Sweden
Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies
Apr 2021
Publication
Industries account for about 30% of total final energy consumption worldwide and about 20% of global CO2 emissions. While transitions towards renewable energy have occurred in many parts of the world in the energy sectors the industrial sectors have been lagging behind. Decarbonising the energy-intensive industrial sectors is however important for mitigating emissions leading to climate change. This paper analyses various technological trajectories and key policies for decarbonising energy-intensive industries: steel mining and minerals cement pulp and paper and refinery. Electrification fuel switching to low carbon fuels together with technological breakthroughs such as fossil-free steel production and CCS are required to bring emissions from energy-intensive industry down to net-zero. A long-term credible carbon price support for technological development in various parts of the innovation chain policies for creating markets for low-carbon materials and the right condition for electrification and increased use of biofuels will be essential for a successful transition towards carbon neutrality. The study focuses on Sweden as a reference case as it is one of the most advanced countries in the decarbonisation of industries. The paper concludes that it may be technically feasible to deep decarbonise energy-intensive industries by 2045 given financial and political support.
The Value of Flexible Fuel Mixing in Hydrogen-fueled Gas Turbines - A Techno-economic Study
Jul 2022
Publication
In electricity systems mainly supplied with variable renewable electricity (VRE) the variable generation must be balanced. Hydrogen as an energy carrier combined with storage has the ability to shift electricity generation in time and thereby support the electricity system. The aim of this work is to analyze the competitiveness of hydrogen-fueled gas turbines including both open and combined cycles with flexible fuel mixing of hydrogen and biomethane in zero-carbon emissions electricity systems. The work applies a techno-economic optimization model to future European electricity systems with high shares of VRE.<br/>The results show that the most competitive gas turbine option is a combined cycle configuration that is capable of handling up to 100% hydrogen fed with various mixtures of hydrogen and biomethane. The results also indicate that the endogenously calculated hydrogen cost rarely exceeds 5 €/kgH2 when used in gas turbines and that a hydrogen cost of 3–4 €/kgH2 is for most of the scenarios investigated competitive. Furthermore the results show that hydrogen gas turbines are more competitive in wind-based energy systems as compared to solar-based systems in that the fluctuations of the electricity generation in the former are fewer more irregular and of longer duration. Thus it is the characteristics of an energy system and not necessarily the cost of hydrogen that determine the competitiveness of hydrogen gas turbines.
Hydrogen Technology for Supply Chain Sustainability: The Mexican Transportation Impacts on Society
Mar 2022
Publication
This study sheds light on the Hydrogen technology in transportation for reaching the sustainability goals of societies illustrated by the case of Mexico. In terms of the affected supply chains the study explores how the packaging and distribution of a fuel-saving tool that allows the adoption of hydrogen as complementary energy for maritime transportation to improve economic and environmental performance in Mexico. This exploratory study performs interviews observations simulations and tests involving producers suppliers and users at 26 ports in Mexico. The study shows that environmental and economic performance are related to key processes in Supply Chain Management (SCM) in which packaging and distribution are critical for achieving logistics and transportation sustainability goals. Reusable packaging and the distribution of a fuel-saving tool can help decrease costs - of transport and downstream/upstream processes in SCM while at the same time increasing the environmental performance.
Potential Transitions in the Iron and Steel Industry in Sweden: Towards a Hydrogen-based Future?
May 2018
Publication
The iron and steel industry accounts for one third of global industrial CO2 emissions putting pressure on the industry to shift towards more sustainable modes of production. However for an industry characterised by path dependency and technological lock-ins sustainability transitions are not straightforward. In this study we aim to explore the potential pathways for sustainability transitions in the iron and steel industry. To do so we have conducted a case study in Sweden where there are policy and industry commitments towards fossil-free steel production. Our theoretical points of departure are the technological innovation system (TIS) approach and the multi-level perspective (MLP) and our paper presents the dynamics behind an emerging case of transition towards a hydrogen-based future. The paper has two major contributions to the literature on sustainability transitions. First it attempts to borrow some concepts from the MLP and integrate them with the TIS approach. Second it empirically presents an in-depth case study of the iron and steel industry e an understudied context in the field of sustainability transitions. By doing so it sheds some light on the dynamics between an emerging TIS and potential transition pathways of a regime.
Strategies for the Sampling of Hydrogen at Refuelling Stations for Purity Assessment
Aug 2021
Publication
Hydrogen delivered at hydrogen refuelling station must be compliant with requirements stated in different standards which require specialized sampling device and personnel to operate it. Currently different strategies are implemented in different parts of the world and these strategies have already been used to perform 100s of hydrogen fuel sampling in USA EU and Japan. However these strategies have never been compared on a large systematic study. The purpose of this paper is to describe and compare the different strategies for sampling hydrogen at the nozzle and summarize the key aspects of all the existing hydrogen fuel sampling including discussion on material compatibility with the impurities that must be assessed. This review highlights the fact it is currently difficult to evaluate the impact or the difference these strategies would have on the hydrogen fuel quality assessment. Therefore comparative sampling studies are required to evaluate the equivalence between the different sampling strategies. This is the first step to support the standardization of hydrogen fuel sampling and to identify future research and development area for hydrogen fuel sampling.
Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study
Jul 2020
Publication
The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF) where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2) could result in almost fossil-free steel production and Sweden could achieve a 10% reduction in total CO2 emissions. Finally (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI) could lead to decarbonization of the steel industry outside Sweden assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.
The Evolution and Structure of Ignited High-pressure Cryogenic Hydrogen Jets
Jun 2022
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen at cryogenic conditions. Understanding the potential hazard arising from leaks in high-pressure cryogenic storage is needed to improve hydrogen safety. The manuscript reports a series of numerical simulations with detailed chemistry for the transient evolution of ignited high-pressure cryogenic hydrogen jets. The study aims to gain insight of the ignition processes flame structures and dynamics associated with the transient flame evolution. Numerical simulations were firstly conducted for an unignited jet released under the same cryogenic temperature of 80 K and pressure of 200 bar as the considered ignited jets. The predicted hydrogen concentrations were found to be in good agreement with the experimental measurements. The results informed the subsequent simulations of the ignited jets involving four different ignition locations. The predicted time series snapshots of temperature hydrogen mass fraction and the flame index are analyzed to study the transient evolution and structure of the flame. The results show that a diffusion combustion layer is developed along the outer boundary of the jet and a side diffusion flame is formed for the near-field ignition. For the far-field ignition an envelope flame is observed. The flame structure contains a diffusion flame on the outer edge and a premixed flame inside the jet. Due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions localized spontaneous ignition and transient flame extinguishment are observed. The predictions also captured the experimentally observed deflagration waves in the far-field ignited jets.
Numerical Modeling for Rapid Charging of Hydrogen Gas Vessel in Fuel Cell Vehicle
Feb 2023
Publication
As a fuel for power generation high-pressure hydrogen gas is widely used for transportation and its efficient storage promotes the development of fuel cell vehicles (FCVs). However as the filling process takes such a short time the maximum temperature in the storage tank usually undergoes a rapid increase which has become a thorny problem and poses great technical challenges to the steady operation of hydrogen FCVs. For security reasons SAE J2601/ISO 15869 regulates a maximum temperature limit of 85 ◦C in the specifications for refillable hydrogen tanks. In this paper a two-dimensional axisymmetric and a three-dimensional numerical model for fast charging of Type III 35 MPa and 70 MPa hydrogen vehicle cylinders are proposed in order to effectively evaluate the temperature rise within vehicle tanks. A modified standard k-ε turbulence model is utilized to simulate hydrogen gas charging. The equation of state for hydrogen gas is adopted with the thermodynamic properties taken from the National Institute of Standards and Technology (NIST) database taking into account the impact of hydrogen gas’ compressibility. To validate the numerical model three groups of hydrogen rapid refueling experimental data are chosen. After a detailed comparison it is found that the simulated results calculated by the developed numerical model are in good agreement with the experimental results with average temperature differences at the end time of 2.56 K 4.08 K and 4.3 K. The present study provides a foundation for in-depth investigations on the structural mechanics analysis of hydrogen gas vessels during fast refueling and may supply some technical guidance on the design of charging experiments.
Socio-technical Imaginaries of Climate-neutral Aviation
May 2024
Publication
Limiting global warming to 1.5 ◦C is crucial to prevent the worst effects of climate change. This entails also the decarbonization of the aviation sector which is considered to be a “hard-to-abate” sector and thus requires special attention regarding its sustainability transition. However transition pathways to a potentially climateneutral aviation sector are unclear with different stakeholders having diverse imaginations of the sector's future. This paper aims to analyze socio-technical imaginaries of climate-neutral aviation as different perceptions of various stakeholders on this issue have not been sufficiently explored so far. In that sense this work contributes to the current scientific debate on socio-technical imaginaries of energy transitions for the first time studying the case of the aviation sector. Drawing on six decarbonization reports composed by different interest groups (e.g. industry academia and environmental associations) three imaginaries were explored following the process of a thematic analysis: rethinking travel and behavioral change (travel innovation) radical modernization and technological progress (fleet innovation) and transition to alternative fuels and renewable energy sources (fuel innovation). The results reveal how different and partly conflicting socio-technical imaginaries are co-produced and how the emergence and enforceability of these imaginaries is influenced by the situatedness of their creators indicating that the sustainability transition of aviation also raises political issues. Essentially as socio-technical imaginaries act as a driver for change policymakers should acknowledge the existence of alternative and counter-hegemonic visions created by actors from civil society settings to take an inclusive and equitable approach to implementing pathways towards climate-neutral aviation.
On the Design and Optimization of Distributed Energy Resources for Sustainable Grid-integrated Microgrid in Ethiopia
Apr 2023
Publication
This paper presents a study that focuses on alleviating the impacts of grid outages in Ethiopia. To deal with grid outages most industrial customers utilize backup diesel generators (DG) which are environmentally unfriendly and economically not viable. Grid integration of hybrid renewable energy systems (HRES) might be a possible solution to enhance grid reliability and reduce environmental and economic impacts of utilizing DG. In this study an optimization of grid integrated HRES is carried out for different dispatch and control strategies. The optimal power supply option is determined by performing comparative analysis of the different configurations of grid integrated HRES. The result of the study shows that grid integrated HRES consisting of photovoltaic and wind turbine as renewable energy sources and battery and hydrogen as hybrid energy storage systems is found to be the optimal system to supply the load demand. From the hydrogen produced on-site the FC generator and FCEVs consume 143 620 kg/yr of hydrogen which is equivalent to 394 955 kg/yr gasoline fuel consumption. This corresponds to saving 1 184 865 kg/yr of CO2 emissions and 605 703 $/yr revenue. Besides this system yields 547 035.4 $/yr revenue by injecting excess electricity to the grid. The study clearly shows the economic and environmental viability of this new technology for implementation.
Evaluating Hydrogen Gas Transport in Pipelines: Current State of Numerical and Experimental Methodologies
Apr 2024
Publication
This review article provides a comprehensive overview of the fundamentals modelling approaches experimental studies and challenges associated with hydrogen gas flow in pipelines. It elucidates key aspects of hydrogen gas flow including density compressibility factor and other relevant properties crucial for understanding its behavior in pipelines. Equations of state are discussed in detail highlighting their importance in accurately modeling hydrogen gas flow. In the subsequent sections one-dimensional and three-dimensional modelling techniques for gas distribution networks and localized flow involving critical components are explored. Emphasis is placed on transient flow friction losses and leakage characteristics shedding light on the complexities of hydrogen pipeline transportation. Experimental studies investigating hydrogen pipeline transportation dynamics are outlined focusing on the impact of leakage on surrounding environments and safety parameters. The challenges and solutions associated with repurposing natural gas pipelines for hydrogen transport are discussed along with the influence of pipeline material on hydrogen transportation. Identified research gaps underscore the need for further investigation into areas such as transient flow behavior leakage mitigation strategies and the development of advanced modelling techniques. Future perspectives address the growing demand for hydrogen as a clean energy carrier and the evolving landscape of hydrogen-based energy systems.
On the Way to Utilizing Green Hydrogen as an Energy Carrier—A Case of Northern Sweden
Mar 2024
Publication
Low or even zero carbon dioxide emissions will be an essential requirement for energy supplies in the near future. Besides transport and electricity generation industry is another large carbon emitter. Hydrogen produced by renewable energy provides a flexible way of utilizing that energy. Hydrogen as an energy carrier could be stored in a large capacity compared to electricity. In Sweden hydrogen will be used to replace coal for steel production. This paper discusses how the need for electricity to produce hydrogen will affect the electricity supply and power flow in the Swedish power grid and whether it will result in increased emissions in other regions. Data of the Swedish system will be used to study the feasibility of implementing the hydrogen system from the power system viewpoint and discuss the electricity price and emission issues caused by the hydrogen production in different scenarios. This paper concludes that the Swedish power grid is feasible for accommodating the additional electricity capacity requirement of producing green hydrogen for the steel industry. The obtained results could be references for decision makers investors and power system operators.
Assessing Sizing Optimality of OFF-GRID AC-Linked Solar PV-PEM Systems for Hydrogen Production
Jul 2023
Publication
Herein a novel methodology to perform optimal sizing of AC-linked solar PV-PEM systems is proposed. The novelty of this work is the proposition of the solar plant to electrolyzer capacity ratio (AC/AC ratio) as optimization variable. The impact of this AC/AC ratio on the Levelized Cost of Hydrogen (LCOH) and the deviation of the solar DC/AC ratio when optimized specifically for hydrogen production are quantified. Case studies covering a Global Horizontal Irradiation (GHI) range of 1400e2600 kWh/m2 -year are assessed. The obtained LCOHs range between 5.9 and 11.3 USD/kgH2 depending on sizing and location. The AC/AC ratio is found to strongly affect cost production and LCOH optimality while the optimal solar DC/AC ratio varies up to 54% when optimized to minimize the cost of hydrogen instead of the cost of energy only. Larger oversizing is required for low GHI locations; however H2 production is more sensitive to sizing ratios for high GHI locations.
Grid-supported Electrolytic Hydrogen Production: Cost of Climate Impact Using Dynamic Emission Factors
Aug 2023
Publication
Hydrogen production based on a combination of intermittent renewables and grid electricity is a promising approach for reducing emissions in hard-to-decarbonise sectors at lower costs. However for such a configuration to provide climate benefits it is crucial to ensure that the grid electricity consumed in the process is derived from low-carbon sources. This paper examined the use of hourly grid emission factors (EFs) to more accurately determine the short-term climate impact of dynamically operated electrolysers. A model of the interconnected northern European electricity system was developed and used to calculate average grid-mix and marginal EFs for the four bidding zones in Sweden. Operating a 10 MW electrolyser using a combination of onshore wind and grid electricity was found to decrease the levelised cost of hydrogen (LCOH) to 2.40–3.63 €/kgH2 compared with 4.68 €/kgH2 for wind-only operation. A trade-off between LCOH and short-term climate impact was revealed as specific marginal emissions could exceed 20 kgCO2eq/kgH2 at minimum LCOH. Both an emission-minimising operating strategy and an increased wind-to-electrolyser ratio was found to manage this trade-off by enabling simultaneous cost and emission reductions lowering the marginal carbon abatement cost (CAC) from 276.8 €/tCO2eq for wind-only operation to a minimum of 222.7 and 119.3 €/tCO2eq respectively. Both EF and LCOH variations were also identified between the bidding zones but with no notable impact on the marginal CAC. When using average grid-mix emission factors the climate impact was low and the CAC could be reduced to 71.3–200.0 €/tCO2eq. In relation to proposed EU policy it was demonstrated that abiding by hourly renewable temporal matching principles could ensure low marginal emissions at current levels of fossil fuels in the electricity mix.
Future Green Energy: A Global Analysis
Jun 2024
Publication
The main problem confronting the world is human-caused climate change which is intrinsically linked to the need for energy both now and in the future. Renewable (green) energy has been proposed as a future solution and many renewable energy technologies have been developed for different purposes. However progress toward net zero carbon emissions by 2050 and the role of renewable energy in 2050 are not well known. This paper reviews different renewable energy technologies developed by different researchers and their potential and challenges to date and it derives lessons for world and especially African policymakers. According to recent research results the mean global capabilities for solar wind biogas geothermal hydrogen and ocean power are 325 W 900 W 300 W 434 W 150 W and 2.75 MWh respectively and their capacities for generating electricity are 1.5 KWh 1182.5 KWh 1.7 KWh 1.5 KWh 1.55 KWh and 3.6 MWh respectively. Securing global energy leads to strong hope for meeting the Sustainable Development Goals (SDGs) such as those for hunger health education gender equality climate change and sustainable development. Therefore renewable energy can be a considerable contributor to future fuels.
Looking Beyond Compressed Hydrogen Storage for Sweden: Opportunities and Barriers for Chemical Hydrides
Jun 2024
Publication
As Sweden takes its first steps towards a hydrogen-based economy a strategic approach to infrastructure development for both storage and delivery becomes necessary. Although compressed hydrogen is currently the state-of-the-art its low volumetric density and associated high capital costs pose challenges to widespread societal deployment of hydrogen. In order to avoid technological lock-in alternatives storage technologies including chemical hydrides e.g. methanol ammonia methane and LOHC must also be explored. These alternatives offer higher hydrogen densities safer handling and compatibility with existing infrastructure. However each hydride has unique chemical and physical properties requires distinct feedstock and conversion processes and interacts with the energy system in different ways all of which influences their suitability for various applications. Therefore a comprehensive evaluation of these alternative hydrogen storage technologies as carried out in this article is vital to allow for informed investment decisions and pave the way towards a successful and sustainable hydrogen economy.
Reforming Processes for Syngas Production: A Mini-review on the Current Status, Challenges, and Prospects for Biomass Conversion to Fuels
Mar 2022
Publication
Dedicated bioenergy combined with carbon capture and storage are important elements for the mitigation scenarios to limit the global temperature rise within 1.5 °C. Thus the productions of carbon-negative fuels and chemicals from biomass is a key for accelerating global decarbonisation. The conversion of biomass into syngas has a crucial role in the biomass-based decarbonisation routes. Syngas is an intermediate product for a variety of chemical syntheses to produce hydrogen methanol dimethyl ether jet fuels alkenes etc. The use of biomass-derived syngas has also been seen as promising for the productions of carbon negative metal products. This paper reviews several possible technologies for the production of syngas from biomass especially related to the technological options and challenges of reforming processes. The scope of the review includes partial oxidation (POX) autothermal reforming (ATR) catalytic partial oxidation (CPO) catalytic steam reforming (CSR) and membrane reforming (MR). Special attention is given to the progress of CSR for biomass-derived vapours as it has gained significant interest in recent years. Heat demand and efficiency together with properties of the reformer catalyst were reviewed more deeply in order to understand and propose solutions to the problems that arise by the reforming of biomass-derived vapours and that need to be addressed in order to implement the technology on a big scale.
Double Compression-Expansion Engine (DCEE) Fueled with Hydrogen: Preliminary Computational Assessment
Jan 2022
Publication
Hydrogen (H2 ) is currently a highly attractive fuel for internal combustion engines (ICEs) owing to the prospects of potentially near-zero emissions. However the production emissions and cost of H2 fuel necessitate substantial improvements in ICE thermal efficiency. This work aims to investigate a potential implementation of H2 combustion in a highly efficient double compression-expansion engine (DCEE). DICI nonpremixed H2 combustion mode is used for its superior characteristics as concluded in previous studies. The analysis is performed using a 1D GT-Power software package where different variants of the DICI H2 and diesel combustion cycles obtained experimentally and numerically (3D CFD) are imposed in the combustion cylinder of the DCEE. The results show that the low jet momentum free jet mixing dominated variants of the DICI H2 combustion concept are preferred owing to the lower heat transfer losses and relaxed requirements on the fuel injection system. Insulation of the expander and removal of the intercooling improve the engine efficiency by 1.3 and 0.5 %-points respectively but the latter leads to elevated temperatures in the high-pressure tank which makes the selection of its materials harder but allows the use of cheaper oxidation catalysts. The results also show that the DCEE performance is insensitive to combustion cylinder temperatures making it potentially suitable for other high-octane fuels such as methane methanol ammonia etc. Finally a brake thermal efficiency of 56 % is achieved with H2 combustion around 1 %-point higher than with diesel. Further efficiency improvements are also possible with a fully optimized H2 combustion system.
Improving the Economics of Fossil-free Steelmaking via Co-production of Methanol
Mar 2022
Publication
Steelmaking is responsible for 7% of the global net emissions of carbon dioxide and heavily reducing emissions from currently dominating steelmaking processes is difficult and costly. Recently new steelmaking processes based on the reduction of iron ore with hydrogen (H2) produced via water electrolysis have been suggested. If the electricity input to such processes is fossil-free near-zero carbon dioxide emissions steelmaking is achievable. However the high electricity demand of electrolysis is a significant implementation barrier. A H2 storage may alleviate this via allowing a larger share of H2 to be produced at low electricity prices. However accurately forecasting the dynamics of electricity markets is challenging. This increases the risk of investment in a H2 storage. Here we evaluate a novel methanol-based H2 storage concept for a H2-based steelmaking process that also allows for the coproduction of methanol. During electricity price peaks the methanol can be reformed to produce H2 for the steelmaking process. During prolonged periods of low electricity prices excess methanol can be produced and sold off thus improving the prospects of storage profitability. We use historical electricity prices and a process model to evaluate methanol-fossil-free steel co-production schemes. Methanol coproduction has the potential to improve the economics of H2 supply to a fossil-free steelmaking process by up to an average of 0.40 €/kg H2 across considered scenarios equivalent to a reduction in H2 production electricity costs of 25.0%
Levelized Cost of Hydrogen for Refueling Stations with Solar PV and Wind in Sweden: On-grid or Off-grid?
Dec 2021
Publication
The European Union expects that hydrogen will play a vital role in future energy systems. Fuel cell electric vehicles currently present a key development path for electrification of the transport sector which requires infrastructure investments of hydrogen refueling stations preferably powered by renewables such as solar and wind energy. The economic feasibility of refueling stations depends on geographical locations. This study introduces a model to identify the key cost components of renewable hydrogen for refueling stations and simulates the performance using solar radiation wind speed and electricity price data in a selection of Swedish cities. The study demonstrates the importance of integrating the electricity grid in green hydrogen production. Wind speed is crucial in reducing the cost whereas solar radiation has less influence. In addition a combination of solar and wind brings better performance in an off-grid scenario. The most encouraging finding is the cost of 35e72 SEK/kg (3.5e7.2 V/kg) which is competitive with reported costs in other EUcountries especially since this cost excludes any government support scheme. The study provides a reference for investors and policy makers foreseeing the industrial landscape for hydrogen energy development.
No more items...