Norway
Repurposing Natural Gas Pipelines for Hydrogen: Limits and Options from a Case Study in Germany
Jul 2024
Publication
We investigate the challenges and options for repurposing existing natural gas pipelines for hydrogen transportation. Challenges of re-purposing are mainly related to safety and due to the risk of hydrogen embrittlement of pipeline steels and the smaller molecular size of the gas. From an economic perspective the lower volumetric energy density of hydrogen compared to natural gas is a challenge. We investigate three pipeline repurposing options in depth: a) no modification to the pipeline but enhanced maintenance b) use of gaseous inhibitors and c) the pipe-in-pipe approach. The levelized costs of transportation of these options are compared for the case of the German Norddeutsche Erdgasleitung (NEL) pipeline. We find a similar cost range for all three options. This indicates that other criteria such as the sunk costs public acceptance and consumer requirements are likely to shape the decision making for gas pipeline repurposing.
Artificial Intelligence-Driven Innovations in Hydrogen Safety
Jun 2024
Publication
This review explores recent advancements in hydrogen gas (H2 ) safety through the lens of artificial intelligence (AI) techniques. As hydrogen gains prominence as a clean energy source ensuring its safe handling becomes paramount. The paper critically evaluates the implementation of AI methodologies including artificial neural networks (ANN) machine learning algorithms computer vision (CV) and data fusion techniques in enhancing hydrogen safety measures. By examining the integration of wireless sensor networks and AI for real-time monitoring and leveraging CV for interpreting visual indicators related to hydrogen leakage issues this review highlights the transformative potential of AI in revolutionizing safety frameworks. Moreover it addresses key challenges such as the scarcity of standardized datasets the optimization of AI models for diverse environmental conditions etc. while also identifying opportunities for further research and development. This review foresees faster response times reduced false alarms and overall improved safety for hydrogen-related applications. This paper serves as a valuable resource for researchers engineers and practitioners seeking to leverage state-of-the-art AI technologies for enhanced hydrogen safety systems.
Validation of a Hydrogen Jet Fire Model in FDS
Sep 2023
Publication
Hydrogen jet fire occurs with high probability when hydrogen leaks from high-pressure equipment. The hydrogen jet fire is characterized by its high velocity and energy. Computational Fluid Dynamics (CFD) numerical analysis is a prominent way to predict the potential hazards associated with hydrogen jet fire. Validation of the CFD model is essential to ensure and quantify the accuracy of numerical results. This study focuses on the validation of the hydrogen jet fire model using Fire Dynamic Simulation (FDS). Hydrogen release is modeled using high-speed Lagrangian particles released from a virtual nozzle thus avoiding the modeling of the actual nozzle. The mesh size sensitivity analysis of the model is carried out in a container-size domain with 0.04m – 0.08m resolution of the jet. The model is validated by comparing gas temperatures and heat fluxes with test data. The promising results demonstrated that the model could predict the hazardous influence of the jet fire.
Evaluating the Offshore Wind Business Case and Green Hydrogen Production: A Case Study of a Future North Sea Offshore Grid
Jun 2024
Publication
The European Union aims to increase its climate ambition and achieve climate neutrality by 2050. This necessitates expanding offshore wind energy and green hydrogen production especially for hard-to-abate industrial sectors. A study examines the impact of green hydrogen on offshore wind projects specifically focusing on a potential future North Sea offshore grid. The study utilizes data from the TYNDP 2020 Global Ambition scenario 2040 considering several European countries. It aims to assess new transmission and generation capacity utilization and understand the influencing factors. The findings show that incorporating green hydrogen production increases offshore wind utilization and capture prices. The study estimates that by 2040 the levelized cost of hydrogen could potentially decrease to e1.2-1.6/kg H2 assuming low-cost electricity supply and declining capital costs of electrolysers. These results demonstrate the potential benefits and cost reductions of integrating green hydrogen production into North Sea offshore wind projects.
Technical and Cost Analysis of Zero-emission High-speed Ferries: Retrofitting from Diesel to Green Hydrogen
Feb 2024
Publication
This paper proposes a technical and cost analysis model to assess the change in costs of a zeroemission high-speed ferry when retrofitting from diesel to green hydrogen. Both compressed gas and liquid hydrogen are examined. Different scenarios explore energy demand energy losses fuel consumption and cost-effectiveness. The methodology explores how variation in the ferry's total weight and equipment efficiency across scenarios impact results. Applied to an existing diesel high-speed ferry on one of Norway's longest routes the study under certain assumptions identifies compressed hydrogen gas as the current most economical option despite its higher energy consumption. Although the energy consumption of the compressed hydrogen ferry is slightly more than the liquid hydrogen counterpart its operating expenses are considerably lower and comparable to the existing diesel ferry on the route. However constructing large hydrogen liquefaction plants could reduce liquid hydrogen's cost and make it competitive with both diesel and compressed hydrogen gas. Moreover liquid hydrogen allows the use of a superconducting motor to enhance efficiency. Operating the ferry with liquid hydrogen and a superconducting motor besides its technical advantages offers promising economic viability in the future comparable to diesel and compressed hydrogen gas options. Reducing the ferry's speed and optimizing equipment improves fuel efficiency and economic viability. This research provides valuable insights into sustainable zero-emission high-speed ferries powered by green hydrogen.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
Safe Pipelines for Hydrogen Transport
Jun 2024
Publication
The hydrogen compatibility of two X65 pipeline steels for transport of hydrogen gas is investigated through microstructural characterization hydrogen permeation measurements and fracture mechanical testing. The investigated materials are a quenched and tempered pipeline steel with a fine-grained homogeneously distributed ferrite-bainite microstructure and hot rolled pipeline steel with a ferrite-pearlite banded microstructure. All tests are performed both under electrochemical and gaseous hydrogen charging conditions. A correlation between electrochemical hydrogen charging and gaseous charging is determined. The results point to inherent differences in the interaction between hydrogen and the two material microstructures. Further research is needed to unveil the influence of material microstructure on hydrogen embrittlement.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines
Feb 2024
Publication
The utilization of hydrogen fuel in gas turbines brings significant changes to the thermophysical properties of flue gas including higher specific heat capacities and an enhanced steam content. Therefore hydrogen-fueled gas turbines are susceptible to health degradation in the form of steam-induced corrosion and erosion in the hot gas path. In this context the fault diagnosis of hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge there is a scarcity of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The present study however develops an artificial neural network (ANN)-based fault diagnosis model using the MATLAB environment. Prior to the fault detection isolation and identification modules physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the fault detection and isolation. Moreover the feedforward neural network-based regression algorithm showed quite good training testing and validation accuracies in terms of the root mean square error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms thereby prompting other incorrect faults during the fault detection and isolation modules. Additionally the performance of the fault identification module for the hydrogen fuel scenario was found to be marginally lower than that of the natural gas case due to assumption of small magnitudes of faults arising from hydrogen-induced corrosion.
A Renewable Power System for an Off-grid Sustainable Telescope Fueled by Solar Power, Batteries and Green Hydrogen
Jul 2023
Publication
A large portion of astronomy’s carbon footprint stems from fossil fuels supplying the power demand of astronomical observatories. Here we explore various isolated low-carbon power system setups for the newly planned Atacama Large Aperture Submillimeter Telescope and compare them to a business-as-usual diesel power generated system. Technologies included in the designed systems are photovoltaics concentrated solar power diesel generators batteries and hydrogen storage. We adapt the electricity system optimization model highRES to this case study and feed it with the telescope’s projected energy demand cost assumptions for the year 2030 and site-specific capacity factors. Our results show that the lowest-cost system with LCOEs of $116/MWh majorly uses photovoltaics paired with batteries and fuel cells running on imported and on-site produced green hydrogen. Some diesel generators run for backup. This solution would reduce the telescope’s power-side carbon footprint by 95% compared to the businessas-usual case.
Social Risk Approach for Assessing Public Safety of Large-scale Hydrogen Systems
Sep 2023
Publication
Social risk is a comprehensive concept that considers not only internal/external physical risks but also risks (which are multiple varied and diverse) associated with social activity. It should be considered from diverse perspectives and requires a comprehensive evaluation framework that takes into account the synergistic impact of each element on others rather than evaluating each risk individually. Social risk assessment is an approach that is not limited to internal system risk from an engineering perspective but also considers the stakeholders development stage and societal readiness and resilience to change. This study aimed to introduce a social risk approach to assess the public safety of large-scale hydrogen systems. Guidelines for comprehensive social risk assessment were developed to conduct appropriate risk assessments for advanced science and technology activities with high uncertainties to predict major impacts on society before an accident occurs and to take measures to mitigate the damage and to ensure good governance are in place to facilitate emergency response and recovery in addition to preventive measures. In a case study this approach was applied to a hydrogen refueling station in Japan and risk-based multidisciplinary approaches were introduced. These approaches can be an effective supporting tool for social implementation with respect to large-scale hydrogen systems such as liquefied hydrogen storage tanks. The guidelines for social risk assessment of large-scale hydrogen systems are under the International Energy Agency Technology Collaboration Program Hydrogen Safety Task 43. This study presents potential case studies of social risk assessment for large-scale hydrogen systems for future.
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
Underground Hydrogen Storage (UHS) in Natural Storage Sites: A Perspective of Subsurface Characterization and Monitoring
Jan 2024
Publication
With the long-standing efforts of green transition in our society underground hydrogen storage (UHS) has emerged as a viable solution to buffering seasonal fluctuations of renewable energy supplies and demands. Like operations in hydrocarbon production and geological CO2 storage a successful UHS project requires a good understanding of subsurface formations while having different operational objectives and practical challenges. Similar to the situations in hydrocarbon production and geological CO2 storage in UHS problems the information of subsurface formations at the field level cannot be obtained through direct measurements due to the resulting high costs. As such there is a need for subsurface characterization and monitoring at the field scale which uses a certain history matching algorithm to calibrate a numerical subsurface model based on available field data. Whereas subsurface characterization and monitoring have been widely used in hydrocarbon production activities for a better understanding of hydrocarbon reservoirs to the best of our knowledge at present it appears to be a relatively less touched area in UHS problems. This work aims to narrow this noticed gap and investigates the use of an ensemble-based workflow for subsurface characterization and monitoring in a 3D UHS case study. Numerical results in this case study indicate that the ensemble-based workflow works reasonably well while also identifying some particular challenges that would be relevant to real-world problems.
Environmental and Climate Impacts of a Large-scale Deployment of Green Hydrogen in Europe
Apr 2024
Publication
Green hydrogen is expected to play a vital role in decarbonizing the energy system in Europe. However large-scale deployment of green hydrogen has associated potential trade-offs in terms of climate and other environmental impacts. This study aims to shed light on a comprehensive sustainability assessment of this large-scale green hydrogen deployment based on the EMPIRE energy system modeling compared with other decarbonization paths. Process-based Life Cycle Assessment (LCA) is applied and connected with the output of the energy system model revealing 45% extra climate impact caused by the dedicated 50% extra renewable infrastructure to deliver green hydrogen for the demand in the sectors of industry and transport in Europe towards 2050. Whereas the analysis shows that green hydrogen eventually wins on the climate impact within four designed scenarios (with green hydrogen with blue hydrogen without green hydrogen and baseline) mainly compensated by its clean usage and renewable electricity supply. On the other hand green hydrogen has a lower performance in other environmental impacts including human toxicity ecotoxicity mineral use land use and water depletion. Furthermore a monetary valuation of Life Cycle Impact (LCI) is estimated to aggregate 13 categories of environmental impacts between different technologies. Results indicate that the total monetized LCI cost of green hydrogen production is relatively lower than that of blue hydrogen. In overview a large-scale green hydrogen deployment potentially shifts the environmental pressure from climate and fossil resource use to human health mineral resource use and ecosystem damage due to its higher material consumption of the infrastructure.
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
Functional Resonance Analysis for Emerging Risks in Hydrogen Handling: An Analysis of an Experimental Test
Oct 2024
Publication
Hydrogen is on the rise as a substitute for fossil fuel in the energy sector. While this substitution does not happen dramatically the steady increase in hydrogen related research might be a good indicator of such desire. As it stands there are issues regarding its safe handling and use; consequently the health and safety subsectors observe the situation conspicuously. As we yet to know the behavior of hydrogen in critical situations uncertainties make these tasks prone to emerging risks. Thus hydrogen safety falls under emerging risk studies. Conventional perspective on safety especially regarding the flammable material focuses on calculating the hypothetical risks of failures in system. Resilience Engineering has another perspective as it focuses on normal operations offering new perspectives to tackle emerging risks from a new angle. Born from the heart of Resilience Engineering the Functional Resonance Analysis Method (FRAM) captures sociotechnical systems’ essence in a tangible way. In this study FRAM has been used to model a series of experiments done on hydrogen management to analyze its jet fire. FRAM is used to test whether the method could be suitable to model a system in which emerging risks are present. It is the conclusion of this study that FRAM seems promising in raising risk awareness especially when available data is limited.
Public Perception of Hydrogen: Response to an Open-ended Questions
Sep 2023
Publication
Widespread use of hydrogen and hydrogen-based fuels as energy carriers in society may enable the gradual replacement of fossil fuels by renewable energy sources. Although the development and deployment of the associated technologies and infrastructures represent a considerable bottleneck it is generally acknowledged that neither the technical feasibility nor the economic viability alone will determine the extent of the future use of hydrogen as an energy carrier. Public perception beliefs awareness and knowledge about hydrogen will play a significant role in the further development of the hydrogen economy. To this end the present study examines public perception and awareness of hydrogen in Norway. The approach adopted entailed an open-ended question examining spontaneous associations with the term ‘hydrogen’. The question was fielded to 2276 participants in Wave 25 of the Norwegian Citizen Panel (NCP) an on-line panel that derives random samples from the general population registry. The analysis focused on classifying the responses into negative associations (i.e. barriers towards widespread implementation of hydrogen in society) neutral associations (e.g. basic facts) and positive associations (i.e. drivers towards widespread implementation of hydrogen in society). Each of the 2194 responses were individually assessed by five researchers. The majority of the responses highlighted neutral associations using words such as ‘gas’ ‘water’ and ‘element’. When considering barriers vs. drivers the overall responses tend towards positive associations. Many respondents perceive hydrogen as a clean and environmentally friendly fuel and hydrogen technologies are often associated with the future. The negative sentiments were typically associated with words such as ‘explosive’ ‘hazardous’ and ‘expensive’. Despite an increase in the mentioning of safety-related properties relative to a previous study in the same region the frequency of such references was rather low (4%). The responses also reveal various misconceptions such as hydrogen as a prospective ‘source’ of clean energy.
Strength of Knowledge and Uncertainties in Safety Regulation of Hydrogen as an Energy Carrier
Sep 2023
Publication
Ahead of a potential large-scale implementation of hydrogen as an energy carrier in society safety regulation systems should be in place to provide a systematic consideration of safety related concerns. Knowledge is essential for regulatory activities. At the same time it is challenging to obtain sufficient information when regulating emerging technologies – it may be difficult to address informational shortcomings in regulatory matters as analysts can be prone to under-communicate the significance of uncertainties. Furthermore Strength of Knowledge (SoK) has been developed to address the quality of background knowledge in risk analyses. An example of a SoK framework is based on the following four conditions that is used to assess whether knowledge can be considered weak or strong: the issue of simplifications availability and reliability of data consensus among experts and general understanding of the phenomena in question. In theory this concept seems relevant for the introduction of hydrogen as an energy carrier mainly because there is little historical data to develop sound analyses creating uncertainties. However there are no clear-cut guidelines as to how knowledge gaps should be handled in the development of regulatory requirements. In this paper we consider the relevance of a specific approach for SoK assessment in the context of safety and security regulation of hydrogen as an energy carrier in society. We conclude that there are some challenges with the proposed framework and argue that further research should be conducted to identify or develop a method for handling uncertainties in regulatory processes regarding hydrogen systems as energy carriers in societies.
No more items...