Quantifying Natural Hydrogen Generation Rates and Volumetric Potential in Onshore Serpentinization
Abstract
This study explores the generation of natural hydrogen through the serpentinization of onshore ultramafic rocks, highlighting its potential as a clean energy resource. By investigating critical factors such as mineral composition, temperature, and pressure, the research develops an empirical model using multiple regression analysis to predict hydrogen generation rates under varying geological conditions. A novel five-stage volumetric calculation methodology is introduced to estimate hydrogen production from ultramafic rock bodies. The application of this framework to the Giles Complex, an ultramafic-mafic intrusion in Australia, suggests a hydrogen generation potential of approximately 2.24 × 1013 kg of hydrogen through partial serpentinization. This estimate is based on the assumed mineral composition, depth, and temperature conditions within the intrusion, which influence the extent of serpentinization reactions. The findings demonstrate the significant potential of ultramafic complexes for natural hydrogen production and provide a foundation for advancing natural hydrogen exploration, refining predictive models, and supporting sustainable energy development.