Norway
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
Climate Change Impacts of E-fuels for Aviation in Europe Under Present-day Conditions and Future Policy Scenarios
Jan 2023
Publication
‘E-fuels’ or ‘synthetic fuels’ are hydrocarbon fuels synthesized from hydrogen (H2) and carbon dioxide (CO2) where H2 can be produced via electrolysis of water or steam reforming of natural gas and CO2 is captured from the combustion of a fossil or biogenic source or directly from the atmosphere. E-fuels are drop-in substitutes for fossil fuels but their climate change mitigation benefits are largely unclear. This study evaluates the climate change impacts of e-fuels for aviation by combining different sources of CO2 and H2 up to 2050 under two contrasting policy scenarios. The analysis includes different climate metrics and the effects of near-term climate forcers which are particularly relevant for the aviation sector. Results are produced for European average conditions and for Poland and Norway two countries with high and low emission intensity from their electricity production mix. E-fuels can either have higher or lower climate change impacts than fossil fuels depending on multiple factors such as in order of importance the electricity mix the origin of CO2 the technology for H2 production and the electrolyzer efficiency. The climate benefits are generally higher for e-fuels produced from CO2 of biogenic origin while e-fuels produced from CO2 from direct air capture or fossil fuel combustion require countries with clean electricity to outperform fossil fuels. Synthetic fuels produced from H2 derived from natural gas have higher impacts than fossil fuels even when coupled with carbon capture and storage if CO2 is sourced from fossil fuels or the atmosphere. Climate change impacts of e-fuels improve in the future and they can all achieve considerable climate change mitigation in 2050 relative to fossil jet fuel provided that strict climate policy measures are implemented to decarbonize the electricity sector. Under reduced policy efforts future climate impacts in 2050 of e-fuels from atmospheric or fossil CO2 are still higher than those of fossil jet fuels with an average European electricity mix. This study shows the conditions to maximize the climate change mitigation benefits of e-fuels which essentially depend on progressive decarbonization of the electricity sector and on reduced use of CO2 sourced from fossil fuels.
Quantitative Risk Analysis of Scaled-up Hydrogen Facilities
Sep 2021
Publication
Development of hydrogen facilities such as hydrogen refuelling stations (HRS) at scale is a fine balance between economy and safety where an optimal solution would both prevent showstoppers due to cost of increased safety measures and prevent showstoppers due to hydrogen accidents. A detailed Quantitative Risk Analysis (QRA) methodology is presented where the aim is to establish the total risk of the facility and use it to find the right level of safety features such as blast walls and layout. With upscaled hydrogen facilities comes larger area footprints and more potential leak points. These effects will cause increased possible consequence in terms of vapour cloud explosions and increased leak frequencies. Both effects contributing negative to the total risk of the hydrogen facility. At the same time as the number of such facilities is increasing rapidly the frequency of incidents can also increase. A risk-based approach is employed where inherently safe solutions is investigated and cost efficient and acceptable solutions can be established. The present QRA uses well established tools such as SAFETI FLACS and Express which are fitted for hydrogen risks. By using the established Explosion Risk Analysis tool Express the explosion risk inside the station can be found. By using CFD tools actively one can point at physical risk drivers such as equipment layout that can minimize gas cloud build-up on the station. The explosion simulations are further used to find the effects of e.g. blast wall on the pressures affecting on people on the other side of the wall. This is used together with the results from the SAFETI analysis to develop risk contours around the facility. Current standardized safety distances are discussed by considering the effects of scaling and risk drivers on the safety distances. The methodology can be used to develop certain requirement for how hydrogen facilities should be built inherently safe and in cost-efficient ways.
Examining the Role of Safety in Communication Concerning Emerging Hydrogen Technologies by Selected Groups of Stakeholders
Sep 2021
Publication
Governments and other stakeholders actively promote and facilitate the development and deployment of hydrogen and fuel cell technologies. Various strategy documents and energy forecasts outline the environmental and societal benefits of the prospective hydrogen economy. At the same time the safety related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to conventional fuels. Severe accidents can have major impact on the development of energy technologies. The stakes will increase significantly as the use of hydrogen shifts from controlled environments in industrial facilities to the public domain and as the transport-related consumption extends from passenger cars and buses to trains ships and airplanes. Widespread deployment of hydrogen as an energy carrier in society will require massive investments. This implies commercial and political commitment involvement and influence on research priorities and decision-making. The legacy from accidents and the messages communicated by influential stakeholders impact not only how the public perceives hydrogen technologies but also governmental policies the development of regulations codes and standards (RCS) and ultimately the measures adopted for preventing and mitigating accidents. This paper explores whether and how selected aspects of safety are considered when distinct groups of stakeholders frame the hydrogen economy. We assess to what extent the communication is consistent with the current state-of-the-art in hydrogen safety and the contemporary strength of knowledge in risk assessments for hydrogen systems. The approach adopted entails semi-quantitative text analysis and close reading to highlight variations between diverse groups of stakeholders. The results indicate a bias in the framing of the safety-related aspects of the hydrogen economy towards procedural organisational and societal measures of risk reduction at the expense of well-known challenges and knowledge gaps associated with the implications of fundamental safety-related properties of hydrogen.
A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation
Oct 2022
Publication
The energy transition with transformation into predominantly renewable sources requires technology development to secure power production at all times despite the intermittent nature of the renewables. Micro gas turbines (MGTs) are small heat and power generation units with fast startup and load-following capability and are thereby suitable backup for the future’s decentralized power generation systems. Due to MGTs’ fuel flexibility a range of fuels from high-heat to lowheat content could be utilized with different greenhouse gas generation. Developing micro gas turbines that can operate with carbon-free fuels will guarantee carbon-free power production with zero CO2 emission and will contribute to the alleviation of the global warming problem. In this paper the redevelopment of a standard 100-kW micro gas turbine to run with methane/hydrogen blended fuel is presented. Enabling micro gas turbines to run with hydrogen blended fuels has been pursued by researchers for decades. The first micro gas turbine running with pure hydrogen was developed in Stavanger Norway and launched in May 2022. This was achieved through a collaboration between the University of Stavanger (UiS) and the German Aerospace Centre (DLR). This paper provides an overview of the project and reports the experimental results from the engine operating with methane/hydrogen blended fuel with various hydrogen content up to 100%. During the development process the MGT’s original combustor was replaced with an innovative design to deal with the challenges of burning hydrogen. The fuel train was replaced with a mixing unit new fuel valves and an additional controller that enables the required energy input to maintain the maximum power output independent of the fuel blend specification. This paper presents the test rig setup and the preliminary results of the test campaign which verifies the capability of the MGT unit to support intermittent renewable generation with minimum greenhouse gas production. Results from the MGT operating with blended methane/hydrogen fuel are provided in the paper. The hydrogen content varied from 50% to 100% (volume-based) and power outputs between 35 kW to 100kW were tested. The modifications of the engine mainly the new combustor fuel train valve settings and controller resulted in a stable operation of the MGT with NOx emissions below the allowed limits. Running the engine with pure hydrogen at full load has resulted in less than 25 ppm of NOx emissions with zero carbon-based greenhouse gas production.
Effect of Mechanical Ventilation on Accidental Hydrogen Releases - Large Scale Experiments
Sep 2021
Publication
This paper presents a series of experiments on the effectiveness of existing mechanical ventilation systems during accidental hydrogen releases in confined spaces like underground garages. The purpose was to find the mass flow rate limit hence the TPRD diameter limit that will not require a change in the ventilation system. The experiments were performed in a 40 ft ISO container in Norway and hydrogen gas was used in all experiments. The forced ventilation system was installed with a standard outlet 315 mm diameter. The ventilation parameters during the investigation were British Standard with 10 ACH and British Standard with 6 ACH. The hydrogen releases were obtained through 0.5 mm and 1 mm nozzle from different hydrogen reservoir pressures. Both types of mass flow: constant and blowdown were included in the experimental matrix. The analysis of hydrogen concentration of created hydrogen cloud in the container shows the influence of the forced ventilation on hydrogen releases together with TPRD diameter and reservoir pressure. The generated experimental data will be used to validate a CFD model in the next step.
Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO2 Emissions
Jul 2022
Publication
Rapidly declining costs of renewable energy technologies have made solar and wind the cheapest sources of energy in many parts of the world. This has been seen primarily as enabling the rapid decarbonization of the electricity sector but low-cost low-carbon energy can have a great secondary impact by reducing the costs of energy-intensive decarbonization efforts in other areas. In this study we consider by way of an exemplary carbon capture and utilization cycle based on mature technologies the energy requirements of the “industrial carbon cycle” an emerging paradigm in which industrial CO2 emissions are captured and reprocessed into chemicals and fuels and we assess the impact of declining renewable energy costs on overall economics of these processes. In our exemplary process CO2 is captured from a cement production facility via an amine scrubbing process and combined with hydrogen produced by a solar-powered polymer electrolyte membrane using electrolysis to produce methanol. We show that solar heat and electricity generation costs currently realized in the Middle East lead to a large reduction in the cost of this process relative to baseline assumptions found in published literature and extrapolation of current energy price trends into the near future would bring costs down to the level of current fossil-fuel-based processes.
Pore-scale Study of Microbial Hydrogen Consumption and Wettability Alteration During Underground Hydrogen Storage
Feb 2023
Publication
Hydrogen can be a renewable energy carrier and is suggested to store renewable energy and mitigate carbon dioxide emissions. Subsurface storage of hydrogen in salt caverns deep saline formations and depleted oil/gas reservoirs would help to overcome imbalances between supply and demand of renewable energy. Hydrogen however is one of the most important electron donors for many subsurface microbial processes including methanogenesis sulfate reduction and acetogenesis. These processes cause hydrogen loss and changes of reservoir properties during geological hydrogen storage operations. Here we report the results of a typical halophilic sulfate-reducing bacterium growing in a microfluidic pore network saturated with hydrogen gas at 35 bar and 37°C. Test duration is 9 days. We observed a significant loss of H2 from microbial consumption after 2 days following injection into a microfluidic device. The consumption rate decreased over time as the microbial activity declined in the pore network. The consumption rate is influenced profoundly by the surface area of H2 bubbles and microbial activity. Microbial growth in the silicon pore network was observed to change the surface wettability from a water-wet to a neutral-wet state. Due to the coupling effect of H2 consumption by microbes and wettability alteration the number of disconnected H2 bubbles in the pore network increased sharply over time. These results may have significant implications for hydrogen recovery and gas injectivity. First pore-scale experimental results reveal the impacts of subsurface microbial growth on H2 in storage which are useful to estimate rapidly the risk of microbial growth during subsurface H2 storage. Second microvisual experiments provide critical observations of bubble-liquid interfacial area and reaction rate that are essential to the modeling that is needed to make long-term predictions. Third results help us to improve the selection criteria for future storage sites.
Comparison of Alternative Marine Fuels
Sep 2019
Publication
The overall ambition of the study has been to assess the commercial and operational viability of alternative marine fuels based on review existing academic and industry literature. The approach assesses how well six alternative fuels perform compared to LNG fuel on a set of 11 key parameters. Conventional fuels are not covered in this study however 2020 compliant fuels (HFO+scrubber and low sulphur fuels are included in the conclusion for comparative purposes.
Computational Fluid Dynamics Simulations of Hydrogen Releases and Vented Deflagrations in Large Enclosures
Nov 2019
Publication
This paper presents model predictions obtained with the CFD tool FLACS for hydrogen releases and vented deflagrations in containers and larger enclosures. The paper consists of two parts. The first part compares experimental results and model predictions for two test cases: experiments performed by Gexcon in 20-foot ISO containers (volume 33 m3 ) as part of the HySEA project and experiments conducted by SRI International and Sandia National Laboratories in a scaled warehouse geometry (volume 45.4 m3 ). The second part explores the use of the model system validated in the first part to accidental releases of hydrogen from forklift trucks inside a full-scale warehouse geometry (32 400 m3 ). The results demonstrate the importance of using realistic and reasonably accurate geometry models of the systems under consideration when performing CFD-based risk assessment studies. The discussion highlights the significant inherent uncertainty associated with quantitative risk assessments for vented hydrogen deflagrations in complex geometries. The suggestions for further work include a pragmatic approach for developing empirical correlations for pressure loads from vented hydrogen deflagrations in industrial warehouses with hydrogen-powered forklift trucks.
Exploring the Complexity of Hydrogen Perception and Acceptance Among Key Stakeholders in Norway
Nov 2022
Publication
This article explores the complexity of factors or mechanisms that can influence hydrogen stakeholder perception and acceptance in Norway. We systematically analyze 16 semi-structured in-depth interviews with industry stakeholders at local municipal regional and national levels of interest and authority in Norway. Four empirical dimensions are identified that highlight the need for whole system approaches in hydrogen technology research: (1) several challenges incentives and synergy effects influence the hydrogen transition; (2) transport preferences are influenced by combined needs and limitations; (3) levels of knowledge and societal trust determinant to perceptions of risk and acceptance; and (4) national and international hydrogen stakeholders are crucial to building incentives and securing commitment among key actors. Our findings imply that project management planners engineers and policymakers need to apply a whole system perspective and work across local regional and national levels before proceeding with large-scale development and implementation of the hydrogen supply chain.
Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers
Dec 2018
Publication
In order to adopt water electrolyzers as a main hydrogen production system it is critical to develop inexpensive and earth-abundant catalysts. Currently both half-reactions in water splitting depend heavily on noble metal catalysts. This review discusses the proton exchange membrane (PEM) water electrolysis (WE) and the progress in replacing the noble-metal catalysts with earth-abundant ones. The efforts within this field for the discovery of efficient and stable earth-abundant catalysts (EACs) have increased exponentially the last few years. The development of EACs for the oxygen evolution reaction (OER) in acidic media is particularly important as the only stable and efficient catalysts until now are noble-metal oxides such as IrOx and RuOx. On the hydrogen evolution reaction (HER) side there is significant progress on EACs under acidic conditions but there are very few reports of these EACs employed in full PEM WE cells. These two main issues are reviewed and we conclude with prospects for innovation in EACs for the OER in acidic environments as well as with a critical assessment of the few full PEM WE cells assembled with EACs.
Enhancing Safety of Liquid and Vaporised Hydrogen Transfer Technologies in Public Areas for Mobile Applications
Sep 2023
Publication
Federico Ustolin,
Donatella Cirrone,
Vladimir V. Molkov,
Dmitry Makarov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Giordano Emrys Scarponi,
Alessandro Tugnoli,
Ernesto Salzano,
Valerio Cozzani,
Daniela Lindner,
Birgit Gobereit,
Bernhard Linseisen,
Stuart J. Hawksworth,
Thomas Jordan,
Mike Kuznetsov,
Simon Jallais and
Olga Aneziris
International standards related to cryogenic hydrogen transferring technologies for mobile applications (filling of trucks ships stationary tanks) are missing and there is lack of experience. The European project ELVHYS (Enhancing safety of liquid and vaporized hydrogen transfer technologies in public areas for mobile applications) aims to provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies which are the results of a detailed risk analysis. This is carried out by applying an inter-disciplinary approach to study both the cryogenic hydrogen transferring procedures and the phenomena that may arise from the loss of containment of a piece of equipment containing hydrogen. ELVHYS will provide critical inputs for the development of international standards by creating inherently safer and optimized procedures and guidelines for cryogenic hydrogen transferring technologies thus increasing their safety level and efficiency. The aim of this paper is twofold: present the state of the art of liquid hydrogen transfer technologies by focusing on previous research projects such as PRESLHY and introduce the objectives and methods planned in the new EU project ELVHYS.
Microfluidic Storage Capacity and Residual Trapping During Cyclic Injections: Implications for Underground Storage
Apr 2023
Publication
Long-term and large-scale H2 storage is vital for a sustainable H2 economy. Research in underground H2 storage (UHS) in porous media is emerging but the understanding of H2 reconnection and recovery mechanisms under cyclic loading is not yet adequate. This paper reports a qualitative and quantitative investigation of H2 reconnection and recovery mechanisms in repeated injection-withdrawal cycles. Here we use microfluidics to experimentally investigate up to 5 cycles of H2 injection and withdrawal under a range of injection rates at shallow reservoir storage conditions. We find that H2 storage capacities increase with increasing injection rate and range between ~10% and 60%. The residual H2 saturation is in the same range between cycles (30e40%) but its distribution in the pore space visually appears to be hysteretic. In most cases the residually trapped H2 reconnects in the subsequent injection cycle predominantly in proximity to the large pore clusters. Our results provide valuable experimental data to advance the understanding of multiple H2 injection cycles in UHS schemes.
A Review on Hydrogen Embrittlement and Risk-based Inspection of Hydrogen Technologies
May 2023
Publication
Hydrogen could gradually replace fossil fuels mitigating the human impact on the environment. However equipment exposed to hydrogen is subjected to damaging effects due to H2 absorption and permeation through metals. Hence inspection activities are necessary to preserve the physical integrity of the containment systems and the risk-based (RBI) methodology is considered the most beneficial approach. This review aims to provide relevant information regarding hydrogen embrittlement its effect on materials’ properties and the synergistic interplay of the factors influencing its occurrence. Moreover an overview of predictive maintenance strategies is presented focusing on the RBI methodology. A systematic review was carried out to identify examples of the application of RBI to equipment exposed to hydrogenated environments and to identify the most active research groups. In conclusion a significant lack of knowledge has been highlighted along with difficulties in applying the RBI methodology for equipment operating in a pure hydrogen environment.
Renewable Hydrogen and Synthetic Fuels Versus Fossil Fuels for Trucking, Shipping and Aviation: A Holistic Cost Model
Aug 2023
Publication
Potential carbon neutrality of the global trucking shipping and aviation sectors by 2050 could be achieved by substituting fossil fuels with renewable hydrogen and synthetic fuels. To investigate the economic impact of fuel substitution over time a holistic cost model is developed and applied to three case studies in Norway an early adopter of carbon-neutral freight transport. The model covers the value chains from local electricity and fuel production (hydrogen ammonia Fischer–Tropsch e-fuel) to fuel consumption for long-haul trucking short-sea shipping and mid-haul aviation. The estimates are internally consistent and allow cross-mode and cross-fuel comparisons that set this work apart from previous studies more narrowly focused on a given transport mode or fuel. The model contains 150 techno-economic parameters to identify which components along the value chains drive levelized costs. This paper finds a cost reduction potential for renewable fuels of 41% to 68% until 2050 but carbon-neutral transport will suffer asymmetric cost disadvantages. Fuel substitution is most expensive in short-sea shipping followed by mid-haul aviation and long-haul trucking. Cost developments of electricity direct air capture of carbon vehicle expenses and fuel-related payload losses are significant drivers.
Modelling of Fast Fueling of Pressurized Hydrogen Tanks for Maritime Applications
Apr 2023
Publication
This paper studies fast fueling of gaseous hydrogen into large hydrogen (H2) tanks suitable for maritime applications. Three modeling methods have been developed and evaluated: (1) Two-dimensional computational fluid dynamic (CFD) modeling (2) One-dimensional wall discretized modeling and (3) Zero-dimensional modeling. A detailed 2D CFD simulation of a small H2-tank was performed and validated with data from literature and then used to simulate a large H2-tank. Results from the 2D-model show non-uniform temperature distribution inside the large tank but not in the small H2-tank. The 1D-model can predict the mean temperature in small H2-tanks but not the inhomogeneous temperature field in large H2-tanks. The 0D-model is suitable as a screening tool to obtain rough estimates. Results from the modeling of the large H2-tank show that the heat transfer to the wall during fast filling is inhibited by heat conduction in the wall which leads to an unacceptably high mean hydrogen temperature.
Design of Gravimetric Primary Standards for Field-testing of Hydrogen Refuelling Stations
Apr 2020
Publication
The Federal Institute of Metrology METAS developed a Hydrogen Field Test Standard (HFTS) that can be used for field verification and calibration of hydrogen refuelling stations. The testing method is based on the gravimetric principle. The experimental design of the HFTS as well as the description of the method are presented here.
Does Time Matter? A Multi-level Assessment of Delayed Energy Transitions and Hydrogen Pathways in Norway
Mar 2023
Publication
The Russian invasion of Ukraine has undeniably disrupted the EU's energy system and created a window of opportunity for an acceleration of the low-carbon energy transition in Europe. As the trading bloc's biggest gas supplier Norway faces the imminent threat of fast-depleting gas reserves and declining value for its exports. Norway is trying to beat the clock by aggressively exploring more petroleum therefore delaying its energy transition. In anticipation of the future drop in gas prices Norway is counting on blue hydrogen to valorise its gas resources before gradually shifting to green hydrogen export. Against this background this article seeks to understand how changes in the EU's energy landscape have affected the energy export sector and low-carbon hydrogen export developments in Norway from a multi-level perspective. Using the exploratory scenario approach the article assesses the implications of the different petroleum exploration outcomes on the development of the low-carbon hydrogen export market in Norway. The findings show that despite gas discoveries there is an urgent need for a phase-out plan for the Norwegian petroleum sector. For low-carbon hydrogen to play an important role in Norway's energy transition time is of the essence and action needs to be taken during this window of opportunity. An industrial sector and its value chain could take 25 years to transform which means that actions and policies for a full transformation pathway need to take place in Norway by 2025 to be ready for a climate-neutral Europe in 2050.
Towards Accident Prevention on Liquid Hydrogen: A Data-driven Approach for Releases Prediction
Mar 2023
Publication
Hydrogen is a clean substitute for hydrocarbon fuels in the marine sector. Liquid hydrogen (2 ) can be used to move and store large amounts of hydrogen. This novel application needs further study to assess the potential risk and safety operation. A recent study of 2 large-scale release tests was conducted to replicate spills of 2 inside the ship’s tank connection space and during bunkering operations. The tests were performed in a closed and outdoor facility. The 2 spills can lead to detonation representing a safety concern. This study analyzed the aforementioned 2 experiments and proposed a novel application of the random forests algorithm to predict the oxygen phase change and to estimate whether the hydrogen concentration is above the lower flammability limit (LFL). The models show accurate predictions in different experimental conditions. The findings can be used to select reliable safety barriers and effective risk reduction measures in 2 spills.
No more items...