Skip to content
1900

Elevating Sustainability with a Multi-Renewable Hydrogen Generation System Empowered by Machine Learning and Multi-objective Optimisation

Abstract

The global energy landscape is rapidly shifting toward cleaner, lower-carbon electricity generation, necessitating a transition to alternate energy sources. Hydrogen, particularly green hydrogen, looks to be a significant solution for facilitating this transformation, as it is produced by water electrolysis with renewable energy sources such as solar irradiations, wind speed, and biomass residuals. Traditional energy systems are costly and produce energy slowly due to unpredictability in resource supply. To address this challenge, this work provides a novel technique that integrates a multi-renewable energy system using multi objective optimization algorithm to meets the machine learning-based forecasted load model. Several forecasting models, including Autoregressive Integrated Moving Average(ARIMA), Random Forest and Long Short-Term Memory Recurrent Neural Network (LSTMRNN), are assessed for develop the statistical metrics values such as RMSE, MAE, and MAPE. The selected Non-Sorting Moth Flame Optimization (NSMFO) algorithm demonstrates technological prowess in efficiently achieving global optimization, particularly when handling multiple objective functions. This integrated method shows enormous promise in technological, economic, and environmental terms, emphasizing its ability to promote energy sustainability targets.

Related subjects: Production & Supply Chain
Countries: India
Loading

Article metrics loading...

/content/journal6248
2024-04-30
2024-11-15
/content/journal6248
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error