- Home
- A-Z Publications
- Publications
Publications
Combustion Features of CH4/NH3/H2 Ternary Blends
Mar 2022
Publication
The use of so-called “green” hydrogen for decarbonisation of the energy and propulsion sectors has attracted considerable attention over the last couple of decades. Although advancements are achieved hydrogen still presents some constraints when used directly in power systems such as gas turbines. Therefore another vector such as ammonia can serve as a chemical to transport and distribute green hydrogen whilst its use in gas turbines can limit combustion reactivity compared to hydrogen for better operability. However pure ammonia on its own shows slow complex reaction kinetics which requires its doping by more reactive molecules thus ensuring greater flame stability. It is expected that in forthcoming years ammonia will replace natural gas (with ~ 90% methane in volume) in power and heat production units thus making the co-firing of ammonia/methane a clear path towards replacement of CH4 as fossil fuel. Hydrogen can be obtained from the precracking of ammonia thus denoting a clear path towards decarbonisation by the use of ammonia/hydrogen blends. Therefore ammonia/methane/hydrogen might be co-fired at some stage in current combustion units hence requiring a more intrinsic analysis of the stability emissions and flame features that these ternary blends produce. In return this will ensure that transition from natural gas to renewable energy generated e-fuels such as so-called “green” hydrogen and ammonia is accomplished with minor detrimentals towards equipment and processes. For this reason this work presents the analysis of combustion properties of ammonia/methane/hydrogen blends at different concentrations. A generic tangential swirl burner was employed at constant power and various equivalence ratios. Emissions OH*/NH*/NH2*/CH* chemiluminescence operability maps and spectral signatures were obtained and are discussed. The extinction behaviour has also been investigated for strained laminar premixed flames. Overall the change from fossils to e-fuels is led by the shift in reactivity of radicals such as OH CH CN and NH2 with an increase of emissions under low and high ammonia content. Simultaneously hydrogen addition improves operability when injected up to 30% (vol) an amount at which the hydrogen starts governing the reactivity of the blends. Extinction strain rates confirm phenomena found in the experiments with high ammonia blends showing large discrepancies between values at different hydrogen contents. Finally a 20/55/25% (vol) methane/ammonia/hydrogen blend seems to be the most promising at high equivalence ratios (1.2) with no apparent flashback low emissions and moderate formation of NH2/OH radicals for good operability.
CFD Computations of Liquid Hydrogen Releases
Sep 2011
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid (liquid hydrogen or LH2) as it requires much less volume compared to gaseous hydrogen. In order to exist as a liquid H2 must be cooled to a very low temperature 20.28 K. LH2 is a common liquid fuel for rocket applications. It can also be used as the fuel storage in an internal combustion engine or fuel cell for transport applications. Models for handling liquid releases both two-phase flashing jets and pool spills have been developed in the CFD-model FLACS. The very low normal boiling point of hydrogen (20 K) leads to particular challenges as this is significantly lower than the boiling points of oxygen (90 K) and nitrogen (77 K). Therefore a release of LH2 in the atmosphere may induce partial condensation or even freezing of the oxygen and nitrogen present in the air. A pool model within the CFD software FLACS is used to compute the spreading and vaporization of the liquid hydrogen depositing on the ground where the partial condensation or freezing of the oxygen and nitrogen is also taken into account. In our computations of two-phase jets the dispersed and continuous phases are assumed to be in thermodynamic and kinematic equilibrium. Simulations with the new models are compared against selected experiments performed at the Health and Safety Laboratory (HSL).
Reducing UK Emissions – 2019 Progress Report to Parliament
Jul 2019
Publication
This is the Committee’s annual report to Parliament assessing progress in reducing UK emissions over the past year. It finds that UK action to curb greenhouse gas emissions is lagging behind what is needed to meet legally-binding emissions targets. Since June 2018 Government has delivered only 1 of 25 critical policies needed to get emissions reductions back on track.
Exchange Current Density of Reversible Solid Oxide Cell Electrodes
Mar 2022
Publication
Reversible solid oxide cells (r-SOCs) can be operated in either solid oxide fuel cell or solid oxide electrolysis cell mode. They are expected to become important in the support of renewable energy due to their high efficiency for both power generation and hydrogen generation. The exchange current density is one of the most important parameters in the quantification of electrode performance in solid oxide cells. In this study four different fuel electrodes and two different air electrodes are fabricated using different materials and the microstructures are compared. The temperature fuel humidification and oxygen concentration at the air electrode are varied to obtain the apparent exchange current density for the different electrode materials. In contrast to ruthenium-and-gadolinia-doped ceria (Rh-GDC) as well as nickel-and-gadolinia-doped ceria (Ni-GDC) electrodes significant differences in the apparent exchange current density were observed between electrolysis and fuel cell modes for the nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet. Variation of gas concentration revealed that surface adsorption sites were almost completely vacant for all these electrodes. The apparent exchange current densities obtained in this study are useful as a parameter for simulation of the internal properties of r-SOCs.
A Concept to Support the Transformation from a Linear to Circular Carbon Economy: Net Zero emissions, Resource Efficiency and Conservation Through a Coupling of the Energy, Chemical and Waste Management Sectors
Dec 2017
Publication
Coal and carbon-containing waste are valuable primary and secondary carbon carriers. In the current dominant linear economy such carbon resources are generally combusted to produce electricity and heat and as a way to resolve a nation’s waste issue. Not only is this a wastage of precious carbon resources which can be chemically utilized as raw materials for production of other value-added goods it is also contrary to international efforts to reduce carbon emissions and increase resource efficiency and conservation. This article presents a concept to support the transformation from a linear ‘one-way cradle to grave manufacturing model’ toward a circular carbon economy. The development of new and sustainable value chains through the utilization of coal and waste as alternative raw materials for the chemical industry via a coupling of the energy chemical and waste management sectors offers a viable and future-oriented perspective for closing the carbon cycle. Further benefits also include a lowering of the carbon footprint and increasing resource efficiency and conservation of primary carbon resources. In addition technological innovations and developments that are necessary to support a successful sector coupling will be identified. To illustrate our concept a case analysis of domestic coal and waste as alternative feedstock to imported crude oil for chemical production in Germany will be presented. Last but not least challenges posed by path dependency along technological institutional and human dimensions in the sociotechnical system for a successful transition toward a circular carbon economy will be discussed.
HyDeploy: The UK’s First Hydrogen Blending Deployment Project
Mar 2019
Publication
The HyDeploy project is the UK’s first practical project to demonstrate that hydrogen can be safely blended into the natural-gas distribution system without requiring changes to appliances and the associated disruption. The project is funded under Ofgem’s Network Innovation Competition and is a collaboration between Cadent Gas Northern Gas Networks Progressive Energy Ltd Keele University (Keele) Health & Safety Laboratory and ITM Power. Cadent and Northern Gas Networks are the Gas Distribution Network sponsors of the project. Keele University is the host site providing the gas-distribution network which will receive the hydrogen blend. Keele University is the largest campus university in the UK. Health & Safety Laboratory provides the scientific laboratories and experimental expertise. ITM Power provides the electrolyser that produces the hydrogen. Progressive Energy Ltd is the project developer and project manager. HyDeploy is structured into three distinct phases. The first is an extensive technical programme to establish the necessary detailed evidence base in support of an application to the Health & Safety Executive for Exemption to Schedule 3 of the Gas Safety (Management) Regulations (GS(M)R) to permit the injection of hydrogen at 20 mol%. This is required to allow hydrogen to be blended into a natural-gas supply above the current British limit of 0.1 mol%.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
The second phase comprises the construction of the electrolyser and grid entry unit along with the necessary piping and valves to allow hydrogen to be mixed and injected into the Keele University gas-distribution network and to ensure all necessary training of operatives is conducted before injection. The third phase is the trial itself which is due to start in the summer of 2019 and last around 10 months. The trial phase also provides an opportunity to undertake further experimental activities related to the operational network to support the pathway to full deployment of blended gas. The outcome of HyDeploy is principally developing the initial evidence base that hydrogen can be blended into a UK operational natural-gas network without disruption to customers and without prejudicing the safety of end users. If deployed at scale hydrogen blending at 20 mol% would unlock 29 TWh pa of decarbonized heat and provide a route map for deeper savings. The equivalent carbon savings of a national roll-out of a 20-mol% hydrogen blend would be to remove 2.5 million cars from the road.
HyDeploy is a seminal UK project for the decarbonization of the gas grid via hydrogen deployment and will provide the first stepping stone for setting technical operational and regulatory precedents of the hydrogen vector.
Carbon Capture and Storage in the USA: The Role of US Innovation Leadership in Climate-technology Commercialization
Nov 2019
Publication
To limit global warming and mitigate climate change the global economy needs to decarbonize and reduce emissions to net-zero by mid-century. The asymmetries of the global energy system necessitate the deployment of a suite of decarbonization technologies and an all-of-the-above approach to deliver the steep CO2 -emissions reductions necessary. Carbon capture and storage (CCS) technologies that capture CO2 from industrial and power-plant point sources as well as the ambient air and store them underground are largely seen as needed to address both the flow of emissions being released and the stock of CO2 already in the atmosphere. Despite the pressing need to commercialize the technologies their large-scale deployment has been slow. Initial deployment however could lead to near-term cost reduction and technology proliferation and lowering of the overall system cost of decarbonization. As of November 2019 more than half of global large-scale CCS facilities are in the USA thanks to a history of sustained government support for the technologies. Recently the USA has seen a raft of new developments on the policy and project side signalling a reinvigorated push to commercialize the technology. Analysing these recent developments using a policy-priorities framework for CCS commercialization developed by the Global CCS Institute the paper assesses the USA’s position to lead large-scale deployment of CCS technologies to commercialization. It concludes that the USA is in a prime position due to the political economic characteristics of its energy economy resource wealth and innovation-driven manufacturing sector.
CFD Modeling for Helium Releases in a Private Garage Without Forced Ventilation.
Sep 2005
Publication
In the course towards a safe future hydrogen based society one of the tasks to be considered is the investigation of the conditions under which the use or storage of hydrogen systems inside buildings becomes too dangerous to be accepted. One of the relevant scenarios which is expected to have a relatively high risk is a slow (and long lasting) hydrogen release from a vehicle stored in a closed private garage without any forced ventilation i.e. only with natural ventilation. This scenario has been earlier investigated experimentally (by M. Swain) using He (helium) to simulate the hydrogen behavior. In the present work the CFD code ADREA-HF is used to simulate three of the abovementioned experiments using the standard k- turbulence model. For each case modeled the predicted concentration (by vol.) time series are compared against the experimental at the given sensor locations. In addition the structure of the flow is investigated by presenting the helium concentration field.
Paths to Low-cost Hydrogen Energy at a Scale for Transportation Applications in the USA and China via Liquid-hydrogen Distribution Networks
Dec 2019
Publication
The cost of delivered H2 using the liquid-distribution pathway will approach $4.3–8.0/kg in the USA and 26–52 RMB/kg in China by around 2030 assuming large-scale adoption. Historically hydrogen as an industrial gas and a chemical feedstock has enjoyed a long and successful history. However it has been slow to take off as an energy carrier for transportation despite its benefits in energy diversity security and environmental stewardship. A key reason for this lack of progress is that the cost is currently too high to displace petroleum-based fuels. This paper reviews the prospects for hydrogen as an energy carrier for transportation clarifies the current drivers for cost in the USA and China and shows the potential for a liquid-hydrogen supply chain to reduce the costs of delivered H2. Technical and economic trade-offs between individual steps in the supply chain (viz. production transportation refuelling) are examined and used to show that liquid-H2 (LH2) distribution approaches offer a path to reducing the delivery cost of H2 to the point at which it could be competitive with gasoline and diesel fuel.
Hydrogen Technologies and Developments in Japan
Jan 2019
Publication
The successful development of hydrogen-energy technologies has several advantages and benefits. Hydrogen energy development could prevent global warming as well as ensure energy security for countries without adequate energy resources. The successful development of hydrogen would provide energy for transportation and electric power. It is a unique energy carrier as it can be produced from various energy sources such as wind fossil fuels and biomass and when it is combusted it emits no CO2 emissions. The other advantage is the wide distribution of resources globally that can be used to produce hydrogen. In Japan the Ministry of Economy Trade and Industry (METI) published a ‘Strategic Roadmap for Hydrogen and Fuel Cells’ in 2014 with a revised update published in March 2016. The goal of the roadmap is to achieve a hydrogen society. The roadmap aims to resolve technical problems and secure economic efficiency. The roadmap has been organized into the following three phases: Phase 1—Installation of fuel cells; Phase 2—Hydrogen power plant/mass supply chain; Phase 3—CO2- free hydrogen. This paper reports on the current status of fuel cells and fuel-cell vehicles in Japan and gives a description and status of the R&D programmes along with the results of global energy model study towards 2050.
Dynamic Crush Test on Hydrogen Pressurized Cylinder
Sep 2005
Publication
It is necessary to investigate cylinder crush behavior for improvement of fuel cell vehicle crash safety. However there have been few crushing behaviour investigations of high pressurized cylinders subjected to external force. We conducted a compression test of pressurized cylinders impacted by external force. We also investigated the cylinder strength and crushing behaviour of the cylinder. The following results were obtained.
- The crush force of high pressurized cylinders is different from the direction of external force. The lateral crush force of high pressurized cylinders is larger than the external axial crush force.
- Tensile stress occurs in the boundary area between the cylinder dome and central portion when the pressurized cylinder is subjected to axial compression force and the cylinder is destroyed.
- However the high pressurized cylinders tested had a high crush force which exceeded the assumed range of vehicle crash test procedures
Net Zero The UK's Contribution to Stopping Global Warming
May 2019
Publication
This report responds to a request from the Governments of the UK Wales and Scotland asking the Committee to reassess the UK’s long-term emissions targets. Our new emissions scenarios draw on ten new research projects three expert advisory groups and reviews of the work of the IPCC and others.<br/>The conclusions are supported by detailed analysis published in the Net Zero Technical Report that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals.
Rayleigh-Taylor Instability: Modelling and Effect on Coherent Deflagrations
Sep 2013
Publication
The modelling of Rayleigh–Taylor instability during premixed combustion scenarios is presented. Experimental data obtained from experiments undertaken by FM Global using their large-scale vented deflagration chamber was used to develop the modelling approach. Rayleigh–Taylor instability is introduced as an additional time-dependent combustion enhancing mechanism. It is demonstrated that prior to the addition of this mechanism the LES deflagration model under-predicted the experimental pressure transients. It is confirmed that the instability plays a significant role throughout the coherent deflagration process. The addition of the mechanism led to the model more closely replicating the pressure peak associated with the external deflagration.
Renewable Hydrogen Production from Butanol: A Review
Dec 2017
Publication
Hydrogen production from butanol is a promising alternative when it is obtained from bio-butanol or bio-oil due to the higher hydrogen content compared to other oxygenates such as methanol ethanol or propanol. Catalysts and operating conditions play a crucial role in hydrogen production. Ni and Rh are metals mainly used for butanol steam reforming oxidative steam reforming and partial oxidation. Additives such as Cu can improve catalytic activity in many folds. Moreover support–metal interaction and catalyst preparation technique also play a decisive role in the stability and hydrogen production capacity of catalyst. Steam reforming technique as an option is more frequently researched due to higher hydrogen production capability in comparison to other thermochemical techniques despite its endothermic nature. The use of the oxidative steam reforming and partial oxidation has the advantages of requiring less energy and longer stability of catalysts. However the hydrogen yield is less. This article brings together and examines the latest research on hydrogen production from butanol via steam reforming oxidative steam reforming and partial oxidation reactions. In addition the review examines a few thermodynamic studies based on sorption-enhanced steam reforming and dry reforming where there is potential for hydrogen extraction.
Committee for Climate Change Fifth Carbon Budget: Central Scenario Data
Jul 2016
Publication
This spreadsheet contains data for two future UK scenarios: a "baseline" (i.e. no climate action after 2008 the start of the carbon budget system) and the "central" scenario underpinning the CCC's advice on the fifth carbon budget (the limit to domestic emissions during the period 2028-32).<br/>The central scenario is an assessment of the technologies and behaviours that would prepare for the 2050 target cost-effectively while meeting the other criteria in the Climate Change Act (2008) based on central views of technology costs fuel prices carbon prices and feasibility. It is not prescriptive nor is it the only scenario considered for meeting the carbon budgets. For further details on our scenarios and how they were generated see the CCC report Sectoral scenarios for the Fifth Carbon Budget. The scenario was constructed for the CCC's November 2015 report and has not been further updated for example to reflect outturn data for 2015 or changes to Government policy.
Study on Critical Technologies and Development Routes of Coal-based Hydrogen Energy
Jul 2019
Publication
Hydrogen is considered a secondary source of energy commonly referred to as an energy carrier. It has the highest energy content when compared to other common fuels by weight having great potential for further development. Hydrogen can be produced from various domestic resources but based on the fossil resource conditions in China coal-based hydrogen energy is considered to be the most valuable because it is not only an effective way to develop clean energy but also a proactive exploration of the clean usage of traditional coal resources. In this article the sorption-enhanced water–gas shift technology in the coal-to-hydrogen section and the hydrogen-storage and transport technology with liquid aromatics are introduced and basic mechanisms technical advantages latest progress and future R&D focuses of hydrogen-production and storage processes are listed and discussed. As a conclusion after considering the development frame and the business characteristics of CHN Energy Group a conceptual architecture for developing coal-based hydrogen energy and the corresponding supply chain is proposed.
The Sixth Carbon Budget & Welsh Emissions Targets Summary of Responses to Call for Evidence Summary
Jul 2020
Publication
In late 2019 the Committee launched a Call for Evidence to inform its advice to the UK Government on the Sixth Carbon Budget due to be published in December 2020. In addition the Committee sought input on Wales’ third carbon budget and interim emissions targets. These summary documents – one for the Sixth Carbon Budget and a second covering Wales’ carbon budget and emissions targets – provide an overview of the 170+ responses received along with the original submissions which are also published below.<br/>As background in 2019 the UK Government and Parliament adopted the Committee on Climate Change’s (CCC) recommendation to reduce UK emissions of greenhouse gases (GHGs) to Net Zero by 2050 (at least a 100% reduction in emissions compared to 1990 levels). The Climate Change Act 2008 requires the Committee to provide advice to the Government about the appropriate level for each carbon budget (sequential five-year caps on GHGs) on the path to the long-term target. To date in line with advice from the Committee five carbon budgets have been legislated covering the period to 2032. The Sixth Carbon Budget covers the period from 2033-37.
Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon
Dec 2021
Publication
Hydrogen is recognized as a promising and attractive energy carrier to decarbonize the sectors responsible for global warming such as electricity production industry and transportation. However although hydrogen releases only water as a result of its reaction with oxygen through a fuel cell the hydrogen production pathway is currently a challenging issue since hydrogen is produced mainly from thermochemical processes (natural gas reforming coal gasification). On the other hand hydrogen production through water electrolysis has attracted a lot of attention as a means to reduce greenhouse gas emissions by using low-carbon sources such as renewable energy (solar wind hydro) and nuclear energy. In this context by providing an environmentally-friendly fuel instead of the currently-used fuels (unleaded petrol gasoline kerosene) hydrogen can be used in various applications such as transportation (aircraft boat vehicle and train) energy storage industry medicine and power-to-gas. This article aims to provide an overview of the main hydrogen applications (including present and future) while examining funding and barriers to building a prosperous future for the nation by addressing all the critical challenges met in all energy sectors.
The Fourth Carbon Budget Review – Part 2 The Cost-effective Path to the 2050 Target
Nov 2013
Publication
This is the second document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The first part of the review is available here: The Fourth Carbon Budget Review – part 1: assessment of climate risk and the international response (November 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 2 considers the impacts of meeting the 2023-2027 budget. The review concludes that the impacts are small and manageable and identifies broader benefits associated with meeting the fourth carbon budget including: improved energy security improved air quality and reduced noise pollution.
Application of Reactive Discrete Equation Method to the ENACCEF Test 13h
Sep 2011
Publication
The Reactive Discrete Equation Method (RDEM) was recently introduced in [12] adapted to combustion modelling in [3] and implemented in the TONUS code [4]. The method has two major features: the combustion constant having velocity dimension is the fundamental flame speed and the combustion wave now is an integral part of the Reactive Riemann Problem. In the present report the RDEM method is applied to the simulation of the combustion Test 13H performed in the ENACCEF facility. Two types of computations have been considered: one with a constant fundamental flame speed the other with time dependent fundamental flame speed. It is shown that by using the latter technique we can reproduce the experimental visible flame velocity. The ratio between the fundamental flame speed and the laminar flame speed takes however very large values compared to the experimental data based on the tests performed in spherical bombs or cruciform burner.
Reducing Emissions in Scotland – 2017 Progress Report
Sep 2017
Publication
The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Reducing Emissions in Scotland 2019 Progress Report
Dec 2019
Publication
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions.<br/>Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020. Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland. The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.<br/>Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Experimental Study of Vented Hydrogen Deflagration with Ignition Inside and Outside the Vented Volume
Sep 2013
Publication
Experiments were carried out inside a 25 m3 vented combustion test facility (CVE) with a fixed vent area sealed by a plastic sheet vent. Inside the CVE a 0.64 m3 open vent box called RED-CVE was placed. The vent of the RED-CVE was left open and three different vent area were tested. Two different mixing fans one for each compartment were used to establish homogeneous H2 concentrations. This study examined H2 concentrations in the range between 8.5% vol. to 12.5% vol. and three different ignition locations (1) far vent ignition (2) inside the RED-CVE box ignition and (3) near vent ignition (the vent refers to the CVE vent). Peak overpressures generated inside the test facility and the smaller compartment were measured. The results indicate that the near vent ignition generates negligible peak overpressures inside the test facility as compared to those originated by far vent ignition and ignition inside the RED-CVE box. The experiments with far vent ignition showed a pressure increase with increasing hydrogen concentration which reached a peak value at 11% vol. concentration and then decreased showing a non-monotonic behaviour. The overpressure measured inside the RED-CVE was higher when the ignition was outside the box whereas the flame entered the box through the small vent.
Reducing Emissions in Northern Ireland
Feb 2019
Publication
In this report the Committee sets out how Northern Ireland can reduce its greenhouse gas emissions between now and 2030 in order to meet UK-wide climate change targets.
The report’s key findings are:
The report’s key findings are:
- Existing policies are not enough to deliver this reduction
- There are excellent opportunities to close this gap and go beyond 35%
- Meeting the cost-effective path to decarbonisation in Northern Ireland will require action across all sectors of the economy and a more joined-up approach
Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges
Dec 2022
Publication
The article presents a review of the research on green hydrogen from the social sciences identifying its main lines of research its problems and the relevant challenges due to the benefits and impacts that this energy vector has on energy transitions and climate change. The review analyzes a corpus of 78 articles indexed in the Web of Science (WoS) and SCOPUS published between 1997 and 2022. The review identified three research areas related to green hydrogen and the challenges for the social sciences in the future: (a) risks socio-environmental impacts and public perception; (b) public policies and regulation and (c) social acceptance and willingness to use associated technologies. Our results show that Europe and Asia lead the research on green hydrogen from the social sciences. Also most of the works focus on the area of public policy and regulation and social acceptance. Instead the field of social perception of risk is much less developed. We found that little research from the social sciences has focused on assessments of the social and environmental impacts of hydrogen on local communities and indigenous groups as well as the participation of local authorities in rural locations. Likewise there are few integrated studies (technical and social) that would allow a better assessment of hydrogen and cleaner energy transitions. Finally the lack of familiarity with this technology in many cases constitutes a limitation when evaluating its acceptance.
Experimental Investigation of Hydrogen Jet Fire Mitigation by Barrier Walls
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. While reducing the extent of unacceptable consequences the walls may introduce other hazards if not properly configured. This paper describes experiments carried out to characterize the effectiveness of different barrier wall configurations at reducing the hazards created by jet fires. The hazards that are evaluated are the generation of overpressure during ignition the thermal radiation produced by the jet flame and the effectiveness of the wall at deflecting the flame.<br/>The tests were conducted against a vertical wall (1-wall configuration) and two “3-wall” configurations that consisted of the same vertical wall with two side walls of the same dimensions angled at 135° and 90°. The hydrogen jet impinged on the center of the central wall in all cases. In terms of reducing the radiation heat flux behind the wall the 1-wall configuration performed best followed by the 3-wall 135° configuration and the 3-wall 90°. The reduced shielding efficiency of the three-wall configurations was probably due to the additional confinement created by the side walls that limited the escape of hot gases to the sides of the wall and forced the hot gases to travel over the top of the wall.<br/>The 3-wall barrier with 135° side walls exhibited the best overall performance. Overpressures produced on the release side of the wall were similar to those produced in the 1-wall configuration. The attenuation of overpressure and impulse behind the wall was comparable to that of the three-wall configuration with 90° side walls. The 3-wall 135° configuration’s ability to shield the back side of the wall from the heat flux emitted from the jet flame was comparable to the 1-wall and better than the 3-wall 90° configuration. The ratio of peak overpressure (from in front of the wall and from behind the wall) showed that the 3-wall 135° configuration and the 3-wall 90° configuration had a similar effectiveness. In terms of the pressure mitigation the 3-wall configurations performed significantly better than the 1-wall configuration
Propulsion of a Hydrogen-fuelled LH2 Tanker Ship
Mar 2022
Publication
This study aims to present a philosophical and quantitative perspective of a propulsion system for a large-scale hydrogen-fuelled liquid-hydrogen (LH2) tanker ship. Established methods are used to evaluate the design and performance of an LH2-carrier propulsion system for JAMILA a ship designed with four cylindrical LH2 tanks bearing a total capacity of ~280000 m3 along with cargo and using the boil-off as propulsion and power fuel. Additionally the ship propulsion system is evaluated based on the ship resistance requirements and a hydrogen-fuelled combined-cycle gas turbine is modelled to achieve the dual objectives of high efficiency and zero-carbon footprint. The required inputs primarily involve the off-design and degraded performance of the gas-turbine topping cycle and the proposed power plant operates with a total output power of 50 M.W. The results reveal that the output power allows ship operation at a great speed even with a degraded engine and adverse ambient conditions.
The Role of Hydrogen on the Behavior of Intergranular Cracks in Bicrystalline α-Fe Nanowires
Jan 2021
Publication
Hydrogen embrittlement (HE) has been extensively studied in bulk materials. However little is known about the role of H on the plastic deformation and fracture mechanisms of nanoscale materials such as nanowires. In this study molecular dynamics simulations are employed to study the influence of H segregation on the behavior of intergranular cracks in bicrystalline α-Fe nanowires. The results demonstrate that segregated H atoms have weak embrittling effects on the predicted ductile cracks along the GBs but favor the cleavage process of intergranular cracks in the theoretically brittle directions. Furthermore it is revealed that cyclic loading can promote the H accumulation into the GB region ahead of the crack tip and overcome crack trapping thus inducing a ductile-to-brittle transformation. This information will deepen our understanding on the experimentally-observed H-assisted brittle cleavage failure and have implications for designing new nanocrystalline materials with high resistance to HE.
Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
Apr 2021
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 o 4.8 ×10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
The Compatibility of Onshore Petroleum with Meeting the UK’s Carbon Budgets
Jul 2016
Publication
The Committee’s report ‘The compatibility of UK onshore petroleum with meeting the UK’s carbon budgets’ is the result of a new duty under the Infrastructure Act 2015. This duty requires the CCC to advise the Secretary of State for Energy and Climate Change about the implications of exploitation of onshore petroleum including shale gas for meeting UK carbon budgets.<br/>The CCC’s report finds that the implications of UK shale gas exploitation for greenhouse gas emissions are subject to considerable uncertainty – from the size of any future industry to the potential emissions footprint of shale gas production. It also finds that exploitation of shale gas on a significant scale is not compatible with UK carbon budgets or the 2050 commitment to reduce emissions by at least 80% unless three tests are satisfied.
Electric and Hydrogen Buses: Shifting from Conventionally Fuelled Cars in the UK
May 2020
Publication
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A Modelling Study for the Integration of a PEMFC Micro-CHP in Domestic Building Services Design
May 2018
Publication
Fuel cell based micro-combined heat and power (CHP) units used for domestic applications can provide significant cost and environmental benefits for end users and contribute to the UK’s 2050 emissions target by reducing primary energy consumption in dwellings. Lately there has been increased interest in the development of systematic methods for the design of such systems and their smoother integration with domestic building services. Several models in the literature whether they use a simulation or an optimisation approach ignore the dwelling side of the system and optimise the efficiency or delivered power of the unit. However the design of the building services is linked to the choice of heating plant and its characteristics. Adding the dwelling’s energy demand and temperature constraints in a model can produce more general results that can optimise the whole system not only the micro-CHP unit. The fuel cell has various heat streams that can be harvested to satisfy heat demand in a dwelling and the design can vary depending on the proportion of heat needed from each heat stream to serve the energy demand. A mixed integer non-linear programming model (MINLP) that can handle multiple heat sources and demands is presented in this paper. The methodology utilises a process systems engineering approach. The model can provide a design that integrates the temperature and water flow constraints of a dwelling’s heating system with the heat streams within the fuel cell processes while optimising total CO2 emissions. The model is demonstrated through different case studies that attempt to capture the variability of the housing stock. The predicted CO2 emissions reduction compared to a conventionally designed building vary from 27% to 30% and the optimum capacity of the fuel cell ranges between 1.9 kW and 3.6 kW. This research represents a significant step towards an integrated fuel cell micro-CHP and dwelling design.
Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen
Dec 2021
Publication
This is article presents the results of the testing of the addition of a hydrogen-to-nitrogen-rich natural gas of the Lw group and its influence on the operation of selected gas-fired domestic appliances. The tests were performed on appliances used for the preparation of meals and hot water production for hygienic and heating purposes. The characteristics of the tested gas appliances are also presented. The burners and their controllers with which the tested appliances were equipped were adapted for the combustion of Lw natural gas. The tested appliances reflected the most popular designs for domestic gas appliances in their group used both in Poland and in other European countries. The tested appliances were supplied with nitrogen-rich natural gas of the Lw group and a mixture of this gas with hydrogen at 13.2% content. The article presents the approximate percentage compositions of the gases used during the tests and their energy parameters. The research was focused on checking the following operating parameters and the safety of the tested appliances: the rated heat input thermal efficiency combustion quality ignition flame stability and transfer. The article contains an analysis of the test results referring in detail to the issue of decreasing the heat input of the appliances by lowering the energy parameters of the nitrogen-rich natural gas of the Lw group mixture with a hydrogen addition and how it influenced the thermal efficiency achieved by the appliances. The conclusions contain an explanation regarding among other things how the design of an appliance influences the thermal efficiency achieved by it in relation to the heat input decrease. In the conclusions on the basis of the research results answers have been provided to the following questions: (1) Whether the hydrogen addition to the nitrogen-rich natural gas of the Lw group will influence the safe and proper operation of domestic gas appliances; (2) What hydrogen percentage can be added to the nitrogen-rich natural gas of the Lw group in order for the appliances adapted for combusting it to operate safely and effectively without the need for modifying them?
Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization
Apr 2022
Publication
Hydrogen and renewable electricity-based microgrid is considered to be a promising way to reduce carbon emissions promote the consumption of renewable energies and improve the sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation model ignores the uncertainties and fluctuations of renewable energies and loads a two-stage energy management model is proposed for the sustainable wind-PV-hydrogen-storage microgrid based on receding horizon optimization to eliminate the adverse effects of their uncertainties and fluctuations. In the first stage the day-ahead optimization is performed based on the predicted outpower of WT and PV the predicted demands of power and hydrogen loads. In the second stage the intra-day optimization is performed based on the actual data to trace the day-ahead operation schemes. Since the intra-day optimization can update the operation scheme based on the latest data of renewable energies and loads the proposed two-stage management model is effective in eliminating the uncertain factors and maintaining the stability of the whole system. Simulations show that the proposed two-stage energy management model is robust and effective in coordinating the operation of the wind-PV-hydrogen-storage microgrid and eliminating the uncertainties and fluctuations of WT PV and loads. In addition the battery storage can reduce the operation cost alleviate the fluctuations of the exchanged power with the power grid and improve the performance of the energy management model.
Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting
Apr 2022
Publication
Electrocatalysts are capable of transforming water into hydrogen oxygen and therefore into energy in an environmentally friendly and sustainable manner. However the limitations in the research of high performance catalysts act as an obstructer in the development of using water as green energy. Here we report on a delicate method to prepare novel bimetallic metal organic framework derived electrocatalysts (C–NiCu–BDC–GO–CC) using graphene oxide (GO) modified carbon cloth as a 3D flexible and conductive substrate. The resultant electrocatalyst C–NiCu–BDC– GO–CC exhibited very low electron transfer resistance which benefited from its extremely thin 3D sponge-like morphology. Furthermore it showed excellent oxygen evolution reaction (OER) activity achieving 10 mA/cm2 at a low overpotential of 390 mV in 1 M KOH electrolyte with a remarkable durability of 10 h.
Deflagration Safety Study of Mixtures of Hydrogen and Natural Gas in a Semi-open Space
Sep 2007
Publication
In the transition to a hydrogen economy it is likely that hydrogen will be used or stored in close proximity to other flammable fuels and gases. Accidents can occur that result in the release of two or more fuels such as hydrogen and natural gas that can mix and form a hazard. A series of five medium-scale semi-open-space deflagration experiments have been conducted with hydrogen natural gas and air mixtures. The natural gas consisted of 90% methane 6% ethane 3% propane and 1% butane by volume. Mixtures of hydrogen and natural gas were created with the hydrogen mole fraction in the fuel varying from 1.000 to 0.897 and the natural gas mole fraction varying from 0.000 to 0.103. The hydrogen and natural gas mixture was then released inside a 5.27-m³ thin plastic tent. The stoichiometric fuel-air mixtures were ignited with a 40-J spark located at the bottom center of the tent. Overpressure and impulse data were collected using pressure transducers located within the mixture volume and in the free field. Flame front time-of-arrival was measured using fast response thermocouples and infrared video. Flame speeds relative to a fixed observer were measured between 36.2 m/s and 19.7 m/s. Average peak overpressures were measured between 2.0 kPa and 0.3 kPa. The addition of natural gas inhibited the combustion when the hydrogen mole fraction was less than or equal to 0.949. For these mixtures there was a significant decrease in overpressures. When the hydrogen mole fraction in the fuel was between 0.999 and 0.990 the overpressures were slightly higher than for the case of hydrogen alone. This could be due to experimental scatter or there may be a slight enhancement of the combustion when a very small amount of natural gas was present. From a safety standpoint variation in overpressure was small and should have little effect on safety considerations.
A Homogeneous Non-equilibrium Two-phase Critical Flow Model
Sep 2011
Publication
A non-equilibrium two-phase single-component critical (choked) flow model for cryogenic fluids is developed from first principle thermodynamics. Modern equations-of-state (EOS) based upon the Helmholtz free energy concepts are incorporated into the methodology. Extensive validation of the model is provided with the NASA cryogenic data tabulated for hydrogen methane nitrogen and oxygen critical flow experiments performed with four different nozzles. The model is used to develop a hydrogen critical flow map for stagnation states in the liquid and supercritical regions.
Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production
Dec 2021
Publication
Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis photovoltaic and energy storage due to their quantum confinement effect optoelectronic behavior and their stability. In particular TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein the methods used for the fabrication of TMCs characterization techniques employed and the different methods of solar hydrogen production by using different TMCs as photocatalyst are reviewed. This review provides a summary of TMC photocatalysts for hydrogen production.
Living Carbon Free – Exploring What a Net-zero Target Means for Households
Jun 2019
Publication
The Energy Systems Catapult (ESC) explored the role of households in a net-zero emissions society to accompany the CCC’s Net Zero report looking at opportunities and challenges for households to reduce emissions from today’s levels and to support the stretch from an 80% emissions reduction to a net-zero greenhouse gas target. As well as describing a net-zero emissions world for households of different types the ESC looked at average household emissions under different decarbonisation scenarios and the options households can take to contribute to the decarbonisation effort.
This supported the Net Zero Technical report.
This supported the Net Zero Technical report.
Simulations of Hydrogen Releases from a Storage Tanks- Dispersion and Consequences of Ignition
Sep 2005
Publication
We present results from hydrogen dispersion simulations from a pressurized reservoir at constant flow rate in the presence and absence of a wall. The dispersion simulations are performed using a commercial finite volume solver. Validation of the approach is discussed. Constant concentration envelopes corresponding to the 2% 4% and 15% hydrogen concentration in air are calculated for a subcritical vertical jet and for an equivalent subcritical horizontal jet from a high pressure reservoir. The consequences of ignition and the resulting overpressure are calculated for subcritical horizontal and vertical hydrogen jets and in the latter case compared to available experimental data.
Power Sector Scenarios for the Fifth Carbon Budget
Oct 2015
Publication
This report sets out scenarios for the UK power sector in 2030 as an input to the Committee’s advice on the fifth carbon budget.<br/>These scenarios are not intended to set out a prescriptive path. Instead they provide a tool for the Committee to verify that its advice can be achieved with manageable impacts in order to meet the criteria set out in the Climate Change Act including competitiveness affordability and energy security.
Heuristic Design of Advanced Martensitic Steels That Are Highly Resistant to Hydrogen Embrittlement by ε-Carbide
Feb 2021
Publication
Many advanced steels are based on tempered martensitic microstructures. Their mechanical strength is characterized by fine sub-grain structures with a high density of free dislocations and metallic carbides and/or nitrides. However the strength for practical use has been limited mostly to below 1400 MPa owing to delayed fractures that are caused by hydrogen. A literature survey suggests that ε-carbide in the tempered martensite is effective for strengthening. A preliminary experimental survey of the hydrogen absorption and hydrogen embrittlement of a tempered martensitic steel with ε-carbide precipitates suggested that the proper use of carbides in steels can promote a high resistance to hydrogen embrittlement. Based on the surveys martensitic steels that are highly resistant to hydrogen embrittlement and that have high strength and toughness are proposed. The heuristic design of the steels includes alloying elements necessary to stabilize the ε-carbide and procedures to introduce inoculants for the controlled nucleation of ε-carbide.
Simulation and Techno-Economic Analysis of a Power-to-Hydrogen Process for Oxyfuel Glass Melting
Dec 2021
Publication
As an energy-intensive industry sector the glass industry is strongly affected by the increasingly stringent climate protection targets. As established combustion-based production systems ensure high process stability and glass quality an immediate switch to low greenhouse gas emission processes is difficult. To approach these challenges this work investigates a step-by-step integration of a Power-to-Hydrogen concept into established oxyfuel glass melting processes using a simulation approach. This is complemented by a case study for economic analysis on a selected German glass industry site by simulating the power production of a nearby renewable energy park and subsequent optimization of the power-to-hydrogen plant performance and capacities. The results of this study indicate that the proposed system can reduce specific carbon dioxide emissions by up to 60 % while increasing specific energy demand by a maximum of 25 %. Investigations of the impact of altered combustion and furnace properties like adiabatic flame temperature (+25 °C) temperature efficiency (∆ξ = −0.003) and heat capacity flow ratio (∆zHL = −0.009) indicate that pure hydrogen-oxygen combustion has less impact on melting properties than assumed so far. Within the case study high CO2 abatement costs of 295 €/t CO2-eq. were determined.. This is mainly due to the insufficient performance of renewable energy sources. The correlations between process scaling and economic parameters presented in this study show promising potential for further economic optimization of the proposed energy system in the future.
Future Regulation of the Gas Grid
Jun 2016
Publication
The CCC has established a variety of viable scenarios in which UK decarbonisation targets can be met. Each has consequences for the way in which the UK’s gas network infrastructure is utilised. This report considers the implications of decarbonisation for the future regulation of the gas grid.<br/>The CCC’s 5th Carbon Budget envisaged different scenarios that would enable the UK to meet its emissions targets for 2050. These scenarios represent holistic analyses based on internally consistent combinations of different technologies which could deliver carbon reductions across different sectors of the economy.<br/>The CCC’s scenarios incorporate projections of the demand for natural gas to 2050. The scenarios imply that the volume of throughput on the gas networks1 and the nature and location of network usage is likely to change significantly to meet emissions targets. They are also characterised by significant uncertainty.<br/>Under some decarbonisation scenarios gas networks could be re-purposed to supply hydrogen instead of natural gas meaning there would be ongoing need for network infrastructure.<br/>In other scenarios gas demand in buildings is largely replaced by electric alternatives meaning portions of the low pressure gas distribution networks could be decommissioned.<br/>Patchwork scenarios are also possible in which there is a mixture of these outcomes across the country.<br/>In this project the CCC wished to assess the potential implications for gas networks under these different demand scenarios; and evaluate the associated challenges for Government and regulatory policy. The challenge for BEIS and Ofgem is how to regulate in a way that keeps options open while uncertainty persists about the best solution for the UK; and at the same time how best to make policy and regulatory decisions which would serve to reduce this uncertainty. Both Government and Ofgem have policy and regulatory levers that they can use – and we identify and evaluate such levers in this report.
The Fourth Carbon Budget Review – Part 1 Assessment of Climate Risk and the International Response
Nov 2013
Publication
This is the first document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The second part of the review is available here: The Fourth Carbon Budget Review – part 2: the cost effective path to the 2050 target (December 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 1 focuses on developments in three categories of circumstance on which the budget was set: climate science international circumstances and European Union pathways. The report also looks at findings by the Intergovernmental Panel on Climate Change and assesses the implications for carbon budgets.
Quantifying Greenhouse Gas Emissions
Apr 2017
Publication
In this report Quantifying Greenhouse Gas Emissions the Committee on Climate Change assesses how the UK’s greenhouse gas emissions are quantified where uncertainties lie and the implications for setting carbon budgets and measuring progress against climate change targets. The report finds that:
- The methodology for constructing the UK’s greenhouse gas inventory is rigorous but the process for identifying improvements could be strengthened.
- There is high confidence over large parts of the inventory. A small number of sectors contribute most to uncertainty and research efforts should be directed at improving these estimates.
- UK greenhouse gas emissions for 2014 were within ±3% of the estimated level with 95% confidence which is a low level of uncertainty by international standards.
- Methodology revisions in recent years have tended to increase estimated emissions but these changes have been within uncertainty margins.
- Statistical uncertainty in the current greenhouse gas inventory is low but could rise in future.
- Uncertainty also arises from sources of emissions not currently included in the inventory and from potential changes to IPCC guidelines.
- Independent external validation of greenhouse gas emissions is important and new monitoring techniques should be encouraged.
- Government should continue to monitor consumption-based greenhouse gas estimates and support continued research to improve methodology and reduce uncertainty in these estimates.
UK Business Opportunities of Moving to a Low-carbon Economy
Mar 2017
Publication
The following report accompanies the Committee on Climate Change’s 2017 report on energy prices and bills. It was written by Ricardo Energy and Environment.
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
The New Facility for Hydrogen and Fuel Cell Vehicle Safety Evaluation
Sep 2005
Publication
For the evaluation of hydrogen and fuel cell vehicle safety a new comprehensive facility was constructed in our institute. The new facility includes an explosion resistant indoor vehicle fire test building and high pressure hydrogen tank safety evaluation equipment. The indoor vehicle fire test building has sufficient strength to withstand even an explosion of a high pressure hydrogen tank of 260 liter capacity and 70 MPa pressure. It also has enough space to observe vehicle fire flames of not only hydrogen but also other conventional fuels such as gasoline or compressed natural gas. The inside dimensions of the building are a 16 meter height and 18 meter diameter. The walls are made of 1.2 meter thick reinforced concrete covered at the insides with steel plate. This paper shows examples of hydrogen vehicle fires compared with other fuel fires and hydrogen high pressure tank fire tests utilizing several kinds of fire sources. Another facility for evaluation of high pressure hydrogen tank safety includes a 110 MPa hydrogen compressor with a capacity of 200 Nm3/h a 300 MPa hydraulic compressor for burst tests of 70 MPa and higher pressure tanks and so on. This facility will be used for not only the safety evaluation of hydrogen and fuel cell vehicles but also the establishment of domestic/international regulations codes and standards.
Integral Models for High Pressure Hydrogen - Methane Releases
Sep 2009
Publication
The development of hydrogen as energy carrier is promoted by the increasing in energy demand depletion of fossil resources and the global warming. However this issue relies primarily on the safety aspect which requires the knowledge in the case of gas release of the quantities such as the flammable cloud size release path and the location of the lower flammability limit of the mixture. The integral models for predicting the atmospheric dispersion were extensively used in previous works for low pressure releases such as pollutant and flammable gas transport. In the present investigation this approach is extended to the high pressure gas releases. The model is developed in the non-Boussinesq approximation and is based on Gaussian profiles for buoyant variable density jet or plume in stratified atmosphere with a crossflow. Validations have been performed on a broad range of hydrogen methane and air dispersion cases including vertical or horizontal jets or plumes into a quiescent atmosphere or with crosswind.
Meeting Carbon Budgets – 2014 Progress Report to Parliament
Jul 2014
Publication
This is our sixth statutory report to Parliament on progress towards meeting carbon budgets. In it we consider the latest data on emissions and their drivers. This year the report also includes a full assessment of how the first carbon budget (2008-2012) was met drawing out policy lessons and setting out what is required for the future to stay on track for the legislated carbon budgets and the 2050 target. The report includes assessment at the level of the economy the non-traded and traded sectors the key emitting sectors and the devolved administrations. Whilst the first carbon budget has been met and progress made on development and implementation of some policies the main conclusion is that strengthening of policies will be needed to meet future budgets.
No more items...