Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System
Abstract
In response to the objective of fully attaining carbon neutrality by 2060, people from all walks of life are pursuing low-carbon transformation. Due to the high water cut in the middle and late phases of development, the oilfield’s energy consumption will be quite high, and the rise in energy consumption will lead to an increase in carbon emission at the same time. As a result, the traditional energy model is incapable of meeting the energy consumption requirement of high water cut oilfields in their middle and later phases of development. The present wind hydrogen coupling energy system was researched and coupled with the classic dispersed oilfield energy system to produce energy for the oilfields in this study. This study compares four future energy system models to existing ones, computes the energy cost and net present value of an oilfield in Northwest China, and proposes a set of economic evaluation tools for oilfield energy systems. The study’s findings indicate that scenario four provides the most economic and environmental benefits. This scenario effectively addresses the issue of high energy consumption associated with aging oilfields at this point, significantly reduces carbon emissions, absorbs renewable energy locally, and reduces the burden on the power grid system. Finally, sensitivity analysis is utilized to determine the effect of wind speed, electricity cost, and oilfield gas output on the system’s economic performance. The results indicate that the system developed in this study can be applied to other oilfields.