Hydrogen Assisted Macrodelamination in Gas Lateral Pipe
Abstract
Hydrogen assisted macrodelamination in the pipe elbows of 40-year exploited lateral pipelines located behind the compressor station was studied. The crack on the external surface of the pipe elbow was revealed. Macrodelamination was occurred in the steel being influenced by the joined action of working loads and hydrogen absorbed by metal during long-term operation. The causes of the material degradation were investigated by non-destructive testing using ultrasound thickness meter, observing microstructure, hydrostatic pressure testing, and mechanical properties testing of pipe steel.
Intensive degradation of steel, primarily essential reduction of plasticity was revealed. The degradation degree of the pipe elbow steel was higher than of the straight pipe steel regardless of a section was tensioned or compressed. Basing on the tensile tests carried out on cylindrical smooth and notched specimens from the pipe elbow steel it was established that the plasticity of the damaged steel could be measured correctly only on the specimens with a circular notch due to concentration of deformation in the cross section location only. The limitations in using elongation and reduction in area for characterisation of plasticity of the pipe steel with extensive delamination were defined. The diagnostic features of macrodelamination, namely an abnormal thickness meter readings and a sharp decrease in hardness and plasticity of the pipe elbow steel were established.