India
Renewable Hydrogen Production from Butanol: A Review
Dec 2017
Publication
Hydrogen production from butanol is a promising alternative when it is obtained from bio-butanol or bio-oil due to the higher hydrogen content compared to other oxygenates such as methanol ethanol or propanol. Catalysts and operating conditions play a crucial role in hydrogen production. Ni and Rh are metals mainly used for butanol steam reforming oxidative steam reforming and partial oxidation. Additives such as Cu can improve catalytic activity in m Read More
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations fro Read More
Plasmonic Nickel Nanoparticles Decorated on to LaFeO3 Photocathode for Enhanced Solar Hydrogen Generation
Nov 2018
Publication
Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrat Read More
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The tes Read More
Recent Developments in Carbon-Based Nanocomposites for Fuel Cell Applications: A Review
Jan 2022
Publication
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size shape increased surface-to-volume ratio and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more Read More
Numerical Modelling of Unconfined and Confined Hydrogen Explosion
Sep 2019
Publication
Numerical studies were conducted with the objective of gaining a better understanding of the consequences of potential explosion that could be associated with release of hydrogen in a confined and unconfined environment. This paper describes the work done by us in modelling explosion of accidental releases of hydrogen using our Fire Explosion Release Dispersion (FRED) software. CAM and SCOPE models in FRED is used for validation of congested/unco Read More
The Effect of Iron on the Solubility Behavior of Hydrogen in Tantalum
Sep 2013
Publication
The separation storage and recovery of hydrogen are key requirements for the efficient development of advanced hydrogen fuel technologies. The ideal hydrogen separation membrane should have high hydrogen permeability and good mechanical properties at a range of temperatures and pressures. Tantalum is a potential candidate with highest permeability to hydrogen among pure materials for hydrogen separation membrane. Isothermal as Read More
Emissions control and performance evaluation of spark ignition engine with oxy-hydrogen blending
Mar 2018
Publication
Fast depletion of fossil fuels and their detrimental effect to the environment is demanding an urgent need of alternative fuels for meeting sustainable energy demand with minimum environmental impact. Expert studies indicate hydrogen is one of the most promising energy carriers for the future due to its superior combustion qualities and availability. The use of hydrogen in spark ignition internal combustion engine may be part of an integrated soluti Read More
Microbial Fuel Cells: Technologically Advanced Devices and Approach for Sustainable/renewable Energy Development
Dec 2021
Publication
There is a huge quantity of energy needs/demands for multiple developmental and domestic activities in the modern era. And in this context consumption of more non-renewable energy is reported and created many problems or issues (availability of fossil fuel stocks in the future period causes a huge quantity of toxic gases or particles or climatic change effects) at the global level. And only sustainable or renewable fuel development can provide alternate f Read More
Insight into Anomalous Hydrogen Adsorption on Rare Earth Metal Decorated on 2 Dimensional Hexagonal Boron Nitride a Density Functional Theory Study
Mar 2020
Publication
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage hydrogen evolution using catalysis etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood its binding properties with lanthanides are not well reported. In this article by density functional theory studies we show how a rare earth metal cerium binds with hydrogen when decorated over a h Read More
Production of Advanced Fuels Through Integration of Biological, Thermo-Chemical and Power to Gas Technologies in a Circular Cascading Bio-Based System
Sep 2020
Publication
In the transition to a climate neutral future the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies together with power to gas (P2G) systems can gene Read More
Tracking Hydrogen Embrittlement Using Short Fatigue Crack Behavior of Metals
Dec 2018
Publication
Understanding hydrogen embrittlement phenomenon that leads to deterioration of mechanical properties of metallic components is vital for applications involving hydrogen environment. Among these understanding the influence of hydrogen on the fatigue behaviour of metals is of great interest. Total fatigue life of a material can be divided into fatigue crack initiation and fatigue crack growth phase. While fatigue crack initiation can be linked with the pr Read More
Reversible Hydrogen Storage Using Nanocomposites
Jul 2020
Publication
In the field of energy storage recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several carbonaceous nanovariants like carbon nanotubes (CNTs) fullerenes and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-org Read More
Enhanced Hydrogen Generation Efficiency of Methanol using Dielectric Barrier Discharge Plasma Methodology and Conducting Sea Water as an Electrode
Aug 2020
Publication
In this work methanol decomposition method has been discussed for the production of hydrogen gas with the application of plasma. A simple dielectric barrier discharge (DBD) plasma reactor was designed for this purpose with two types of electrode. The DBD plasma reactor was experimented by substituting one of the metal electrodes with feebly conducting sea water which yielded better efficiency in producing hydrogen gas. Experimental parameters Read More
Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage
Sep 2021
Publication
The present work addresses the modelling control and simulation of a microgrid integrated wind power system with Doubly Fed Induction Generator (DFIG) using a hybrid energy storage system. In order to improve the quality of the waveforms (voltages and currents) supplied to the grid instead of a two level-inverter the rotor of the DFIG is supplied using a three-level inverter. A new adaptive algorithm based on combined Direct Reactive Power Control ( Read More
Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches
Nov 2020
Publication
Biomass is plant or animal material that stores both chemical and solar energies and that is widely used for heat production and various industrial processes. Biomass contains a large amount of the element hydrogen so it is an excellent source for hydrogen production. Therefore biomass is a sustainable source for electricity or hydrogen production. Although biomass power plants and reforming plants have been commercialized it remains a difficult challenge Read More
Phase Field Modelling of Formation and Fracture of Expanding Precipitates
May 2017
Publication
It is a common belief that embedded expanding inclusions are subjected to an internal homogeneous compressive hydrostatic stress. Still cracks that appear in precipitates that occupy a larger volume than the original material are frequently observed. The appearance of cracks has since long been regarded as a paradox. In the present study it is shown that matrix materials that increases its volume even several percent during the precipitation process dev Read More
Indentation and Hydride Orientation in Zr-2.5%Nb Pressure Tube Material
Jun 2019
Publication
In this study indentations were made on Zr-2.5%Nb pressure tube material to induce multi-axial stress field. An I-shaped punch mark was indented on the Pressure tube material with predefined punch load. Later material was charged with 50 wppm of hydrogen. The samples near the punch mark were metallographically examined for hydrides orientation. It was observed that hydrides exhibited preferentially circumferential orientation far away fr Read More
A Review on Recent Advances in Hydrogen Energy, Fuel Cell, Biofuel and Fuel Refining via Ultrasound Process Intensification
Mar 2021
Publication
Hydrogen energy is one of the most suitable green substitutes for harmful fossil fuels and has been investigated widely. This review extensively compiles and compares various methodologies used in the production storage and usage of hydrogen. Sonochemistry is an emerging synthesis process and intensification technique adapted for the synthesis of novel materials. It manifests acoustic cavitation phenomena caused by ultrasound where higher rates of re Read More
An Investigation of a (Vinylbenzyl) Trimethylammonium and N-Vinylimidazole-Substituted Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Copolymer as an Anion-Exchange Membrane in a Lignin-Oxidising Electrolyser
Jun 2021
Publication
Electrolysis is seen as a promising route for the production of hydrogen from water as part of a move to a wider “hydrogen economy”. The electro-oxidation of renewable feedstocks offers an alternative anode couple to the (high-overpotential) electrochemical oxygen evolution reaction for developing low-voltage electrolysers. Meanwhile the exploration of new membrane materials is also important in order to try and reduce the capital costs of electrolysers Read More
No more items...