Romania
Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation
Nov 2020
Publication
Considering the current environmental restrictions particularly those imposed on fossil fuel exploitation hydrogen stands out as a very promising alternative for the power and transportation sectors. This paper investigates the effects of the employment of hydrogen in a K9K automotive diesel engine. Experiments were conducted at a speed of 2000 min−1 with various engine load levels of 40% 55% 70% and 85%; several quantities were monitored to evaluate the performance with hydrogen use in terms of brake-specific energetic consumption (BSEC) fuel economy maximum pressure and heat-release characteristics. It was found that at 55% engine load the engine efficiency increased by 5.3% with hydrogen addition achieving a diesel fuel economy of 1.32 kg/h. The rate of increase of the peak pressure and maximum pressure started to increase as a consequence of the higher fuel quantity that burned in the premixed combustion phase while still remaining within reliable operational limits. The accelerated combustion and augmented heat release rate resulted in a combustion duration that was reduced by 3◦ CA (crank angle degree) achieving a mass fraction burned percentage of 10% to 90% earlier in the cycle and the combustion variability was also influenced. Hydrogen use assured the decrease of CO2 HC NOx and smoke emission levels in comparison with classic fueling.
Complex Metal Borohydrides: From Laboratory Oddities to Prime Candidates in Energy Storage Applications
Mar 2022
Publication
Despite being the lightest element in the periodic table hydrogen poses many risks regarding its production storage and transport but it is also the one element promising pollutionfree energy for the planet energy reliability and sustainability. Development of such novel materials conveying a hydrogen source face stringent scrutiny from both a scientific and a safety point of view: they are required to have a high hydrogen wt.% storage capacity must store hydrogen in a safe manner (i.e. by chemically binding it) and should exhibit controlled and preferably rapid absorption–desorption kinetics. Even the most advanced composites today face the difficult task of overcoming the harsh re-hydrogenation conditions (elevated temperature high hydrogen pressure). Traditionally the most utilized materials have been RMH (reactive metal hydrides) and complex metal borohydrides M(BH4 )x (M: main group or transition metal; x: valence of M) often along with metal amides or various additives serving as catalysts (Pd2+ Ti4+ etc.). Through destabilization (kinetic or thermodynamic) M(BH4 )x can effectively lower their dehydrogenation enthalpy providing for a faster reaction occurring at a lower temperature onset. The present review summarizes the recent scientific results on various metal borohydrides aiming to present the current state-of-the-art on such hydrogen storage materials while trying to analyze the pros and cons of each material regarding its thermodynamic and kinetic behavior in hydrogenation studies.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus
Nov 2020
Publication
In this paper the optimal and safe operation of a hybrid power system based on a fuel cell system and renewable energy sources is analyzed. The needed DC power resulting from the power flow balance on the DC bus is ensured by the FC system via the air regulator or the fuel regulator controlled by the power-tracking control reference or both regulators using a switched mode of the above-mentioned reference. The optimal operation of a fuel cell system is ensured by a search for the maximum of multicriteria-based optimization functions focused on fuel economy under perturbation such as variable renewable energy and dynamic load on the DC bus. Two search controllers based on the global extremum seeking scheme are involved in this search via the remaining fueling regulator and the boost DC–DC converter. Thus the fuel economy strategies based on the control of the air regulator and the fuel regulator respectively on the control of both fueling regulators are analyzed in this study. The fuel savings compared to fuel consumed using the static feed-forward control are 6.63% 4.36% and 13.72% respectively under dynamic load but without renewable power. With renewable power the needed fuel cell power on the DC bus is lower so the fuel cell system operates more efficiently. These percentages are increased to 7.28% 4.94% and 14.97%.
Performance Evaluation of Renewable Energy Systems: Photovoltaic, Wind Turbine, Battery Bank, and Hydrogen Storage
Sep 2023
Publication
The analysis aims to determine the most efficient and cost-effective way of providing power to a remote site. The two primary sources of power being considered are photovoltaics and small wind turbines while the two potential storage media are a battery bank and a hydrogen storage fuel cell system. Subsequently the hydrogen is stored within a reservoir and employed as required by the fuel cell. This strategy offers a solution for retaining surplus power generated during peak production phases subsequently utilizing it during periods when the renewable power sources are generating less power. To evaluate the performance of the hydrogen storage system the analysis included a sensitivity analysis of the wind speed and the cost of the hydrogen subsystem. In this analysis the capital and replacement costs of the electrolyzer and hydrogen storage tank were linked to the fuel cell capital cost. As the fuel cell cost decreases the cost of the electrolyzer and hydrogen tank also decreases. The optimal system type graph showed that the hydrogen subsystem must significantly decrease in price to become competitive with the battery bank.
Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society
Aug 2023
Publication
The increase in demand and thus the need to lower its price has kept C-based fuels as the main source. In this context the use of oil and gas has led to increased climate change resulting in greenhouse gases. The high percentage of emissions over 40% is due to the production of electricity heat or/and energy transport. This is the main reason for global warming and the extreme and increasingly common climate change occurrences with all of nature being affected. Due to this reason in more and more countries there is an increased interest in renewable energies from sustainable sources with a particular emphasis on decarbonisation. One of the energies analysed for decarbonisation that will play a role in future energy systems is hydrogen. The development of hydrogen–natural gas mixtures is a major challenge in the field of energy and fuel technology. This article aims to highlight the major challenges associated with researching hydrogen–natural gas blends. Meeting this challenge requires a comprehensive research and development effort including exploring appropriate blending techniques optimising performance addressing infrastructure requirements and considering regulatory considerations. Overcoming this challenge will enable the full potential of hydrogen–natural gas blends to be realised as a clean and sustainable energy source. This will contribute to the global transition to a greener and more sustainable future. Several international European and Romanian studies projects and legislative problems are being analysed. The mix between H2 and natural gas decreases fugitive emissions. In contrast using hydrogen increases the risk of fire more than using natural gas because hydrogen is a light gas that easily escapes and ignites at almost any concentration in the air.
Experimental Aspects of the Hydrogen Use at Diesel Engine
May 2017
Publication
In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion aspect discussed on the 2015 Paris Climate Conference contribute to the necessity of searching of alternative energy from durable and renewable resources. The purpose of the paper is the use of hydrogen fuelling at truck diesel engine in order to improves engine efficiency and pollutant performance hydrogen being injected into the inlet manifold. Experimental results show better energetic and pollution performance of the dual fuelled engine due to the improvement of the combustion process and reduction of carbon content.
Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review
Aug 2022
Publication
Hydrogen (H2 ) is the most abundant element in the universe and it is also a neutral energy carrier meaning the environmental effects of using it are strictly related to the effects of creating the means of producing of that amount of Hydrogen. So far the H2 generation by water electrolysis research field did not manage to break the efficiency barrier in order to consider H2 production as a technology that sustains financially its self-development. However given the complexity of this technology and the overall environmental impacts an up-to-date research and development status review is critical. Thus this study aims to identify the main trends achievements and research directions of the H2 generation using pure and alkaline water electrolysis providing a review of the state of the art in the specific literature. Methods: In order to deliver this a Systematic Literature Review was carried out using PRISMA methodology highlighting the research trends and results in peer review publish articles over more than two years (2020–2022). Findings: This review identifies niches and actual status of the H2 generation by water and alkaline water electrolysis and points out in numbers the boundaries of the 2020–2022 timeline research.
Studies Concerning Electrical Repowering of a Training Airplane Using Hydrogen Fuel Cells
Mar 2024
Publication
The increase in greenhouse gas emissions as well as the risk of fossil fuel depletion has prompted a transition to electric transportation. The European Union aims to substantially reduce pollutant emissions by 2035 through the use of renewable energies. In aviation this transition is particularly challenging mainly due to the weight of onboard equipment. Traditional electric motors with radial magnetic flux have been replaced by axial magnetic flux motors with reduced weight and volume high efficiency power and torque. These motors were initially developed for electric vehicles with in-wheel motors but have been adapted for aviation without modifications. Worldwide there are already companies developing propulsion systems for various aircraft categories using such electric motors. One category of aircraft that could benefit from this electric motor development is traditionally constructed training aircraft with significant remaining flight resource. Electric repowering would allow their continued use for pilot training preparing them for future electrically powered aircraft. This article presents a study on the feasibility of repowering a classic training aircraft with an electric propulsion system. The possibilities of using either a battery or a hybrid source composed of a battery and a fuel cell as an energy source are explored. The goal is to utilize components already in production to eliminate the research phase for specific aircraft components.
Aspects of an Experimental Study of Hydrogen Use at Automotive Diesel Engine
Feb 2023
Publication
Hydrogen may represents a good alternative fuel that can be used to fuel internal combustion engines in order to ameliorate energetic and emissions performance. The paper presents some experimental aspects registered at hydrogen use to fuel a diesel engine different substitute ratios being use in the area of 18–34% at 40% engine load and speed of 2000 rev/min. The engine is equipped with an open ECU and the control of the cyclic dosses of diesel fuel and hydrogen are adjusted in order to maintain the engine power performance. The in-cylinder pressure diagrams show the increase of the maximum pressure with 17% from 78.5 bar to 91.8 bar for the maximum substitute ratio. Also values of maximum pressure rise rate start to increase for hydrogen addition in correlation with the increase of fuel amount burned into the premixed stage without exceed the normal values with assure the normal and reliable engine operation. Higher Lower Heating Value and combustion speed of hydrogen assure the increase in thermal efficiency the brake specific energy consumption decreases with 5.4%–7.8% at substitute ratios of 20–27%. The CO2 emission level decreases with 20% for maximum hydrogen cyclic dose. In terms of pollutant emission level at hydrogen use the emission level of the NOx decreases with 50% and the smoke number decreases with 73.8% comparative to classic fuelling at the maximum hydrogen cyclic dose.
Life Cycle Assessment of Natural Gas-based Chemical Looping for Hydrogen Production
Dec 2014
Publication
Hydrogen production from natural gas combined with advanced CO2 capture technologies such as iron-based chemical looping (CL) is considered in the present work. The processes are compared to the conventional base case i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output net electric power carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL ii) upstream processes such as: extraction and processing of natural gas ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories following here the CML 2001 impact assessment method were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression transport and storage stages were performed in order to examine their effect on the environmental impact categories.
Multilevel Governance, PV Solar Energy, and Entrepreneurship: The Generation of Green Hydrogen as a Fuel of Renewable Origin
Sep 2022
Publication
In Spain the institutional framework for photovoltaic energy production has experienced distinct stages. From 2007 to 2012 the feed-in-tariff system led to high annual growth rates of this renewable energy but after the suppression of the policy of public subsidies the sector stagnated. In recent years green hydrogen an innocuous gas in the atmosphere has become a driving force that stimulates photovoltaic energy production. Since 2020 encouraged by the European energy strategies and corresponding funds Spain has established a regulation to promote green hydrogen as a form of energy resource. Adopting the new institutional economics (NIE) approach this article investigates the process of changing incentives for the energy business sector and its impact on photovoltaic energy production. The results show an increase in the number of both projects approved or on approval and companies involved in green hydrogen that are planning to use photovoltaic energy in Spain thus engendering the creation of a new photovoltaic business environment based on innovation and sustainability.
CO2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles
Jun 2023
Publication
During the last few years electric and hydrogen vehicles have become an alternative to cars that use internal combustion engines. The number of electric and hydrogen vehicles sold has increased due to support from local governments and because car manufacturers will stop the production of internal combustion engines in the near future. The emissions of these vehicles while being driven are zero but they still have an impact on the environment due to their fuel. In this article an analysis of carbon dioxide (CO2 ) emissions for two types of vehicles: battery electric vehicles (BEVs) powered by electricity and fuel cell electric vehicles (FCEVs) powered by hydrogen is presented. The analysis considers different values for the mix of power generation and hydrogen production options in comparison to other studies. The CO2 emissions were calculated and compared for the two types of vehicles. The results show that the CO2 emissions of BEVs are lower when compared to FCEVs if the hydrogen is obtained from pollutant sources and is higher if the hydrogen is obtained from nuclear power and renewable energy sources. When compared to conventional combustion engine vehicles BEVs have lower CO2 emissions while the emissions of FCEVs are dependent on the hydrogen production method.
Energy Efficiency Analysis of a Fuel Cell Bus Model Using Real Scenarios Generated by Data Collection
Feb 2024
Publication
Modernizing public transportation is crucial given the ongoing call for sustainable mobility. Growing concerns about climate change and the increasingly stringent emissions standards have compelled public transport operators to embrace alternative propulsion vehicles on a broader scale. For the past years the Battery Electric Buses (BEBs) have been the vehicle of choice for public transportation. However an emerging contender in this sector is the Fuel Cell Electric Bus (FCEB). This paper aims to evaluate the way one such vehicle would perform in terms of energy efficiency while being exploited in an urban scenario generated from collected data.
Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions
Aug 2024
Publication
The article examines the role of green hydrogen in reducing CO2 emissions in the transition to climate neutrality highlighting both its benefits and challenges. It starts by discussing the production of green hydrogen from renewable sources and provides a brief analysis of primary resource structures for energy production in European countries including Romania. Despite progress there remains a significant reliance on fossil fuels in some countries. Economic technologies for green hydrogen production are explored with a note that its production alone does not solve all issues due to complex and costly compression and storage operations. The concept of impure green hydrogen derived from biomass gasification pyrolysis fermentation and wastewater purification is also discussed. Economic efficiency and future trends in green hydrogen production are outlined. The article concludes with an analysis of hydrogen-methane mixture combustion technologies offering a conceptual framework for economically utilizing green hydrogen in the transition to a green hydrogen economy.
Power Cost and CO2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles
Nov 2023
Publication
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2 ) emissions and a power generation cost close to that of conventional power plants. Therefore it is important to study the impact on the environment and the power cost. The proposed microgrid comprises loads RESs (micro-hydro and photovoltaic power plants) a hydrogen storage tank an electric battery and fuel cell vehicles. The power cost and CO2 emissions are calculated and compared for various scenarios including the four seasons of the year compared with the work of other researchers. The purpose of this paper is to continuously supply the loads and vehicles. The results show that the microgrid sources and hydrogen storage can supply consumers during the spring and summer. For winter and autumn the power grid and steam reforming of natural gas must be used to cover the demand. The highest power costs and CO2 emissions are for winter while the lowest are for spring. The power cost increases during winter between 20:00 and 21:00 by 336%. The CO2 emissions increase during winter by 8020%.
Hydrogen in Natural Gas Grids: Prospects and Recommendations About Gas Flow Meters
Aug 2024
Publication
To inject green hydrogen (H2) into the existing natural gas (NG) infrastructure is one way to decarbonize the European energy system. However asset readiness is necessary to be successful. Preliminary analysis and experimental results about the compatibility of hydrogen and natural gas mixtures (H2NG) with the actual gas grids make the scientific community confident about the feasibility. Nevertheless specific technical questions need more research. A significant topic of debate is the impact of H2NG mixtures on the performance of state-ofthe-art fiscal measuring devices which are essential for accurate billing. Identifying and addressing any potential degradation in their metrological performance due to H2NG is critical for decision-making. However the literature lacks data about the gas meters’ technologies currently installed in the NG grids such as a comprehensive overview of their readiness at different concentrations while data are fragmented among different sources. This paper addresses these gaps by analyzing the main characteristics and categorizing more than 20000 gas meters installed in THOTH2 project partners’ grids and by summarizing the performance of traditional technologies with H2NG mixtures and pure H2 based on literature review operators experience and manufacturers knowledge. Based on these insights recommendations are given to stakeholders on overcoming the identified barriers to facilitate a smooth transition.
The Technical and Economic Aspects of Integrating Energy Sectors for Climate Neutrality
Sep 2024
Publication
With the development of an energy sector based on renewable primary sources structural changes are emerging for the entire national energy system. Initially it was estimated that energy generation based on fossil fuels would decrease until its disappearance. However the evolution of CO2 capture capacity leads to a possible coexistence for a certain period with the renewable energy sector. The paper develops this concept of the coexistence of the two systems with the positioning of green hydrogen not only within the renewable energy sector but also as a transformation vector for carbon dioxide captured in the form of synthetic fuels such as CH4 and CH3OH. The authors conducted pilot-scale research on CO2 capture with green H2 both for pure (captured) CO2 and for CO2 found in combustion gases. The positive results led to the respective recommendation. The research conducted by the authors meets the strict requirements of the current energy phase with the authors considering that wind and solar energy alone are not sufficient to meet current energy demand. The paper also analyzes the economic aspects related to price differences for energy produced in the two sectors as well as their interconnection. The technical aspect as well as the economic aspect of storage through various other solutions besides hydrogen has been highlighted. The development of the renewable energy sector and its demarcation from the fossil fuel energy sector even with the transcendent vector represented by green hydrogen leads to the deepening of dispersion aspects between the electricity sector and the thermal energy sector a less commonly mentioned aspect in current works but of great importance. The purpose of this paper is to highlight energy challenges during the current transition period towards climate neutrality along with solutions proposed by the authors to be implemented in this phase. The current stage of combustion of the CH4 − H2 mixture imposes requirements for the capture of the resulting CO2.
Marine Renewable-Driven Green Hydrogen Production Toward a Sustainable Solution and a Low-carbon Future in Morocco
May 2024
Publication
Oceanic energy sources notably offshore wind and wave power present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production which can be efficiently transported through existing pipelines and stored in various forms offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune Agadir Essaouira Eljadida Casablanca and Larache. Our proposed system integrates offshore wind turbines oscillating water column wave energy converters and PEM electrolyzers to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions ranging from 14 MW to 20 MW. Additionally encouraging annual estimates of hydrogen production varying between 20 and 40 tonnes for specific locations showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates ranging from 13% to 18% while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio bolster water resilience and foster sustainable development. Ultimately this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies.
No more items...