Recent Insights into Low-Surface-Area Catalysts for Hydrogen Production from Ammonia
Abstract
A potential method of storing and transporting hydrogen safely in a cost-effective and practical way involves the utilization of molecules that contain hydrogen in their structure such as ammonia. Because of its high hydrogen content and carbon-free molecular structure, as well as the maturity of related technology (easy liquefaction), ammonia has gained attention as a “hydrogen carrier” for the generation of energy. Unfortunately, hydrogen production from ammonia requires an efficient catalyst to achieve high conversion at low reaction temperatures. Recently, very attractive results have been obtained with low-surface-area materials. This review paper is focused on summarizing and comparing recent advances in novel, economic and active catalysts for this reaction, paying particular attention to materials with low surface area such as silicon carbide (SiC) and perovskites (ABO3 structure). The effects of the supports, the active phase and the addition of promoters in such low-porosity materials have been analyzed in detail. Advances in adequate catalytic systems (including support and active metal) benefit the perspective of ammonia as a hydrogen carrier for the decarbonization of the energy sector and accelerate the “hydrogen economy”.