Norway
Decarbonizing the European Energy System in the Absence of Russian Gas: Hydrogen Uptake and Carbon Capture Developments in the Power, Heat and Industry Sectors
Dec 2023
Publication
Hydrogen and carbon capture and storage are pivotal to decarbonize the European energy system in a broad range of pathway scenarios. Yet their timely uptake in different sectors and distribution across countries are affected by supply options of renewable and fossil energy sources. Here we analyze the decarbonization of the European energy system towards 2060 covering the power heat and industry sectors and the change in use of hydrogen and carbon capture and storage in these sectors upon Europe’s decoupling from Russian gas. The results indicate that the use of gas is significantly reduced in the power sector instead being replaced by coal with carbon capture and storage and with a further expansion of renewable generators. Coal coupled with carbon capture and storage is also used in the steel sector as an intermediary step when Russian gas is neglected before being fully decarbonized with hydrogen. Hydrogen production mostly relies on natural gas with carbon capture and storage until natural gas is scarce and costly at which time green hydrogen production increases sharply. The disruption of Russian gas imports has significant consequences on the decarbonization pathways for Europe with local energy sources and carbon capture and storage becoming even more important. Given the highlighted importance of carbon capture and storage in reaching the climate targets it is essential that policymakers ameliorate regulatory challenges related to these value chains.
Sonochemical and Sonoelectrochemical Production of Hydrogen
Aug 2018
Publication
Reserves of fossil fuels such as coal oil and natural gas on earth are finite. The continuous use and burning of these fossil fuel resources in the industrial domestic and transport sectors has resulted in the extremely high emission of greenhouse gases GHGs (e.g. CO2) and solid particulates into the atmosphere. Therefore it is necessary to explore pollution free and more efficient energy sources in order to replace depleting fossil fuels. The use of hydrogen (H2) as an alternative fuel source is particularly attractive due to its very high specific energy compared to other conventional fuels and its zero GHG emission when used in a fuel cell. Hydrogen can be produced through various process technologies such as thermal electrolytic photolytic and biological processes. Thermal processes include gas reforming renewable liquid and biooil processing biomass and coal gasification; however these processes release a huge amount of greenhouse gases. Production of electrolytic hydrogen from water is an attractive method to produce clean hydrogen. It could even be a more promising technology when combining water electrolysis with power ultrasound to produce hydrogen efficiently where sonication enhances the electrolytic process in several ways such as enhanced mass transfer removal of hydrogen and oxygen (O2) gas bubbles and activation of the electrode surface. In this review production of hydrogen through sonochemical and sonoelectrochemical methods along with a brief description of current hydrogen production methods and power ultrasound are discussed.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Cost Reduction in Low-carbon Hydrogen: Effective but Insufficient to Mitigate Carbon Emissions
Jun 2023
Publication
Many countries have announced hydrogen promotion strategies to achieve net zero CO2 emissions around 2050. The cost of producing low-carbon (green and blue) hydrogen has been projected to fall considerably as production is scaled up although more so for green hydrogen than for blue hydrogen. This article uses a global computable general equilibrium (CGE) model to explore whether the cost reduction of green and blue hydrogen production can mitigate the use of fossil fuels and related carbon emissions. The results show that cost reduction can raise low-carbon hydrogen consumption markedly in relative terms but marginally in absolute terms resulting in a modest decrease in fossil fuel use and related carbon emissions. The cost reduction of low-carbon hydrogen slightly lowers the use of coal and gas but marginally increases the use of oil. If regional CO2 taxes are introduced the increase in green hydrogen production is considerably larger than in the case of low-carbon hydrogen cost reduction alone. However if cost reduction in low-carbon hydrogen is introduced in addition to the CO2 tax the emissions from fossil fuels are only marginally reduced. Hence synergy efects between the two measures on emissions are practically absent. A low-carbon hydrogen cost reduction alone is efective but insufcient to have a substantial climate impact. This study also calls for modeling development to capture special user preferences for low-carbon hydrogen related to climate mitigation when phasing in new energy carriers like hydrogen.
The Impact of Methane Leakage on the Role of Natural Gas in the European Energy Transition
Sep 2023
Publication
Decarbonising energy systems is a prevalent topic in the current literature on climate change mitigation but the additional climate burden caused by methane emissions along the natural gas value chain is rarely discussed at the system level. Considering a two-basket greenhouse gas neutrality objective (both CO2 and methane) we model cost-optimal European energy transition pathways towards 2050. Our analysis shows that adoption of best available methane abatement technologies can entail an 80% reduction in methane leakage limiting the additional environmental burden to 8% of direct CO2 emissions (vs. 35% today). We show that while renewable energy sources are key drivers of climate neutrality the role of natural gas strongly depends on actions to abate both associated CO2 and methane emissions. Moreover clean hydrogen (produced mainly from renewables) can replace natural gas in a substantial proportion of its end-uses satisfying nearly a quarter of final energy demand in a climate-neutral Europe.
Hydrogen Embrittlement as a Conspicuous Material Challenge - Comprehensive Review and Future Directions
May 2024
Publication
Hydrogen is considered a clean and efficient energy carrier crucial for shapingthe net-zero future. Large-scale production transportation storage and use of greenhydrogen are expected to be undertaken in the coming decades. As the smallest element inthe universe however hydrogen can adsorb on diffuse into and interact with many metallicmaterials degrading their mechanical properties. This multifaceted phenomenon isgenerically categorized as hydrogen embrittlement (HE). HE is one of the most complexmaterial problems that arises as an outcome of the intricate interplay across specific spatialand temporal scales between the mechanical driving force and the material resistancefingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in thefield as well as our collective understanding this Review is devoted to treating HE as a whole and providing a constructive andsystematic discussion on hydrogen entry diffusion trapping hydrogen−microstructure interaction mechanisms and consequencesof HE in steels nickel alloys and aluminum alloys used for energy transport and storage. HE in emerging material systems such ashigh entropy alloys and additively manufactured materials is also discussed. Priority has been particularly given to these lessunderstood aspects. Combining perspectives of materials chemistry materials science mechanics and artificial intelligence thisReview aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts ofvarious paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
Fuel Cell Systems for Long-endurance Autonomous Underwater Vehicles - Challenges and Benefits
Jun 2019
Publication
Autonomous underwater vehicles (AUVs) are programmable robotic vehicles that can drift drive or glide through the ocean without real-time control by human operators. AUVs that also can follow a planned trajectory with a chosen depth profile are used for geophysical surveys subsea pipeline inspection marine archaeology and more. Most AUVs are followed by a mother ship that adds significantly to the cost of an AUV mission. One pathway to reduce this need is to develop long-endurance AUVs by improving navigation autonomy and energy storage. Long-endurance AUVs can open up for more challenging mission types than what is possible today. Fuel cell systems are a key technology for increasing the endurance of AUVs beyond the capability of batteries. However several challenges exist for underwater operation of fuel cell systems. These are related to storage or generation of hydrogen and oxygen buoyancy and trim and the demanding environment of the ambient seawater. Protecting the fuel cell inside a sealed container brings along more challenges related to condensation cooling and accumulation of inert gases or reactants. This paper elaborates on these technical challenges and describes the solutions that the Norwegian Defence Research Establishment (FFI) has chosen in its development of a fuel cell system for long-endurance AUVs. The reported solutions enabled a 24 h demonstration of FFI's fuel cell system under water. The remaining work towards a prototype sea trial is outlined.
Energy Asset Stranding in Resource-rich Developing Countries and the Just Transition - A Framework to Push Research Frontiers
Jun 2024
Publication
Climate policy will inevitably lead to the stranding of fossil energy assets such as production and transport assets for coal oil and natural gas. Resourcerich developing countries are particularly aected as they have a higher risk of asset stranding due to strong fossil dependencies and wider societal consequences beyond revenue disruption. However there is only little academic and political awareness of the challenge to manage the asset stranding in these countries as research on transition risk like asset stranding is still in its infancy. We provide a research framework to identify wider societal consequences of fossil asset stranding. We apply it to a case study of Nigeria. Analyzing dierent policy measures we argue that compensation payments come with implementation challenges. Instead of one policy alone to address asset stranding a problem-oriented mix of policies is needed. Renewable hydrogen and just energy transition partnerships can be a contribution to economic development and SDGs. However they can only unfold their potential if fair benefit sharing and an improvement to the typical institutional problems in resource-rich countries such as the lack of rule of law are achieved. We conclude with presenting a future research agenda for the global community and acade
Developing Hydrogen Energy Hubs: The Role of H2 Prices, Wind Power and Infrastructure Investments in Northern Norway
Aug 2024
Publication
Hydrogen is seen as a key energy carrier to reduce CO2 emissions. Two main production options for hydrogen with low CO2 intensity are water electrolysis and natural gas reforming with Carbon Capture and Storage known as green and blue hydrogen. Northern Norway has a surplus of renewable energy and natural gas availability from the Barents Sea which can be used to produce hydrogen. However exports are challenging due to the large distances to markets and lack of energy infrastructure. This study explores the profitability of hydrogen exports from this Arctic region. It considers necessary investments in hydrogen technology and capacity expansions of wind farms and the power grid. Various scenarios are investigated with different assumptions for investment decisions. The critical question is how exogenous factors shape future regional hydrogen production and export. The results show that production for global export may be profitable above 90 €/MWh excluding costs for storage and transport with blue hydrogen being cheaper than green. Depending on the assumptions a combination of liquid hydrogen and ammonia export might be optimal for seaborne transport. Exports to Sweden can be profitable at prices above 60 €/MWh transported by pipelines. Expanding power generation capacity can be crucial and electricity and hydrogen exports are unlikely to co-exist.
Solar-driven (Photo)electrochemical Devices for Green Hydrogen Production and Storage: Working Principles and Design
Feb 2024
Publication
The large-scale deployment of technologies that enable energy from renewables is essential for a successful transition to a carbon-neutral future. While photovoltaic panels are one of the main technologies commonly used for harvesting energy from the Sun storage of renewable solar energy still presents some challenges and often requires integration with additional devices. It is believed that hydrogen – being a perfect energy carrier – can become one of the broadly utilised storage alternatives that would effectively mitigate the energy supply and demand issues associated with the intermittent nature of renewable energy sources. Current pathways in the development of green technologies indicate the need for more sustainable material utilisation and more efficient device operation. To address this requirement integration of various technologies for renewable energy harvesting conversion and storage in a single device appears as an advantageous option. From the hydrogen economy perspective systems driven by green solar electricity that allow for (photo)electrochemical water splitting would generate hydrogen with the minimal CO2 footprint. If at the same time one of the device electrodes could store the generated gas and release it on demand the utilisation of critical and often costly elements would be reduced with possible gain in more effective device operation. Although conceptually attractive this cross-disciplinary concept has not gained yet enough attention and only limited number of experimental setups have been designed tested and reported. This review presents the first exhaustive overview and critical examination of various laboratory-scale prototype setups that attempt to combine both the hydrogen production and storage processes in a single unit via integration of a metal hydride-based electrode into a photoelectrochemical cell. The architectures of presented configurations enables direct solar energy to hydrogen conversion and its subsequent storage in a single device which – in some cases – can also release the stored (hydrogen) energy on demand. In addition this work explores perspectives and challenges related with the potential upscaling of reviewed solar-to-hydrogen storage systems trying to map and indicate the main future directions of their technological development and optimization. Finally the review also combines information and expertise scattered among various research fields with the aim of stimulating much-needed exchange of knowledge to accelerate the progress in the development and deployment of optimum green hydrogen-based solutions.
Economic Framework for Green Shipping Corridors: Evaluating Cost-effective Transition from Fossil Fuels Towards Hydrogen
Aug 2024
Publication
Global warming’s major cause is the emission of greenhouse-effect gases (GHG) especially carbon dioxide (CO2) whose main source is the combustion of fossil fuels. Fossil fuels serve as the primary energy source in many industries including shipping which is the focus of this study. One of the measures proposed to tackle GHG emissions is the development of green shipping corridors - carbon-free shipping routes that require the transition to alternative fuels which are gaining competitiveness. One of the reasons for that is carbon pricing which taxes CO2 emissions. However the lack of consensus on the most cost-advantageous alternative fuel in the long run results in the delay of the implementation of green shipping corridors. To make it more accessible for stakeholders to conduct an economic analysis of the various options a framework to determine and minimize the costs of transitioning from fossil fuels to any alternative fuel is proposed over the period of one voyage considering the lost opportunity cost the deployment cost of bunkering vessels at the necessary call ports the cost of converting the vessel the car-bon emissions tax cost and the fuel cost. This will allow stakeholders to choose the most economical alternative fuel accelerating the development of green shipping corridor initiatives. To validate the effectiveness of the framework it was applied in a case study involving a shipowner seeking to transition from heavy fuel oil (HFO) to Ammonia Hydrogen Liquefied Natural Gas (LNG) or Methanol. This study faced limitations due to the unknown costs of installing bunkering vessels for Ammonia and Hydrogen. However it evaluates the cost-effectiveness of alternative fuels providing insights into their short-term economic viability. The results showed that Hydrogen is the most costadvantageous fuel until a deployment cost per bunkering vessel of 1990285$ for a sailing speed of 22 knots and 2190171$ for a sailing speed of 18 knots is reached after which LNG becomes the most economical option regardless of variations in the carbon tax. Moreover a sensitivity analysis was conducted to determine the effects of variations in parameters such as carbon tax fuel prices and vessel conversion costs in the total cost of each fuel option. Results highlighted that even though HFO remains the most economical fuel option even when considering a high increase in carbon tax the cost gap between HFO and alternative fuels narrows significantly with the increase in carbon tax. Furthermore the sailing speed impacts the fuels’ competitiveness as the cost difference between HFO and alternative fuels decreases at higher speeds.
Climate Change Mitigation Potentials of on Grid-connected Power-to-X Fuels and Advanced Biofuels for the European Maritime Transport
Jul 2023
Publication
This study proposes a country-based life-cycle assessment (LCA) of several conversion pathways related 10 to both on grid-connected Power-to-X (PtX) fuels and advanced biofuel production for maritime transport 11 in Europe. We estimate the biomass resource availability (both agricultural and forest residues and 12 second-generation energy crops from abandoned cropland) electricity mix and a future-oriented 13 prospective LCA to assess how future climate change mitigation policies influence the results. Our results 14 indicate that the potential of PtX fuels to achieve well-to-wake greenhouse gas intensities lower than 15 those of fossil fuels is limited to countries with a carbon intensity of the electricity mix below 100 gCO2eq kWh-1 16 . The more ambitious FuelEU Maritime goal could be achieved with PtX only if connected to electricity sources below ca. 17 gCO2eq kWh-1 17 which can become possible for most of the national 18 electricity mix in Europe by 2050 if renewable energy sources will become deployed at large scales. For 19 drop-in and hydrogen-based biofuels biomass residues have a higher potential to reduce emissions than 20 dedicated energy crops. In Europe the potentials of energy supply from all renewable and low-carbon 21 fuels (RLFs) range from 32-149% of the current annual fuel consumption in European maritime transport. 22 The full deployment of RLFs with carbon capture and storage technologies could mitigate up to 184% of 23 the current well-to-wake shipping emissions in Europe. Overall our study highlights how the strategic use 24 of both hydrogen-based biofuels and PtX fuels can contribute to the climate mitigation targetsfor present 25 and future scenarios of European maritime transport.
Research and Development of Hydrogen Carrier Based Solutions for Hydrogen Compression and Storage
Aug 2022
Publication
Martin Dornheim,
Lars Baetcke,
Etsuo Akiba,
Jose-Ramón Ares,
Tom Autrey,
Jussara Barale,
Marcello Baricco,
Kriston Brooks,
Nikolaos Chalkiadakis,
Véronique Charbonnier,
Steven Christensen,
José Bellosta von Colbe,
Mattia Costamagna,
Erika Michela Dematteis,
Jose-Francisco Fernández,
Thomas Gennett,
David Grant,
Tae Wook Heo,
Michael Hirscher,
Katherine Hurst,
Mykhaylo V. Lototskyy,
Oliver Metz,
Paola Rizzi,
Kouji Sakaki,
Sabrina Sartori,
Emmanuel Stamatakis,
Alastair D. Stuart,
Athanasios Stubos,
Gavin Walker,
Colin Webb,
Brandon Wood,
Volodymyr A. Yartys and
Emmanuel Zoulias
Industrial and public interest in hydrogen technologies has risen strongly recently as hydrogen is the ideal means for medium to long term energy storage transport and usage in combination with renewable and green energy supply. In a future energy system the production storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper we summarize the newest developments of hydrogen carriers for storage and compression and in addition give an overview of the different research activities in this field.
Underground Hydrogen Storage in Caverns: Challenges of Impure Salt Stuctures
Oct 2023
Publication
Hydrogen is expected to play a key role in the future as a clean energy source that can mitigate global warming. It can also contribute significantly to reducing the imbalance between energy supply and demand posed by deploying renewable energy. However the infrastructure is not ready for the direct use of hydrogen and largescale storage facilities are needed to store the excess hydrogen production. Geological formations particularly salt caverns seem to be a practical option for this large-scale storage as there is already good experience storing hydrocarbons in caverns worldwide. Salt is known to be ductile impermeable and inert to natural gas. Some cases of hydrogen storage in salt caverns in the United States the United Kingdom and Germany reinforce the idea that salt caverns could be a viable option for underground hydrogen storage especially when the challenges and uncertainties associated with hydrogen storage in porous media are considered. However cavern con struction and management can be challenging when salt deposits are not completely pure and mixed with nonsoluble strata. This review summarises the challenges associated with hydrogen storage in salt caverns and suggests some potential mitigation strategies linked to geomechanical and geochemical interactions. The Zechstein salt group in Northern Europe seems to be a feasible geological site for hydrogen storage but the effect of salt impurity particularly at deep offshore sites such as in the Norwegian North Sea should be carefully analysed. It appears that mechanical integrity geochemical reactions hydrogen loss by halophilic bacteria leaching issues and potential hydrogen diffusion are among the major issues when the internal structure of the salt is not pure.
Effect of Relative Permeability Hysteresis on Reservoir Simulation of Underground Hydrogen Storage in an Offshore Aquifer
Mar 2023
Publication
Underground hydrogen storage (UHS) in porous media is proposed to balance seasonal fluctuations between demand and supply in an emerging hydrogen economy. Despite increasing focus on the topic worldwide the understanding of hydrogen flow in porous media is still not adequate. In particular relative permeability hys teresis and its impact on the storage performance require detailed investigations due to the cyclic nature of H2 injection and withdrawal. We focus our analysis on reservoir simulation of an offshore aquifer setting where we use history matched relative permeability to study the effect of hysteresis and gas type on the storage efficiency. We find that omission of relative permeability hysteresis overestimates the annual working gas capacity by 34 % and the recovered hydrogen volume by 85 %. The UHS performance is similar to natural gas storage when using hysteretic hydrogen relative permeability. Nitrogen relative permeability can be used to model the UHS when hysteresis is ignored but at the cost of the accuracy of the bottom-hole pressure predictions. Our results advance the understanding of the UHS reservoir modeling approaches.
Hydrogen Relative Permeability Hysteresis in Underground Storage
Aug 2022
Publication
Implementation of the hydrogen economy for emission reduction will require storage facilitiesand underground hydrogen storage (UHS) in porous media offers a readily available large-scale option. Lack ofstudies on multiphase hydrogen flow in porous media is one of the several barriers for accurate predictions ofUHS. This paper reports for the first time measurements of hysteresis in hydrogen-water relative permeabilityin a sandstone core under shallow storage conditions. We use the steady state technique to measure primarydrainage imbibition and secondary drainage relative permeabilities and extend laboratory measurements withnumerical history matching and capillary pressure measurements to cover the whole mobile saturation range.We observe that gas and water relative permeabilities show strong hysteresis and nitrogen as substitute forhydrogen in laboratory assessments should be used with care. Our results serve as calibrated input to field scalenumerical modeling of hydrogen injection and withdrawal processes during porous media UHS.
Techno-economic Analysis of the Effect of a Novel Price-based Control System on the Hydrogen Production of an Offshore 1.5 GW Wind-hydrogen System
Feb 2024
Publication
The cost of green hydrogen production is very dependent on the price of electricity. A control system that can schedule hydrogen production based on forecast wind speed and electricity price should therefore be advantageous for large-scale wind-hydrogen systems. This work presents a novel price-based control system integrated in a techno-economic analysis of hydrogen production from offshore wind. A polynomial regression model that predicts wind power production from wind speed input was developed and tested with real-world datasets from a 2.3 MW floating offshore wind turbine. This was combined with a mathematical model of a PEM electrolyzer and used to simulate hydrogen production. A novel price-based control system was developed to decide when the system should produce hydrogen and when it should sell electricity to the grid. The model and control system can be used in real-world wind-hydrogen systems and require only the forecast wind speed electricity price and selling price of hydrogen as inputs. 11 test scenarios based on 10 years of real-world wind speed and electricity price data are proposed and used to evaluate the effect the price-based control system has on the levelized cost of hydrogen (LCOH). Both current and future (2050) costs and technologies are used and the results show that the novel control system lowered the LCOH in all scenarios by 10–46%. The lowest LCOH achieved with current technology and costs was 6.04 $/kg H2. Using the most optimistic forecasts for technology improvements and cost reductions in 2050 the model estimated a LCOH of 0.96 $/kg H2 for a grid-connected offshore wind farm and onshore hydrogen production 0.82 $/kg H2 using grid electricity (onshore) and 4.96 $/kg H2 with an offgrid offshore wind-hydrogen system. When the electricity price from the period 2013–2022 was used on the 2050 scenarios the resulting LCOH was approximately twice as high.
Analysis of Hydrogen Value Chain Events: Implications for Hydrogen Refueling Stations’ Safety
Apr 2024
Publication
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport in addition to fuel cell vehicles it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The characteristics and properties of hydrogen make ensuring the safe operation of these facilities a crucial element for their successful deployment and implementation. This paper shows the outcomes of an analysis of hydrogen incidents and accidents considering their potential application to HRSs. For this purpose the HIAD 2.0 was reviewed and a total of 224 events that could be repeated in any of the major industrial processes related to hydrogen refueling stations were analyzed. This analysis was carried out using a mixed methodology of quantitative and qualitative techniques considering the following hydrogen value chain: production storage delivery and industrial use. The results provide general information segmented by event frequency damage classes and failure typology. The analysis shows the main processes of the value chain allow the identification of key aspects for the safety management of refueling facilities.
Technical Failures in Green Hydrogen Production and Reliability Engineering Responses: Insights from Database Analysis and a Literature Review
Nov 2024
Publication
Green hydrogen represents a promising solution for renewable energy application and carbon footprint reduc tion. However its production through renewable energy powered water electrolysis is hindered by significant cost arising from repair maintenance and economic losses due to unexpected downtimes. Although reliability engineering is highly effective in addressing such issues there is limited research on its application in the hydrogen field. To present the state-of-the-art research this study aims to explore the potential of reducing these events through reliability engineering a widely adopted approach in various industries. For this purpose it examines past accidents occurred in water electrolysis plants from the hydrogen incident and accident database (HIAD 2.1). Besides a literature review is performed to analyze the state-of-the-art application of reliability engineering techniques such as failure analysis reliability assessment and reliability-centered maintenance in the hydrogen sector and similar industries. The study highlights the contributions and potentials of reliability engineering for efficient and stable green hydrogen production while also discussing the gaps in applying this approach. The unique challenges posed by hydrogen’s physical properties and innovative technologies in water electrolysis plants necessitate advancement and specialized approaches for reliability engineering.
Investments in Green Hydrogen as a Flexibility Source for the European Power System by 2050: Does it Pay Off?
Oct 2024
Publication
The European Union aims to deploy a high share of renewable energy sources in Europe’s power system by 2050. Large-scale intermittent wind and solar power production requires flexibility to ensure an adequate supply–demand balance. Green hydrogen (GH) can increase power systems’ flexibility and decrease renewable energy production’s curtailment. However investing in GH is costly and dependent on electricity prices which are important for operational costs in electrolysis. Moreover the use of GH for power system flexibility might not be economically viable if there is no hydrogen demand from the hydrogen market. If so questions would arise as to what would be the incentives to introduce GH as a source of flexibility in the power system and how would electrolyzer costs hydrogen demand and other factors affect the economic viability of GH usage for power system flexibility. The paper implements a European power system model formulated as a stochastic program to address these questions. The authors use the model to compare various instances with hydrogen in the power system to a no-hydrogen instance. The results indicate that by 2050 deployment of approximately 140 GW of GH will pay off investments and make the technology economically viable. We find that the price of hydrogen is estimated to be around €30/MWh.
No more items...