Sweden
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.<br/>A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive applications. Due to its small molecular size hydrogen permeates through the containment materials found in compressed gaseous hydrogen storage systems and is an issue that requires consideration for containers with non-metallic (polymer) liners. Permeation from compressed gaseous hydrogen storage systems is a current hydrogen safety topic relevant to regulatory and standardisation activities at both global and regional levels.<br/>Various rates have been proposed in different draft legal requirements and standards based on different scenarios and the assumption that hydrogen dispenses homogeneously. This paper focuses on the development of a methodology by HySafe Partners (CEA NCSRD. University of Ulster and Volvo Technology) to estimate an allowable upper limit for hydrogen permeation in automotive applications by investigating the behaviour of hydrogen when released at small rates with a focus on European scenario. The background to the activity is explained. reasonable scenarios are identified a methodology proposed and a maximum hydrogen permeation rate from road vehicles into enclosed structures is estimated The work is based on conclusions from the experimental and numerical investigations described by CEA NCSRD and the University of Ulster in related papers.
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the issues involved and to contribute to the wider activity to establish the true nature of the hazards posed by hydrogen vehicles in the confined space of a tunnel and their relative severity compared to those posed by vehicles powered by conventional fuels including compressed natural gas (CNG). In addition to reviewing current hydrogen vehicle designs tunnel design practice and previous research a programme of experiments and CFD modelling activities was performed for selected scenarios to examine the dispersion and explosion hazards potentially posed by hydrogen vehicles. Releases from compressed gaseous hydrogen (CGH2) and liquid hydrogen (LH2) powered vehicles have been studied under various tunnel geometries and ventilation regimes. The findings drawn from the limited work done so far indicate that under normal circumstances hydrogen powered vehicles do not pose a significantly higher risk than those powered by petrol diesel or CNG but this needs to be confirmed by further research. In particular obstructions at tunnel ceiling level have been identified as a potential hazard in respect to fast deflagration or even detonation in some circumstances which warrants further investigation. The shape of the tunnel tunnel ventilation and vehicle pressure relief device (PRD) operation are potentially important parameters in determining explosion risks and the appropriate mitigation measures.
Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen
Mar 2020
Publication
Titanium-based alloys are susceptible to hydrogen embrittlement (HE) a phenomenon that deteriorates fatigue properties. Ti-6Al-4V is the most widely used titanium alloy and the effect of hydrogen embrittlement on fatigue crack growth (FCG) was investigated by carrying out crack propagation tests in air and high-pressure H2 environment. The FCG test in hydrogen environment resulted in a drastic increase in crack growth rate at a certain Δ K with crack propagation rates up to 13 times higher than those observed in air. Possible reasons for such behaviour were discussed in this paper. The relationship between FCG results in high-pressure H2 environment and microstructure was investigated by comparison with already published results of cast and forged Ti-6Al-4V. Coarser microstructure was found to be more sensitive to HE. Moreover the electron beam melting (EBM) materials experienced a crack growth acceleration in-between that of cast and wrought Ti-6Al-4V
Chitosan Flocculation Associated with Biofilms of C. Saccharolyticus and C. Owensensis Enhances Biomass Retention in a CSTR
Jun 2021
Publication
Cell immobilization and co-culture techniques have gained attention due to its potential to obtain high volumetric hydrogen productivities (QH2). Chitosan retained biomass in the fermentation of co-cultures of Caldicellulosiruptor saccharolyticus and C. owensensis efficiently up to a maximum dilution rate (D) of 0.9 h−1. Without chitosan wash out of the co-culture occurred earlier accompanied with approximately 50% drop in QH2 (D > 0.4 h−1). However butyl rubber did not show as much potential as carrier material; it did neither improve QH2 nor biomass retention in continuous culture. The population dynamics revealed that C. owensensis was the dominant species (95%) in the presence of chitosan whereas C. saccharolyticus was the predominant (99%) during cultivation without chitosan. In contrast the co-culture with rubber as carrier maintained the relative population ratios around 1:1. This study highlighted chitosan as an effective potential carrier for immobilization thereby paving the way for cost – effective hydrogen production.
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.<br/>The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network externalities informational increasing returns technological interrelatedness collective action institutional learning effects and the differentiation of power.<br/>We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based but may also include mature niches specialised in the exploitation of renewable sources. This implies a need to distinguish between lock-in mechanisms favouring the old fossil-based regime well-established (mature) renewable energy niches or new pathways.
Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking
Mar 2021
Publication
Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO2) emissions. Hydrogen (H2) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H2 is produced via electrolysis using fossil-free electricity. However electrolysis is an electricity-intensive process. Therefore it is preferable that H2 is predominantly produced during times of low electricity prices which is enabled by the storage of H2. This work compares the integration of H2 storage in four liquid carriers methanol (MeOH) formic acid (FA) ammonia (NH3) and perhydro-dibenzyltoluene (H18-DBT) in H-DR processes. In contrast to conventional H2 storage methods these carriers allow for H2 storage in liquid form at moderate overpressures reducing the storage capacity cost. The main downside to liquid H2 carriers is that thermochemical processes are necessary for both the storage and release processes often with significant investment and operational costs. The carriers are compared using thermodynamic and economic data to estimate operational and capital costs in the H-DR context considering process integration options. It is concluded that the use of MeOH is promising compared to the other considered carriers. For large storage volumes MeOH-based H2 storage may also be an attractive option to the underground storage of compressed H2. The other considered liquid H2 carriers suffer from large thermodynamic barriers for hydrogenation (FA) or dehydrogenation (NH3 H18-DBT) and higher investment costs. However for the use of MeOH in an H-DR process to be practically feasible questions regarding process flexibility and the optimal sourcing of CO2 and heat must be answered
Large-scale Storage of Hydrogen
Mar 2019
Publication
The large-scale storage of hydrogen plays a fundamental role in a potential future hydrogen economy. Although the storage of gaseous hydrogen in salt caverns already is used on a full industrial scale the approach is not applicable in all regions due to varying geological conditions. Therefore other storage methods are necessary. In this article options for the large-scale storage of hydrogen are reviewed and compared based on fundamental thermodynamic and engineering aspects. The application of certain storage technologies such as liquid hydrogen methanol ammonia and dibenzyltoluene is found to be advantageous in terms of storage density cost of storage and safety. The variable costs for these high-density storage technologies are largely associated with a high electricity demand for the storage process or with a high heat demand for the hydrogen release process. If hydrogen is produced via electrolysis and stored during times of low electricity prices in an industrial setting these variable costs may be tolerable.
Rock Mass Response for Lined Rock Caverns Subjected to High Internal Gas Pressure
Mar 2022
Publication
The storage of hydrogen gas in underground lined rock caverns (LRCs) enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel. Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur. Analytical and numerical models can be used to estimate the rock mass response to high internal pressure; however the fitness of these models under different in situ stress conditions and cavern shapes has not been studied. In this paper the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied. The analytical model is derived in detail and finite element (FE) models considering both two-dimensional (2D) and three-dimensional (3D) geometries are presented. These models are verified with field measurements from the LRC in Skallen southwestern Sweden. The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights. For the case of anisotropic horizontal in situ stresses as the conditions in Skallen the 3D FE model is the best approach
The Impact of Climate Targets on Future Steel Production – An Analysis Based on a Global Energy System Model
Apr 2020
Publication
This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model ETSAP-TIAM was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous growth and is likely to be a major route for steel production in the long run. However as the global average of in-use steel stock increases up to the current average stock of the industrialised economies global steel demand keeps growing and stagnates only after 2050. Due to high steel demand levels and scarcity of scrap more than 50% of the steel production in 2050 will still have to come from virgin materials. Hydrogen-based steel production could become a major technology option for production from virgin materials particularly in a scenario where Carbon Capture and Storage (CCS) is not available. Imposing a binding climate target will shift the crude steel price to approximately 500 USD per tonne in the year 2050 provided that CCS is available. However the increased prices are induced by CO2 prices rather than inflated production costs. It is concluded that a global climate target is not likely to influence the use of scrap whereas it shall have an impact on the price of scrap. Finally the results indicate that energy efficiency improvements of current processes will only be sufficient to meet the climate target in combination with CCS. New innovative techniques with lower climate impact will be vital for mitigating climate change.
Numerical Simulation of Solid Oxide Fuel Cells Comparing Different Electrochemical Kinetics
Mar 2021
Publication
Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution for example CO2 NOx SOx and particles. Still numerous issues hindered the large‐scale commercialization of fuel cell at a large scale such as fuel storage mechanical failure catalytic degradation electrode poisoning from fuel and air for example lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields which is vital to reduce the redundant workload required for SOFC development. Modeling of SOFCs includes the coupling of charge transfer electrochemical reactions fluid flow energy transport and species transport. The Butler‐Volmer equation is frequently used to describe the coupling of electrochemical reactions with current density. The most frequently used is the activation‐ and diffusion‐controlled Butler‐Volmer equation. Three different electrode reaction models are examined in the study which is named case 1 case 2 and case 3 respectively. Case 1 is activation controlled while cases 2 and 3 are diffusion‐controlled which take the concentration of redox species into account. It is shown that case 1 gives the highest reaction rate followed by case 2 and case 3. Case 3 gives the lowest reaction rate and thus has a much lower current density and temperature. The change of activation overpotential does not follow the change of current density and temperature at the interface of the anode and electrolyte and interface of cathode and electrolyte which demonstrates the non‐linearity of the model. This study provides a reference to build electrochemical models of SOFCs and gives a deep understanding of the involved electrochemistry.
Alternative Marine Fuels: Prospects Based on Multi-criteria Decision Analysis Involving Swedish Stakeholders
May 2019
Publication
There is a need for alternative marine fuels in order to reduce the environmental and climate impacts of shipping in the short and long term. This study assesses the prospects for seven alternative fuels for the shipping sector in 2030 including biofuels by applying a multi-criteria decision analysis approach that is based on the estimated fuel performance and on input from a panel of maritime stakeholders and by considering explicitly the influence of stakeholder preferences. Seven alternative marine fuels—liquefied natural gas (LNG) liquefied biogas (LBG) methanol from natural gas renewable methanol hydrogen for fuel cells produced from (i) natural gas or (ii) electrolysis based on renewable electricity and hydrotreated vegetable oil (HVO)—and heavy fuel oil (HFO) as benchmark are included and ranked by ten performance criteria and their relative importance. The criteria cover economic environmental technical and social aspects. Stakeholder group preferences (i.e. the relative importance groups assign to the criteria) influence the ranking of these options. For ship-owners fuel producers and engine manufacturers economic criteria in particular the fuel price are the most important. These groups rank LNG and HFO the highest followed by fossil methanol and then various biofuels (LBG renewable methanol and HVO). Meanwhile representatives from Swedish government authorities prioritize environmental criteria specifically GHG emissions and social criteria specifically the potential to meet regulations ranking renewable hydrogen the highest followed by renewable methanol and then HVO. Policy initiatives are needed to promote the introduction of renewable marine fuels.
Adopting Hydrogen Direct Reduction for the Swedish Steel Industry: A Technological Innovation System (TIS) Study
Sep 2019
Publication
The Swedish steel industry stands before a potential transition to drastically lower its CO2 emissions using direct hydrogen reduction instead of continuing with coke-based blast furnaces. Previous studies have identified hydrogen direct reduction as a promising option. We build upon earlier efforts by performing a technological innovation system study to systematically examine the barriers to a transition to hydrogen direct reduction and by providing deepened quantitative empirics to support the analysis. We also add extended paper and patent analysis methodology which is particularly useful for identifying actors and their interactions in a technological system. We conclude that while the innovation system is currently focused on such a transition notable barriers remain particularly in coordination of the surrounding technical infrastructure and the issue of maintaining legitimacy for such a transition in the likely event that policies to address cost pressures will be required to support this development.
Electricity-based Plastics and their Potential Demand for Electricity and Carbon Dioxide
Apr 2020
Publication
In a future fossil-free circular economy the petroleum-based plastics industry must be converted to non-fossil feedstock. A known alternative is bio-based plastics but a relatively unexplored option is deriving the key plastic building blocks hydrogen and carbon from electricity through electrolytic processes combined with carbon capture and utilization technology. In this paper the future demand for electricity and carbon dioxide is calculated under the assumption that all plastic production is electricity-based in the EU by 2050. The two most important input chemicals are ethylene and propylene and the key finding of this paper is that the electricity demand to produce these are estimated to 20 MWh/ton ethylene and 38 MWh/ton propylene and that they both could require about 3 tons of carbon dioxide/ton product. With constant production levels this implies an annual demand of about 800 TWh of electricity and 90 Mton of carbon dioxide by 2050 in the EU. If scaled to the total production of plastics including all input hydrocarbons in the EU the annual demand is estimated to 1600 TWh of electricity and 180 Mton of carbon dioxide. This suggests that a complete shift to electricity-based plastics is possible from a resource and technology point of view but production costs may be 2 to 3 times higher than today. However the long time frame of this paper creates uncertainties regarding the results and how technical economic and social development may influence them. The conclusion of this paper is that electricity-based plastics integrated with bio-based production can be an important option in 2050 since biomass resources are scarce but electricity from renewable sources is abundant.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Energy Modeling Approach to the Global Energy-mineral Nexus: Exploring Metal Requirements and the Well-below 2 °C Target with 100 Percent Renewable Energy
Jun 2018
Publication
Detailed analysis of pathways to future sustainable energy systems is important in order to identify and overcome potential constraints and negative impacts and to increase the utility and speed of this transition. A key aspect of a shift to renewable energy technologies is their relatively higher metal intensities. In this study a bottom-up cost-minimizing energy model is used to calculate aggregate metal requirements in different energy technology including hydrogen and climate policy scenarios and under a range of assumptions reflecting uncertainty in future metal intensities recycling rate and life time of energy technologies. Metal requirements are then compared to current production rates and resource estimates to identify potentially “critical” metals. Three technology pathways are investigated: 100 percent renewables coal & nuclear and gas & renewables each under the two different climate policies: net zero emissions satisfying the well-below 2 °C target and business as usual without carbon constraints resulting together in six scenarios. The results suggest that the three different technology pathways lead to an almost identical degree of warming without any climate policy while emissions peaks within a few decades with a 2 °C policy. The amount of metals required varies significantly in the different scenarios and under the various uncertainty assumptions. However some can be deemed “critical” in all outcomes including Vanadium. The originality of this study lies in the specific findings and in the employment of an energy model for the energy-mineral nexus study to provide better understanding for decision making and policy development.
Progress and Challenges on the Thermal Management of Electrochemical Energy Conversion and Storage Technologies: Fuel Cells, Electrolysers, and Supercapacitors
Oct 2021
Publication
It is now well established that electrochemical systems can optimally perform only within a narrow range of temperature. Exposure to temperatures outside this range adversely affects the performance and lifetime of these systems. As a result thermal management is an essential consideration during the design and operation of electrochemical equipment and can heavily influence the success of electrochemical energy technologies. Recently significant attempts have been placed on the maturity of cooling technologies for electrochemical devices. Nonetheless the existing reviews on the subject have been primarily focused on battery cooling. Conversely heat transfer in other electrochemical systems commonly used for energy conversion and storage has not been subjected to critical reviews. To address this issue the current study gives an overview of the progress and challenges on the thermal management of different electrochemical energy devices including fuel cells electrolysers and supercapacitors. The physicochemical mechanisms of heat generation in these electrochemical devices are discussed in-depth. Physics of the heat transfer techniques currently employed for temperature control are then exposed and some directions for future studies are provided.
Impacts of Variation Management on Cost-optimal Investments in Wind Power and Solar Photovoltaics
Dec 2019
Publication
This work investigates the impacts of variation management on the cost-optimal electricity system compositions in four regions with different pre-requisites for wind and solar generation. Five variation management strategies involving electric boilers batteries hydrogen storage low-cost biomass and demand-side management are integrated into a regional investment model that is designed to account for variability. The variation management strategies are considered one at a time as well as combined in four different system contexts. By investigating how the variation management strategies interact with each other as well as with different electricity generation technologies in a large number of cases this work support policy-makers in identifying variation management portfolios relevant to their context. It is found that electric boilers demand-side management and hydrogen storage increase the cost-optimal variable renewable electricity (VRE) investments if the VRE share is sufficiently large to reduce its marginal system value. However low-cost biomass and hydrogen storage are found to increase cost-optimal investments in wind power in systems with a low initial wind power share. In systems with low solar PV share variation management reduce the cost-optimal solar PV investments. In two of the regions investigated a combination of variation management strategies results in a stronger increase in VRE capacity than the sum of the single variation management efforts.
Phase Field Modelling of Formation and Fracture of Expanding Precipitates
May 2017
Publication
It is a common belief that embedded expanding inclusions are subjected to an internal homogeneous compressive hydrostatic stress. Still cracks that appear in precipitates that occupy a larger volume than the original material are frequently observed. The appearance of cracks has since long been regarded as a paradox. In the present study it is shown that matrix materials that increases its volume even several percent during the precipitation process develop a tensile hydrostatic stress in the centre of the precipitate. This is the result of a complicated mechanical-chemical phase transformation process. The process is here studied using a Landau phase feld model. Before the material is transformed and incorporated in a precipitate it undergoes stretching beyond the elastic strain limit because of the presence of already expanded material. During the phase transformation the accompanying volumetric expansion cannot be fully accommodated which instead creates an internal compressive stress and adds tension in the surrounding material. As the growth of the precipitate proceeds a region with increasing tensile stress develops in the interior of the precipitate. This is suggested to be the most probable cause of the observed cracks. First the mechanics that lead to the tension is computed. The infuence of elastic-plastic properties is studied both for cases both with and without cracks. The growth history from microscopic to macroscopic precipitates is followed and the result is compared with observations of so called hydride blisters that are formed on surfaces of zirconium alloys in the presence of hydrogen. A common practical situation is when the zirconium is in contact with an object of lower temperature. Then the cooled spot attracts hydrogen that make the zirconium transform to a metal hydride with the shape of a blister. The simulations predicts a final size and position of the growing crack that compares well with the experimental observations.
Steel Manufacturing Clusters in a Hydrogen Economy – Simulation of Changes in Location and Vertical Integration of Steel Production in Northwestern Europe
Feb 2022
Publication
With the move to a hydrogen-based primary steel production envisioned for the near future in Europe existing regional industrial clusters loose major assets. Such a restructuring of industries may result in a new geographical distribution of the steel industry and also to another quality of vertical integration at sites. Both implications could turn out as drivers or barriers to invest in new technologies and are thus important in respect to vertical integration of sites and to regional policy. This paper describes an approach to model production stock invest for the steel industries in North-Western Europe. Current spatial structures are reproduced with capacity technical and energy efficiency data on the level of single facilities like blast furnaces. With the model developed both investments in specific technologies and at specific production sites can be modelled. The model is used to simulate different possible future scenarios. The case with a clear move to hydrogen-based production is compared to a reference scenario without technological shift. The scenarios show that existing trends like movement of production to the coast may be accelerated by the new technology but that sites in the hinterland can also adapt to a hydrogen economy. Possible effects of business cycles or a circular economy on regional value chains are explored with a Monte-Carlo analysis.
Transient Numerical Modeling and Model Predictive Control of an Industrial-scale Steam Methane Reforming Reactor
Mar 2021
Publication
A steam methane reforming reactor is a key equipment in hydrogen production and numerical analysis and process control can provide a critical insight into its reforming mechanisms and flexible operation in real engineering applications. The present paper firstly studies the transport phenomena in an industrial-scale steam methane reforming reactor by transient numerical simulations. Wall effect and local non thermal equilibrium is considered in the simulations. A temperature profile of the tube outer wall is given by user defined functions integrated into the ANSYS FLUENT software. Dynamic simulations show that the species distribution is closely related to the temperature distribution which makes the temperature of the reactor tube wall an important factor for the hydrogen production of the reformer and the thermal conductivity of the catalyst network is crucial in the heat transfer in the reactor. Besides there exists a delay of the reformer's hydrogen production when the temperature profile of the tube wall changes. Among inlet temperature inlet mass flow rate and inlet steam-to-carbon (S/C) ratio the mass flow rate is the most influencing factor for the hydrogen production. The dynamic matrix control (DMC) scheme is subsequently designed to manipulate the mole fraction of hydrogen of the outlet to the target value by setting the temperature profile trajectory of the reforming tube with time. The proportional-integral control strategy is also studied for comparison. The closed-loop simulation results show that the proposed DMC control strategy can reduce the overshoot and have a small change of the input variable. In addition the disturbances of feed disturbance can also be well rejected to assure the tracking performance indicating the superiority of the DMC controller. All the results give insight to the theoretical analysis and controller design of a steam methane reformer and demonstrate the potential of the CFD modeling in study the transport mechanism and the idea of combining CFD modelling with controller design for the real application.
No more items...