Economic and Environmental Impact Assessment of Renewable Energy Integration: A Review and Future Research Directions
Abstract
This review article critically examines papers on renewable energy integration (REI), with a specific focus on the economic and environmental impact assessments across multiple sectors, including agriculture, transportation, electricity production, buildings, and biofuel production. A total of 111 articles from the Web of Science Core Collection database were reviewed using a systematic literature review methodology and content analysis techniques. The results indicate that evaluation-type studies, particularly those employing optimization and simulation-based methods, such as techno-economic analysis (TEA) (28 papers) and lifecycle assessment (LCA) (20 papers), were the most prominent approaches used for economic and environmental analyses. Optimization techniques such as mixed-integer linear programming (6 papers), genetic algorithms (GA) (5 papers), and particle swarm optimization (PSO) (4 papers) were widely applied. The quantitative analysis of impact assessment indicators shows that REI has yielded significant long-term positive results across multiple RE sources, sectors, and regions. A detailed examination of mathematical models (e.g., optimization techniques) and simulation modeling combined with lifecycle assessment (LCA) will assist future researchers in optimizing energy systems and enhancing sustainability in sectors such as agriculture and water desalination. The conceptual inclusion of circular economy within the research field needs to be more present among researchers, and most of the studies focused on technical aspects of RE integration and assessing impacts rather than identifying a systemic change across the sectors. Several future research directions have been identified across sectors, offering opportunities to advance the field. Policymakers will find this paper valuable for informed decision-making and the development of robust policy frameworks.