Ghana
A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation
Feb 2022
Publication
An increase in human activities and population growth have significantly increased the world’s energy demands. The major source of energy for the world today is from fossil fuels which are polluting and degrading the environment due to the emission of greenhouse gases. Hydrogen is an identified efficient energy carrier and can be obtained through renewable and non-renewable sources. An overview of renewable sources of hydrogen production which focuses on water splitting (electrolysis thermolysis and photolysis) and biomass (biological and thermochemical) mechanisms is presented in this study. The limitations associated with these mechanisms are discussed. The study also looks at some critical factors that hinders the scaling up of the hydrogen economy globally. Key among these factors are issues relating to the absence of a value chain for clean hydrogen storage and transportation of hydrogen high cost of production lack of international standards and risks in investment. The study ends with some future research recommendations for researchers to help enhance the technical efficiencies of some production mechanisms and policy direction to governments to reduce investment risks in the sector to scale the hydrogen economy up.
Law and Policy Review on Green Hydrogen Potential in ECOWAS Countries
Mar 2022
Publication
This paper aims to review existing energy-sector and hydrogen-energy-related legal policy and strategy documents in the ECOWAS region. To achieve this aim current renewable-energyrelated laws acts of parliament executive orders presidential decrees administrative orders and memoranda were analyzed. The study shows that ECOWAS countries have strived to design consistent legal instruments regarding renewable energy in developing comprehensive legislation and bylaws to consolidate it and to encourage investments in renewable energy. Despite all these countries having a legislative basis for regulating renewable energy there are still weaknesses that revolve around the law and policy regarding its possible application in green hydrogen production and use. The central conclusion of this review paper is that ECOWAS member states presently have no official hydrogen policies nor bylaws in place. The hydrogen rise presents a challenge and opportunity for members to play an important role in the fast-growing global hydrogen market. Therefore these countries need to reform their regulatory frameworks and align their policies by introducing green hydrogen production in order to accomplish their green economy transition for the future and to boost the continent’s sustainable development.
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Optimal Hybrid Renewable Energy System: A Comparative Study of Wind/Hydrogen/Fuel-Cell and Wind/Battery Storage
Dec 2020
Publication
This paper performs a technoeconomic comparison of two hybrid renewable energy supplies (HRES) for a specific location in Ghana and suggests the optimal solution in terms of cost energy generation capacity and emissions. (e two HRES considered in this paper were wind/hydrogen/fuel-cell and wind/battery storage respectively. (e necessity of this study was derived from the rise and expansion of hybrid renewable energy supply in a decentralised network. (e readiness to embrace these new technologies is apparently high but the best combination for a selected location that brings optimum benefits is not obvious and demands serious technical knowledge of their technical and economic models. In the methodology an analytical model of energy generation by the various RE sources was first established and data were collected about a rural-urban community in Doderkope Ghana to test the models. HOMER software was used to design the two hybrid systems based on the same load profiles and results were compared. It turns out that the HRES 1 (wind/hydrogen/fuel-cell) had the lowest net present cost (NPC) and levelized cost of electricity (COE) over the project life span of 25 years. (e energy reserve with the HRES 2 (wind/battery storage) was huge compared to that with the HRES 1 about 270% bigger. Furthermore with respect to the emissions the HRES 2 was environmentally friendlier than the HRES 1. Even though the battery storage seems to be more cost-effective than the hydrogen fuel cell technology the latter presents some merits regarding system capacity and emission that deserve greater attention as the world looks into more sustainable energy storage systems.
Techno-economic Viability of Decentralised Solar Photovoltaic-based Green Hydrogen Production for Sustainable Energy Transition in Ghana
Feb 2024
Publication
Transition to a sustainable energy supply is essential for addressing the challenges of climate change and achieving a low-carbon future. Green hydrogen produced from solar photovoltaic (PV) systems presents a promising solution in Ghana where energy demands are increasing rapidly. The levelized cost of hydrogen (LCOH) is considered a critical metric to evaluate hydrogen production techniques cost competitiveness and economic viability. This study presents a comprehensive analysis of LCOH from solar PV systems. The study considered a 5 MW green hydrogen production plant in Ghana’s capital Accra as a proposed system. The results indicate that the LCOH is about $9.49/kg which is comparable to other findings obtained within the SubSaharan Africa region. The study also forecasted that the LCOH for solar PV-based hydrogen produced will decrease to $5–6.5/kg by 2030 and $2–2.5/kg by 2050 or lower making it competitive with fossil fuel-based hydrogen. The findings of this study highlight the potential of green hydrogen as a sustainable energy solution and its role in driving the country’s net-zero emissions agenda in relation to its energy transition targets. The study’s outcomes are relevant to policymakers researchers investors and energy stakeholders in making informed decisions regarding deploying decentralised green hydrogen technologies in Ghana and similar contexts worldwide.
Evaluating the Economic Viability of Decentralised Solar PV-based Green Hydrogen for Cooking in Ghana
Jul 2024
Publication
Developing countries including Ghana face challenges ensuring access to clean and reliable cooking fuels and technologies. Traditional biomass sources mainly used in most developing countries for cooking contribute to deforestation and indoor air pollution necessitating a shift towards environmentally friendly alternatives. The study’s primary objective is to evaluate the economic viability of using solar PV-based green hydrogen as a sustainable fuel for cooking in Ghana. The study adopted well-established equations to investigate the economic performance of the proposed system. The findings revealed that the levelized cost of hydrogen using the discounted cash flow approach is about 89% 155% and 190% more than electricity liquefied petroleum gas (LPG) and charcoal. This implies that using the hydrogen produced for cooking fuel is not cost-competitive compared to LPG charcoal and electricity. However with sufficient capital subsidies to lower the upfront costs the analysis suggests solar PV-based hydrogen could become an attractive alternative cooking fuel. In addition switching from firewood to solar PVbased hydrogen for cooking yields the highest carbon dioxide (CO2) emissions savings across the cities analysed. Likewise replacing charcoal with hydrogen also offers substantial CO2 emissions savings though lower than switching from firewood. Correspondingly switching from LPG to hydrogen produces lower CO2 emissions savings than firewood and charcoal. The study findings could contribute to the growing body of knowledge on sustainable energy solutions offering practical insights for policymakers researchers and industry stakeholders seeking to promote clean cooking adoption in developing economies.
Investigation of Hybrid Power-to-hydrogen/Nautral Gas and Hydrogen-to-X System in Cameroon
May 2024
Publication
In Sub-Saharan Africa (SSA) the capacity to generate energy faces significant hurdles. Despite efforts to integrate renewable energy sources and natural gas power plants into the energy portfolio the desired reduction in environmental impact and alleviation of energy poverty remain elusive. Hence exploring a spectrum of hybrid technologies encompassing storage and hydrogen-based solutions is imperative to optimize energy production while mitigating harmful emissions. To exemplify this necessity the 216 MW Kribi gas power plant in Cameroon is the case study. The primary aim is to investigate cutting-edge emissions and energy schemes within the SSA. This paper assessed the minimum complaint load technique and four power-to-fuel options from technical financial and environmental perspectives to assess the viability of a natural gas fuel system powered with hydrogen in a hybrid mode. The system generates hydrogen by using water electrolysis with photovoltaic electricity and gas power plant. This research also assesses process efficiency storage capacity annual costs carbon avoided costs and production prices for various fuels. Results showed that the LCOE from a photovoltaic solar plant is 0.19$/kWh with the Power-to-Hydrogen process (76.2% efficiency) being the most efficient followed by the ammonia and urea processes. The study gives a detailed examination of the hybrid hydrogen natural gas fuel system. According to the annual cost breakdown the primary costs are associated with the acquisition of electrical energy and electrolyser CAPEX and OPEX which account for 95% of total costs. Urea is the cheapest mass fuel. However it costs more in terms of energy. Hydrogen is the most cost-effective source of energy. In terms of energy storage and energy density by volume the methane resulted as the most suitable solution while the ammonia resulted as the best H2 storage medium in terms of kg of H2 per m3 of storage (108 kgH2/m3 ). By substituting the fuel system with 15% H2 the environmental effects are reduced by 1622 tons per year while carbon capture technology gathered 16664 tons of CO2 for methanation and urea operations yielding a total carbon averted cost of 21 $/ton.
Mapping Local Green Hydrogen Cost-potentials by a Multidisciplinary Approach
Sep 2024
Publication
S. Ishmam,
Heidi Heinrichs,
C. Winkler,
B. Bayat,
Amin Lahnaoui,
Solomon Nwabueze Agbo,
E.U. Pena Sanchez,
David Franzmann,
N. Oijeabou,
C. Koerner,
Y. Michael,
B. Oloruntoba,
C. Montzka,
H. Vereecken,
H. Hendricks Franssen,
J. Brendtf,
S. Brauner,
W. Kuckshinrichs,
S. Venghaus,
Daouda Kone,
Bruno Korgo,
Kehinde Olufunso Ogunjobi,
V. Chiteculo,
Jane Olwoch,
Z. Getenga,
Jochen Linßen and
Detlef Stolten
For fast-tracking climate change response green hydrogen is key for achieving greenhouse gas neutral energy systems. Especially Sub-Saharan Africa can benefit from it enabling an increased access to clean energy through utilizing its beneficial conditions for renewable energies. However developing green hydrogen strategies for Sub-Saharan Africa requires highly detailed and consistent information ranging from technical environmental economic and social dimensions which is currently lacking in literature. Therefore this paper provides a comprehensive novel approach embedding the required range of disciplines to analyze green hydrogen costpotentials in Sub-Saharan Africa. This approach stretches from a dedicated land eligibility based on local preferences a location specific renewable energy simulation locally derived sustainable groundwater limitations under climate change an optimization of local hydrogen energy systems and a socio-economic indicator-based impact analysis. The capability of the approach is shown for case study regions in Sub-Saharan Africa highlighting the need for a unified interdisciplinary approach.
No more items...