alternative fuels such as hydrogen or electricity but also looking at the potential for hydrogen to play an important role in the development of Sustainable Aviation Fuels (SAFs) for use with current engine technology. We also look at Low Carbon Aviation Fuels which are essentially existing fuels derived from a significantly decarbonised supply chain and assess whether they have an important role to play as the aviation sector targets a net zero outcome.
The podcast can be found on their website.
The podcast can be found on their website.
‘Greening’ an Oil Exporting Country: A Hydrogen, Wind and Gas Turbine Case Study
Feb 2024
Publication
In the quest for achieving decarbonisation it is essential for different sectors of the economy to collaborate and invest significantly. This study presents an innovative approach that merges technological insights with philosophical considerations at a national scale with the intention of shaping the national policy and practice. The aim of this research is to assist in formulating decarbonisation strategies for intricate economies. Libya a major oil exporter that can diversify its energy revenue sources is used as the case study. However the principles can be applied to develop decarbonisation strategies across the globe. The decarbonisation framework evaluated in this study encompasses wind-based renewable electricity hydrogen and gas turbine combined cycles. A comprehensive set of both official and unofficial national data was assembled integrated and analysed to conduct this study. The developed analytical model considers a variety of factors including consumption in different sectors geographical data weather patterns wind potential and consumption trends amongst others. When gaps and inconsistencies were encountered reasonable assumptions and projections were used to bridge them. This model is seen as a valuable foundation for developing replacement scenarios that can realistically guide production and user engagement towards decarbonisation. The aim of this model is to maintain the advantages of the current energy consumption level assuming a 2% growth rate and to assess changes in energy consumption in a fully green economy. While some level of speculation is present in the results important qualitative and quantitative insights emerge with the key takeaway being the use of hydrogen and the anticipated considerable increase in electricity demand. Two scenarios were evaluated: achieving energy self-sufficiency and replacing current oil exports with hydrogen exports on an energy content basis. This study offers for the first time a quantitative perspective on the wind-based infrastructure needs resulting from the evaluation of the two scenarios. In the first scenario energy requirements were based on replacing fossil fuels with renewable sources. In contrast the second scenario included maintaining energy exports at levels like the past substituting oil with hydrogen. The findings clearly demonstrate that this transition will demand great changes and substantial investments. The primary requirements identified are 20529 or 34199 km2 of land for wind turbine installations (for self-sufficiency and exports) and 44 single-shaft 600 MW combined-cycle hydrogen-fired gas turbines. This foundational analysis represents the commencement of the research investment and political agenda regarding the journey to achieving decarbonisation for a country.
Levelized Cost of Biohydrogen from Steam Reforming of Biomethane with Carbon Capture and Storage (Golden Hydrogen)—Application to Spain
Feb 2024
Publication
The production of biohydrogen with negative CO2 emissions through the steam methane reforming of biomethane coupled with carbon capture and storage represents a promising technology particularly for industries that are difficult to electrify. In spite of the maturity of this technology which is currently employed in the production of grey and blue hydrogen a detailed cost model that considers the entire supply chain is lacking in the literature. This study addresses this gap by applying correlations derived from actual facilities producing grey and blue hydrogen to calculate the CAPEX while exploring various feedstock combinations for biogas generation to assess the OPEX. The analysis also includes logistic aspects such as decentralised biogas production and the transportation and storage of CO2 . The levelized cost of golden hydrogen is estimated to range from EUR 1.84 to 2.88/kg compared to EUR 1.47/kg for grey hydrogen and EUR 1.93/kg for blue hydrogen assuming a natural gas cost of EUR 25/MWh and excluding the CO2 tax. This range increases to between 3.84 and 2.92 with a natural gas cost of EUR 40/MWh with the inclusion of the CO2 tax. A comparison with conventional green hydrogen is performed highlighting both prices and potential thereby offering valuable information for decision-making.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
Environmental-economic Sustainability of Hydrogen and Ammonia Fuels for Short Sea Shipping Operations
Jan 2024
Publication
Alternative fuels of low or zero carbon content can decarbonise the shipping operations. This study aims at assessing the lifetime environmental-economic sustainability of ammonia and hydrogen as alternatives to diesel fuel for short sea shipping cargo vessels. A model is employed to calculate key performance indicators representing the lifetime financial sustainability and environmental footprint of the case ship using a realistic operating profile and considering several scenarios with different diesel substitution rates. Scenarios meeting the carbon emissions reduction targets set by the International Maritime Organisation (IMO) for 2030 are identified whereas policy measures for their implementation including the emissions taxation are discussed. The derived results demonstrate that the future implementation of carbon emissions taxation in the ranges of 136–965 €/t for hydrogen and 356–2647 €/t for ammonia can support these fuels financial sustainability in shipping. This study provides insights for adopting zero-carbon fuels and as such impacts the de-risking of shipping decarbonisation.
Experimental Investigation of Hydrogen-Air Flame Propagation in Fire Extinguishing Foam
Sep 2023
Publication
An important element of modern firefighting is sometimes the use of foam. After the use of extinguishing foam on vehicles or machinery operated by compressed gases it is conceivable that masses of foam were enriched by escaping fuel gas. Furthermore new foam creation enriched with a high level of fuel gas from the deposed foam solution becomes theoretically possible. The aim of this study was to carry out basic experimental investigations on the combustion of water-based H2/air foam. Ignition tests were carried out in a transparent and vertically oriented cylindrical tube (d = 0.09 m; 1.5 m length) and a rectangular thin layer channel (0.02 m x 0.2 m; 2 m length). Additionally results from larger scale tests performed inside a pool (0.30 m x 1 m x 2 m) are presented. All ducts are semi-confined and a foam generator fills the ducts from below with the defined foam. The foams vary in type and concentration of the foaming agent and hydrogen concentration. The expansion ratio of the combustible foam is in the range of 20 to 50 and the investigated H2-concentrations vary from 8 to 70 % H2 in air. High-speed imaging is used to observe the combustion and determine flame velocities. The study shows that foam is flammable over a wide range of H2-concentrations from 9 to 65 % H2 in air. For certain H2/air-mixtures an abrupt flame acceleration is observed. The velocity of combustion increases rapidly by an order of magnitude and reaches velocities of up to 80 m/s.
Numerical Simulation of the Transport and the Thermodynamic Properties of Imported Natural Gas Inected with Hydrogen in the Manifold
Nov 2023
Publication
Blending hydrogen with natural gas (NG) is an efficient method for transporting hydrogen on a large scale at a low cost. The manifold at the NG initial station is an important piece of equipment that enables the blending of hydrogen with NG. However there are differences in the components and component contents of imported NG from different countries. The components of hydrogen-blended NG can affect the safety and efficiency of transportation through pipeline systems. Therefore numerical simulations were performed to investigate the blending process and changes in the thermodynamic properties of four imported NGs and hydrogen in the manifold. The higher the heavy hydrocarbon content in the imported NG the longer the distance required for the gas to mix uniformly with hydrogen in the pipeline. Hydrogen blending reduces the temperature and density of NG. The gas composition is the main factor affecting the molar calorific value of a gas mixture and hydrogen blending reduces the molar calorific value of NG. The larger the content of high-molar calorific components in the imported NG the higher the molar calorific value of the gas after hydrogen blending. Increasing both the temperature and hydrogen mixing ratio reduces the Joule-Thomson coefficient of the hydrogen-blended NG. The results of this study provide technical references for the transport of hydrogen-blended NG.
An Overview of Hydrogen’s Application for Energy Purposes in Lithuania
Nov 2023
Publication
Hydrogen has emerged as a promising climate-neutral energy carrier able to facilitate the processes of the European Union (EU) energy transition. Green hydrogen production through the electrolysis process has gained increasing interest recently for application in various sectors of the economy. As a result of the increasing renewable energy developments in the EU hydrogen is seen as one of the most promising solutions for energy storage challenges; therefore the leading countries in the energy sector are heavily investing in research of the technical obstacles for hydrogen applications and assessment of the current hydrogen market which in turn leads to the acceleration of the upscaling of hydrogen production. The main objective of this article was to provide a comprehensive overview of various green hydrogen production transportation and industrial application technologies and challenges in Europe with a separate analysis of the situation in Lithuania. Various water electrolysis technologies and their production costs are investigated along with recent developments in storage and transportation solutions. In addition the performances and limitations of electrochemical processes are presented and analysed research trends in the field are discussed and possible solutions for performance and cost improvements are overviewed. This paper proposes a discussion of perspectives in terms of future applications and research directions.
Some Inconvenient Truths about Decarbonization, the Hydrogen Economy, and Power to X Technologies
May 2024
Publication
The decarbonization of the energy sector has been a subject of research and of political discussions for several decades gaining significant attention in the last years. It is commonly acknowledged that the most obvious way to achieve decarbonization is the use of renewable energy sources. Within the context of the energy sector decarbonization many mainly industrialized countries recently started developing national plans to establish a hydrogen-based economy in the very near future. The plans for green hydrogen initially try to (a) target sectors that are difficult to decarbonize and (b) address issues related to the storage and transportation of CO2-free energy. To achieve almost complete decarbonization electric power must be generated exclusively from renewable sources. In so-called Power-to-X (PtX) technologies green hydrogen is generated from electricity and subsequently converted to another energy carrier which can be further stored transported and used. In PtX X stands for example for liquid hydrogen methanol or ammonia. The challenges associated with decarbonization include those associated with (a) the expansion of renewable energies (e.g. high capital demand political and social issues) (b) the production transportation and storage of hydrogen and the energy carriers denoted by X in PtX (e.g. high cost and low overall efficiency) and (c) the expected significant increase in the demand for electrical energy. The paper discusses whether and under which conditions the current national and international hydrogen plans of many industrialized countries could lead to a maximization of decarbonization in the world. It concludes that in general as long as the conditions for generating large excess amounts of green electricity are not met the quick establishment of a hydrogen economy could not only be very expensive but also counterproductive to the worldwide decarbonization efforts.
Hydrogen Station Prognostics and Health Monitoring Model
Aug 2023
Publication
Hydrogen fuel has shown promise as a clean alternative fuel aiding in the reduction of fossil fuel dependence within the transportation sector. However hydrogen refueling stations and infrastructure remains a barrier and are a prerequisite for consumer adoption of low-cost and low-emission fuel cell electric vehicles (FCEVs). The costs for FCEV fueling include both station capital costs and operation and maintenance (O&M) costs. Contributing to these O&M costs unscheduled maintenance is presently more costly and more frequent than for similar gasoline fueling infrastructure and is asserted to be a limiting factor in achieving FCEV customer acceptance and cost parity. Unscheduled maintenance leads to longer station downtime therefore causing an increase in missed fueling opportunities which forces customers to seek refueling at other operable stations that may be significantly farther away. This research proposes a framework for a hydrogen station prognostics health monitoring (H2S PHM) model that can minimize unexpected downtime by predicting the remaining useful life for primary hydrogen station components within the major station subsystems. The H2S PHM model is a data-driven statistical model based on O&M data collected from 34 retail hydrogen stations located in the U.S. The primary subcomponents studied are the dispenser compressor and chiller. The remaining useful life calculations are used to decide whether or not maintenance should be completed based on the prediction and expected future station use. This paper presents the background method and results for the H2S PHM model as for a means for improving station availability and customer confidence in FCEVs and hydrogen infrastructure
Hydrogen as a Deep Sea Shipping Fuel: Modelling the Volume Requirements
May 2024
Publication
Recent targets have increased pressure for the maritime sector to accelerate the uptake of clean fuels. A potential future fuel for shipping is hydrogen however there is a common perception that the volume requirements for this fuel are too large for deep sea shipping. This study has developed a range of techniques to accurately simulate the fuel requirements of hydrogen for a case study vessel. Hydrogen can use fuel cells which achieve higher efficiencies than combustion methods but may require a battery hybrid system to meet changes in demand. A series of novel models for different fuel cell types and other technologies have been developed. The models have been used to run dynamic simulations for different energy system setups. Simulations tested against power profiles from real-world shipping data to establish the minimum viable setup capable of meeting all the power demand for the case study vessel to a higher degree of accuracy than previously achieved. Results showed that the minimum viable setup for hydrogen was with liquid storage a 105.6 MW PEM fuel cell stack and 6.9 MWh of batteries resulting in a total system size of 8934 m3 . Volume requirement results could then be compared to other concepts such as systems using ammonia and methanol 8970 m3 and 6033 m3 respectively.
The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context
Jan 2023
Publication
The Italian National Recovery and Resilience Plan (NRRP) includes among other measures investments in hydrogen vehicle refuelling stations intending to promote the use of fuel cell electric vehicles (FCEVs) for long-haul freight transport. This paper evaluates the impact that this action could have on CO2 emissions and fuel consumption focusing on a case study of the Campania region. The proposed approach which can also be transferred to other geographical contexts requires the implementation of a freight road transport simulation model; this model is based on the construction of a supply model the estimation of road freight demand and an assignment procedure for computing traffic flows. This study covers the period from 2025 to 2040 according to the forecasts of the NRRP and some assumptions on the action effects; moreover it is assumed that hydrogen is entirely produced from renewable sources (green hydrogen). The key findings from three different scenarios show that savings between 423832 and 778538 tonnes of CO2 and between 144 and 264 million litres of diesel could be obtained.
Green Energy Revolution and Substitution of Hydrocarbons with Hydrogen: Distribution Network Infrastructure Materials
Dec 2023
Publication
Global warming is an accepted fact of life on Earth posing grave consequences in the form of weather patterns with life-threatening outcomes for inhabitants and their cultures especially those of island countries. These wild and unpredictable weather patterns have persuaded authorities governments and industrial leaders to adapt a range of solutions to combat the temperature rise on Earth. One such solution is to abandon fossil fuels (hydrocarbons) for energy generation and employ renewable energy sources or at least use energy sources that do not generate greenhouse gases. One such energy carrier is hydrogen which is expected to slowly replace natural gas and will soon be pumped into the energy distribution pipeline network. Since the current energy distribution network was designed for hydrocarbons its use for hydrogen may pose some threat to the safety of urban society. This is the first time an overview article has examined the replacement of hydrocarbons by hydrogen from a totally different angle by incorporating material science viewpoints. This article discusses hydrogen properties and warns about the issue of hydrogen embrittlement in the current pipeline network if hydrogen is to be pumped through the current energy distribution network i.e. pipelines. It is recommended that sufficient study and research be planned and carried out to ensure the safety of using the current energy distribution network for hydrogen distribution and to set the necessary standards and procedures for future design and construction.
An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production
Jun 2024
Publication
This work studies the efficiency and long-term viability of powered hydrogen production. For this purpose a detailed exploration of hydrogen production techniques has been undertaken involving data collection information authentication data organization and analysis. The efficiency trends environmental impact and hydrogen production costs in a landscape marked by limited data availability were investigated. The main contribution of this work is to reduce the existing data gap in the field of hydrogen production by compiling and summarizing dispersed data. The findings are expected to facilitate the decision-making process by considering regional variations energy source availability and the potential for technological advancements that may further enhance the economic viability of electrolysis. The results show that hydrogen production methods can be identified that do not cause significant harm to the environment. Photolysis stands out as the least serious offender producing 0 kg of CO2 per kg of H2 while thermolysis emerges as the major contributor to emissions with 20 kg of CO2 per kg of H2 produced.
Safety Calculations for Emerging Technologies
Sep 2023
Publication
As part of executing 25 hydrogen-based Power to X (PtX) projects our team of Safety consultants has completed safety and risk assessments for a number of hydrogen production developments. Drawing on this experience we will present the importance of making comparisons between hydrogen specific data sources such as HyRAM and conventional oil and gas data sets and calculation methods to ensure that project design is carried out to the most appropriate data and provides a robust solution to demonstrate risks are managed. This presentation will be based on case studies where Fire and Explosion Risk Assessments (FERA) and Quantitative Risk Assessments (QRA) were conducted. The frequency calculations for these assessments used the release frequencies and ignition probabilities provided in HyRAM. However it is noted that the HyRAM ignition probabilities are derived from a correlation from oil and gas assessments in the 1990s. The oil and gas approach has moved on from this data source and now derives ignition probabilities based on the type of facility and fluid characteristics. To address this evolution a comparison was made between the leak frequencies for equipment in hydrogen service and established oil and gas release frequencies from IOGP. In addition a comparison between the HyRAM recommended ignition probabilities and the correlations used for oil and gas (from OEUK formerly UKOOA) was conducted. By taking this approach it was confirmed that the UKOOA data was more conservative and sensitivity calculations were carried out. It was also noted that as hydrogen technologies are emerging there is a level of uncertainty around the data and comparisons must be regularly made to ensure the most appropriate basis for calculations is used.
Risk Sensitivity Study as the Basis for Risk-informed Consequence-based Setback Distances for Liquid Hydrogen Storage Systems
Sep 2023
Publication
A quantitative risk assessment on a representative liquid hydrogen storage system was performed to identify the main drivers of individual risk and provide a technical basis for revised separation distances for bulk liquid hydrogen storage systems in regulations codes and standards requirements. The framework in the Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) toolkit was used and multiple relevant inputs to the risk assessment (e.g. system pipe size ignition probabilities) were individually varied. For each set of risk assessment inputs the individual risk as a function of the distance away from the release point was determined and the risk-based separation distance was determined from an acceptable risk criterion. These risk-based distances were then converted to equivalent leak size using consequence models that would result in the same distance to selected hazard criteria (i.e. extent of flammable cloud heat flux and peak overpressure). The leak sizes were normalized to a fraction of the flow area of the source piping. The resulting equivalent fractional hole sizes for each sensitivity case were then used to inform selection of a conservative fractional flow area leak size of 5% that serves as the basis for consequence-based separation distance calculations. This work demonstrates a method for using a quantitative risk assessment sensitivity study to inform the selection of a basis for determining consequence-based separation distances.
Quantitative Risk Assessment for Hydrogen Systems: Model Development and Validation
Sep 2023
Publication
Quantitative Risk Assessment (QRA) is a risk-informed approach that considers past performances and the likelihood of events and distinguishes must-haves from nice-to-haves. Following the approach applied for the HyRAM code developed by the Sandia National Laboratories a QRA toolkit for hydrogen systems was developed using MATLAB by Canadian Nuclear Laboratories (CNL). Based on user inputs for system components and their operating parameters the toolkit calculates the consequence of a hydrogen leak from the system. The fatality likelihood can be estimated from the severity of a person’s exposure to radiant heat flux (from a jet fire) and overpressure (from an explosion). This paper presents a verification and validation exercise by comparing the CNL model predictions with the HyRAM code and available experimental data including a QRA case study for a locomotive. The analysis produces risk contours recommending personnel (employees/public) numbers time spent and safe separation distances near the incident (during maintenance or an accident). The case study demonstrated the importance of hydrogen leak sensors’ reliability for leak detection and isolation. The QRA toolkit calculates a more practical value of the safe separation distance for hydrogen installations and provides evidence to support communication with authorities and other stakeholders for decision-making.
Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
Jul 2024
Publication
As part of the ongoing transition from fossil fuels to renewable energies advances are particularly expected in terms of safe and cost-effective solutions. Publicising instances of such advances and emphasising global safety considerations constitute the rationale for this communication. Knowing that high-strength steels can prove economically relevant in the foreseeable future for transporting hydrogen in pipelines by limiting the pipe wall thickness required to withstand high pressure one advance relates to a bench designed to assess the safe transport or renewableenergy-related buffer storage of hydrogen gas. That bench has been implemented at the technology readiness level TRL 6 to test initially intact damaged or pre-notched 500 mm-long pipe sections with nominal diameters ranging from 300 to 900 mm in order to appropriately validate or question the use of reputedly satisfactory predictive models in terms of hydrogen embrittlement and potential corollary failure. The other advance discussed herein relates to the reactivation of a previously fruitful applied research into safe mass solid-state hydrogen storage by magnesium hydride through a new public–private partnership. This latest development comes at a time when markets have started driving the hydrogen economy bearing in mind that phase-change materials make it possible to level out heat transfers during the absorption/melting and solidification/desorption cycles and to attain an overall energy efficiency of up to 80% for MgH2 -based compacts doped with expanded natural graphite.
Evaluating the Offshore Wind Business Case and Green Hydrogen Production: A Case Study of a Future North Sea Offshore Grid
Jun 2024
Publication
The European Union aims to increase its climate ambition and achieve climate neutrality by 2050. This necessitates expanding offshore wind energy and green hydrogen production especially for hard-to-abate industrial sectors. A study examines the impact of green hydrogen on offshore wind projects specifically focusing on a potential future North Sea offshore grid. The study utilizes data from the TYNDP 2020 Global Ambition scenario 2040 considering several European countries. It aims to assess new transmission and generation capacity utilization and understand the influencing factors. The findings show that incorporating green hydrogen production increases offshore wind utilization and capture prices. The study estimates that by 2040 the levelized cost of hydrogen could potentially decrease to e1.2-1.6/kg H2 assuming low-cost electricity supply and declining capital costs of electrolysers. These results demonstrate the potential benefits and cost reductions of integrating green hydrogen production into North Sea offshore wind projects.
Carbon Footprint Enhancement of an Agricultural Telehandler through the Application of a Fuel Cell Powertrain
Mar 2024
Publication
The growing awareness about climate change and environmental pollution is pushing the industrial and academic world to investigate more sustainable solutions to reduce the impact of anthropic activities. As a consequence a process of electrification is involving all kind of vehicles with a view to gradually substitute traditional powertrains that emit several pollutants in the exhaust due to the combustion process. In this context fuel cell powertrains are a more promising strategy with respect to battery electric alternatives where productivity and endurance are crucial. It is important to replace internal combustion engines in those vehicles such as the those in the sector of NonRoad Mobile Machinery. In the present paper a preliminary analysis of a fuel cell powertrain for a telehandler is proposed. The analysis focused on performance fuel economy durability applicability and environmental impact of the vehicle. Numerical models were built in MATLAB/Simulink and a simple power follower strategy was developed with the aim of reducing components degradation and to guarantee a charge sustaining operation. Simulations were carried out regarding both peak power conditions and a typical real work scenario. The simulations’ results showed that the fuel cell powertrain was able to achieve almost the same performances without excessive stress on its components. Indeed a degradation analysis was conducted showing that the fuel cell system can achieve satisfactory durability. Moreover a Well-to-Wheel approach was adopted to evaluate the benefits in terms of greenhouse gases of adopting the fuel cell system. The results of the analysis demonstrated that even if considering grey hydrogen to feed the fuel cell system the proposed powertrain can reduce the equivalent CO2 emissions of 69%. This reduction can be further enhanced using hydrogen from cleaner production processes. The proposed preliminary analysis demonstrated that fuel cell powertrains can be a feasible solution to substitute traditional systems on off-road vehicles even if a higher investment cost might be required.
Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities
Apr 2022
Publication
Hydrogen is emerging as one of the most promising energy carriers for a decarbonised global energy system. Transportation and storage of hydrogen are critical to its large-scale adoption and to these ends liquid hydrogen is being widely considered. The liquefaction and storage processes must however be both safe and efficient for liquid hydrogen to be viable as an energy carrier. Identifying the most promising liquefaction processes and associated transport and storage technologies is therefore crucial; these need to be considered in terms of a range of interconnected parameters ranging from energy consumption and appropriate materials usage to considerations of unique liquid-hydrogen physics (in the form of ortho–para hydrogen conversion) and boil-off gas handling. This study presents the current state of liquid hydrogen technology across the entire value chain whilst detailing both the relevant underpinning science (e.g. the quantum behaviour of hydrogen at cryogenic temperatures) and current liquefaction process routes including relevant unit operation design and efficiency. Cognisant of the challenges associated with a projected hydrogen liquefaction plant capacity scale-up from the current 32 tonnes per day to greater than 100 tonnes per day to meet projected hydrogen demand this study also reflects on the next-generation of liquid-hydrogen technologies and the scientific research and development priorities needed to enable them.
Off-grid Wind/Hydrogen Systems with Multi-electrolyzers: Optimized Operational Strategies
Sep 2023
Publication
Optimized operation of wind/hydrogen systems can increase the system efficiency and further reduce the hydrogen production cost. In this regard extensive research has been done but there is a lack of detailed electrolyzer models and effective management of multiple electrolyzers considering their physical restrictions. This work proposes electrolyzer models that integrate the efficiency variation caused by load level change start–stop cycle (including hot and cold start) thermal management and degradation caused by frequent starts. Based on the proposed models three operational strategies are considered in this paper: two traditionally utilized methods simple start–stop and cycle rotation strategies and a newly proposed rolling optimizationbased strategy. The results from daily operation show that the new strategy results in a more balanced load level among the electrolyzers and a more stable temperature. Besides from a yearly operation perspective it is found that the proposed rolling optimization method results in more hydrogen production higher system efficiency and lower LCOH. The new method leads to hydrogen production of 311297 kg compared to 289278 kg and 303758 kg for simple start–stop and cycle rotation methods. Correspondingly the system efficiencies for the new simple start–stop and cycle rotation methods are 0.613 0.572 and 0.587. The resulting LCOH from the new method is 3.89 e/kg decreasing by 0.35 e/kg and 0.21 e/kg compared to the simple start–stop and cycle rotation methods. Finally the proposed model is compared with two conventional models to show its effectiveness in revealing more operational details and reliable results.
Which Is Preferred between Electric or Hydrogen Cars for Carbon Neutrality in the Commercial Vehicle Transportation Sector of South Korea? Implications from a Public Opinion Survey
Feb 2024
Publication
South Korea has drawn up plans to reduce greenhouse gases by 29.7 million tons by supplying 4.5 million electric and hydrogen cars by 2030 to implement the “2050 carbon neutrality” goal. This article gathers data on public preferences for electric cars (ECs) over hydrogen cars (HCs) in the commercial vehicle transportation sector through a survey of 1000 people. Moreover the strength of the preference was evaluated on a five-point scale. Of all respondents 60.0 percent preferred ECs and 21.0 percent HCs the former being 2.86 times greater than the latter. On the other hand the strength of the preference for HCs was 1.42 times greater than that for ECs. Factors influencing the preference for ECs over HCs were also explored through adopting the ordered probit model which is useful in examining ordinal preference rather than cardinal preference. The analyzed factors which are related to respondents’ characteristics experiences and perceptions can be usefully employed for developing strategies of promoting carbon neutrality in the commercial vehicle transportation sector and preparing policies to improve public acceptance thereof.
A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact
Nov 2023
Publication
This study emphasises the growing relevance of hydrogen as a green energy source in meeting the growing need for sustainable energy solutions. It foregrounds the importance of assessing the environmental consequences of hydrogen-generating processes for their long-term viability. The article compares several hydrogen production processes in terms of scalability costeffectiveness and technical improvements. It also investigates the environmental effects of each approach considering crucial elements such as greenhouse gas emissions water use land needs and waste creation. Different industrial techniques have distinct environmental consequences. While steam methane reforming is cost-effective and has a high production capacity it is coupled with large carbon emissions. Electrolysis a technology that uses renewable resources is appealing but requires a lot of energy. Thermochemical and biomass gasification processes show promise for long-term hydrogen generation but further technological advancement is required. The research investigates techniques for improving the environmental friendliness of hydrogen generation through the use of renewable energy sources. Its ultimate purpose is to offer readers a thorough awareness of the environmental effects of various hydrogen generation strategies allowing them to make educated judgements about ecologically friendly ways. It can ease the transition to a cleaner hydrogen-powered economy by considering both technological feasibility and environmental issues enabling a more ecologically conscious and climate-friendly energy landscape.
Literature Review on Life Cycle Assessment of Transportation Alternative Fuels
Aug 2023
Publication
Environmental concerns such as global warming and human health damage are intensifying and the transportation sector significantly contributes to carbon and harmful emissions. This review examines the life cycle assessment (LCA) of alternative fuels (AF) evaluating current research on fuel types LCA framework development life cycle inventory (LCI) and impact selection. The objectives of this paper are: (1) to compare various AF LCA frameworks and develop a comprehensive framework for the transportation sector; (2) to identify emission hotspots of different AFs through simulations and real-world cases; (3) to review AF LCA research; (4) to extract valuable information for potential future research directions. The analysis reveals that all stages except for hydrogen use have an environmental impact. LCA boundaries and LCIs vary considerably depending on the raw materials production processes and products involved leading to different emission hotspots. Due to knowledge or data limitations some stages remain uncalculated in the current study emphasizing the need for further refinement of the AF LCI. Future research should also explore the various impacts of widespread adoption of alternative fuels in transportation encompassing social economic and environmental aspects. Lastly the review provides structured recommendations for future research directions.
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Impact on Canadian Residential End Use Appliances with the Introduction of Hydrogen into the Natural Gas Stream - An Application
Sep 2023
Publication
Canada’s commitment to be net-zero by 2050 combined with ATCO’s own Environmental Social and Governance goals has led ATCO to pursue hydrogen blending within the existing natural gas system to reduce CO2 emissions while continuing to provide safe reliable energy service to customers. Utilization of hydrogen in the distribution system is the least-cost alternative for decarbonizing the heating loads in jurisdictions like Alberta where harsh winter climates are encountered and low-carbon hydrogen production can be abundant. ATCO’s own Fort Saskatchewan Hydrogen Blending Project began blending 5% hydrogen by volume to over 2100 customers in the Fall of 2022 and plans to increase the blend rates to 20% hydrogen in 2023. Prior to blending ATCO worked together with DNV to examine the impact of hydrogen blended natural gas to twelve Canadian appliances: range/stove oven garage heater high and medium efficiency furnaces conventional and on demand hot water heaters barbeque clothes dryer radiant heater and two gas fireplaces. The tests were performed not only within the planned blend rates of 0-20% hydrogen but also to higher percentages to determine how much hydrogen can be blended into a system before appliance retrofits would be required. The testing was designed to get insights on safety-related combustion issues such as flash-back burner overheating flame detection and other performance parameters such as emissions and burner power. The experimental results indicate that the radiant heater is the most sensitive appliance for flashback observed at 30 vol% hydrogen in natural gas. At 50% hydrogen the range and the radiant burner of the barbeque tested were found to be sensitive to flashback. All other 9 appliances were found to be robust for flashback with no other short-term issues observed. This paper will detail the findings of ATCO and DNV’s appliance testing program including results on failure mechanisms and sensitivities for each appliance.
The Global Shift to Hydrogen and Lessons from Outside Industry
Sep 2023
Publication
The recognition of hydrogen as a technically viable combustion fuel and as an alternative to more carbon intensive technologies for all forms of industrial applications has resulted in significant global interest leading to both public and private investment. As with most shifts in technology public acceptance and its safe production and handling will be key to its growth as a widespread energy vector. Specific properties of hydrogen that may prompt concern from the public and that need to be considered in terms of its use and safe handling include the following:<br/>• Hydrogen in its natural state is a colourless odourless and tasteless gas that is combustible with very low ignition energy burns nearly invisibly and is explosive at a very wide range of concentrations with an oxidate.<br/>• Hydrogen as any other gas except oxygen is an asphyxiant in a confined space.<br/>• Hydrogen is an extremely small molecule and interacts with many materials which over time can alter the physical properties and can lead to embrittlement and failure. Additionally due to the small molecular size its permeation and diffusion characteristics make it more difficult to contain compared to other gases.<br/>As hydrogen production use and storage increases these properties will come under greater scrutiny and may raise questions surrounding the cost/benefit of the technology. Understanding how the public sees this technology in relation to their safety and daily lives is important in hydrogen’s adoption as a low carbon alternative. A review of deployable experience relevant to the handling of hydrogen in other industries will help us to understand the technology and experience necessary for ensuring the success of the scaling up of a hydrogen economy. The social considerations of the impacts should also be examined to consider acceptance of the technology as it moves into the mainstream.
Hydrogen Dispersion in a Full-scale Road Tunnel: Experimental Results and CFD Analysis
Sep 2023
Publication
Hydrogen Fuel Cell Electric Vehicles (HFC EVs) represent an alternative to replace current internal combustion engine vehicles. The use of these vehicles with storage of compressed gaseous hydrogen (CGH2) in confined spaces such as tunnels underground car parks etc. creates new challenges to ensure the protection of people and property and to keep the risk at an acceptable level. The HYTUNNEL-CS project sponsored by the FCH-JU was launched to develop validated hazard and risk assessment tools for the behavior of hydrogen leaks in tunnels. Among the experiments carried out in support of the validation tools the CEA has conducted tests on gas dispersion in a full-scale tunnel geometry. In the tests carried out hydrogen is replaced by helium under a pressure of 70 MPa in a 78 liter tank. The car is simulated by a flat plate called chassis and the discharges are made either downwards under the chassis or upwards to take into account a rollover of the car during the accident. Different thermally activated pressure relief device (TPRD) diameters are examined as well as different orientations of the discharge. Finally the mixing transient of helium with air is measured for distances between -50 and +50m from the release. Performing CFD simulations of such an under-expanded jet in an environment as large as a road tunnel demands a compressible flow solver and so a large computational cost. To optimize this cost a notional nozzle approach is generally used to replace the under-expanded jet by a subsonic jet that has the same concentration dilution behavior. The physics at the injection point is then not resolved and a model of these boundary conditions has to be implemented. This article first reviews the main experimental results. Then a model of boundary conditions is proposed to have a subsonic hydrogen jet that matches the dilution characteristics of an under-expanded jet. Furthermore this model is implemented in the TRUST LES computer code and in the Neptune-CFD RANS computer code in order to simulate some helium dispersion experiments. Finally results from the CFD simulations are compared to the experimental results and the effect of the exact shape of the tunnel is also assessed by comparing simulations with idealized flat walls and real scanned walls.
Gas Crossover Predictive Modelling Using Artificial Neural Networks Based on Original Dataset Through Aspen Custom Modeler for Proton Exchange Membrane Electrolyte System
Sep 2023
Publication
Proton exchange membrane electrolyzer cell (PEMEC) will play a central role in future power-to-H2 plants. Current research focuses on the materials and operation parameters. Setting up experiments to explore operational accident scenarios about safety feasibility is not always practical. This paper focuses on building mathematical and prediction models of hydrogen and oxygen mixing scenarios of PEMEC. A mathematical model of the PEMEC device was customized in the Aspen Custom Model (ACM) software and integrated various critical Physico-chemical phenomena as the original data set for the prediction model. The results of the mathematical simulation verified the experimental results. The prediction model proposes an artificial neural network (ANN) framework to predict component distribution in the gas stream to prevent hydrogen-oxygen explosion scenarios. The presented approach by training ANN to 1000 sets of hydrogen-oxygen mixing simulation data from ACM is applicable to bypass tedious and non-smooth systems of equations for PEMEC.
The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System
Jul 2024
Publication
Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region generation costs of other emerging offshore renewable technologies remain high. Hence it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First offshore wind plays a crucial role in the North Sea power sector where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030 contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings) when compared with the slow learning and constrained space use case. Second floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided while fixed-bottom offshore wind deployment remains unchanged. Lastly the role of other emerging offshore renewables remains limited in all scenarios considered as they are expensive compared to other technology choices in the system. However around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.
Towards Renewable Hydrogen-based Electrolysis: Alkaline vs Proton Exchange Membrane
Jul 2023
Publication
This paper focuses on the battle for a dominant design for renewable hydrogen electrolysis in which the designs alkaline and proton exchange membrane compete for dominance. First a literature review is performed to determine the most relevant factors that influence technology dominance. Following that a Best Worst Method analysis is conducted by interviewing multiple industry experts. The most important factors appear to be: Price Safety Energy consumption Flexibility Lifetime Stack size and Materials used. The opinion of experts on Proton Exchange Membrane and alkaline electrolyser technologies is slightly skewed in favour of alkaline technologies. However the margin is too small to identify a winner in this technology battle. The following paper contributes to the ongoing research on modelling the process of technology selection in the energy sector.
Carbon Dioxide Emission in Hydrogen Production Technology from Coke Oven Gas with Life Cycle Approach
Oct 2016
Publication
The analysis of Carbon Footprint (CF) for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas emission indicators of carbon dioxide (CF) were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant the process of coking coal purification and reforming of coke oven gas carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ). The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA).
No more items...