Netherlands
Combined Effects of Stress and Temperature on Hydrogen Diffusion in Non-hydride Forming Alloys Applied in Gas Turbines
Jul 2022
Publication
Hydrogen plays a vital role in the utilisation of renewable energy but ingress and diffusion of hydrogen in a gas turbine can induce hydrogen embrittlement on its metallic components. This paper aims to investigate the hydrogen transport in a non-hydride forming alloy such as Alloy 690 used in gas turbines inspired by service conditions of turbine blades i.e. under the combined effects of stress and temperature. An appropriate hydrogen transport equation is formulated accounting for both stress and temperature distributions of the domain in the non-hydride forming alloy. Finite element (FE) analyses are performed to predict steady-state hydrogen distribution in lattice sites and dislocation traps of a double notched specimen under constant tensile load and various temperature fields. Results demonstrate that the lattice hydrogen concentration is very sensitive to the temperature gradients whilst the stress concentration only slightly increases local lattice hydrogen concentration. The combined effects of stress and temperature result in the highest concentration of the dislocation trapped hydrogen in low-temperature regions although the plastic strain is only at a moderate level. Our results suggest that temperature gradients and stress concentrations in turbine blades due to cooling channels and holes make the relatively low-temperature regions susceptible to hydrogen embrittlement.
The Role of Hydrogen in Heavy Transport to Operate within Planetary Boundaries
Jul 2021
Publication
Green hydrogen i.e. produced from renewable resources is attracting attention as an alternative fuel for the future of heavy road transport and long-distance driving. However the benefits linked to zero pollution at the usage stage can be overturned when considering the upstream processes linked to the raw materials and energy requirements. To better understand the global environmental implications of fuelling heavy transport with hydrogen we quantified the environmental impacts over the full life cycle of hydrogen use in the context of the Planetary Boundaries (PBs). The scenarios assessed cover hydrogen from biomass gasification (with and without carbon capture and storage [CCS]) and electrolysis powered by wind solar bioenergy with CCS nuclear and grid electricity. Our results show that the current diesel-based-heavy transport sector is unsustainable due to the transgression of the climate change-related PBs (exceeding standalone by two times the global climate-change budget). Hydrogen-fuelled heavy transport would reduce the global pressure on the climate change-related PBs helping the transport sector to stay within the safe operating space (i.e. below one-third of the global ecological budget in all the scenarios analysed). However the best scenarios in terms of climate change which are biomass-based would shift burdens to the biosphere integrity and nitrogen flow PBs. In contrast burden shifting in the electrolytic scenarios would be negligible with hydrogen from wind electricity emerging as an appealing technology despite attaining higher carbon emissions than the biomass routes
Islanded Ammonia Power Systems: Technology Review & Conceptual Process Design
Aug 2019
Publication
Recent advances in technologies for the decentralized islanded ammonia economy are reviewed with an emphasis on feasibility for long-term practical implementation. The emphasis in this review is on storage systems in the size range of 1–10 MW. Alternatives for hydrogen production nitrogen production ammonia synthesis ammonia separation ammonia storage and ammonia combustion are compared and evaluated. A conceptual process design based on the optimization of temperature and pressure levels of existing and recently proposed technologies is presented for an islanded ammonia energy system. This process design consists of wind turbines and solar panels for electricity generation a battery for short-term energy storage an electrolyzer for hydrogen production a pressure swing adsorption unit for nitrogen production a novel ruthenium-based catalyst for ammonia synthesis a supported metal halide for ammonia separation and storage and an ammonia fueled proton-conducting solid oxide fuel cell for electricity generation. In a generic location in northern Europe it is possible to operate the islanded energy system at a round-trip efficiency of 61% and at a cost of about 0.30–0.35 € kWh−1 .
Assessing Damaged Pipelines Transporting Hydrogen
Jun 2022
Publication
There is worldwide interest in transporting hydrogen using both new pipelines and pipelines converted from natural gas service. Laboratory tests investigating the effect of hydrogen on the mechanical properties of pipeline steels have shown that even low partial pressures of hydrogen can substantially reduce properties such as reduction in area and fracture toughness and increase fatigue crack growth rates. However qualitative arguments suggest that the effects on pipelines may not be as severe as predicted from the small scale tests. If the trends seen in laboratory tests do occur in service there are implications for the assessment of damage such as volumetric corrosion dents and mechanical interference. Most pipeline damage assessment methods are semi-empirical and have been calibrated with data from full scale tests that did not involve hydrogen. Hence the European Pipeline Research Group (EPRG) commissioned a study to investigate damage assessment methods in the presence of hydrogen. Two example pipeline designs were considered both were assessed assuming a modern high performance material and an older material. From these analyses the numerical results show that the high toughness material will tolerate damage even if the properties are degraded by hydrogen exposure. However low toughness materials may not be able to tolerate some types of severe damage. If the predictions are realistic operators may have to repair more damage or reduce operating pressures. Furthermore damage involving cracking may not Page 2 of 22 satisfy the ASME B31.12 requirements for preventing time dependent crack growth. Further work is required to determine if the effects predicted using small scale laboratory test data will occur in practice.
Vision for a European Metrology Network for Energy Gases
Mar 2022
Publication
As Europe moves towards decarbonising its energy infrastructure new measurement needs will arise that require collaborative efforts between European National Metrology Institutes and Designated Institutes to tackle. Such measurement needs include flow metering of hydrogen or hydrogen enriched natural gas in the gas grid for billing quality assurance of hydrogen at refuelling stations and equations of state for carbon dioxide in carbon capture and storage facilities. The European metrology network for energy gases for the first time provides a platform where metrology institutes can work together to develop a harmonised strategy prioritise new challenges and share expertise and capabilities to support the European energy gas industry to meet stringent EU targets for climate change and emissions reductions
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Economic Complexity of Green Hydrogen Production Technologies - A Trade Data-based Analysis of Country-sepcific Industrial Preconditions
May 2023
Publication
Countries with high energy demand but limited renewable energy potential are planning to meet part of their future energy needs by importing green hydrogen. For potential exporting countries in addition to sufficient renewable resources industrial preconditions are also relevant for the successful implementation of green hydrogen production value chains. A list of 36 “Green H2 Products” needed for stand-alone hydrogen production plants was defined and their economic complexity was analyzed using international trade data from 1995 to 2019. These products were found to be comparatively complex to produce and represent an opportunity for countries to enter new areas of the product space through green diversification. Large differences were revealed between countries in terms of industrial preconditions and their evolution over time. A detailed analysis of nine MENA countries showed that Turkey and Tunisia already possess industrial know-how in various green hydrogen technology components and perform only slightly worse than potential European competitors while Algeria Libya and Saudi Arabia score the lowest in terms of calculated hydrogen-related green complexity. These findings are supported by statistical tests showing that countries with a higher share of natural resources rents in their gross domestic product score significantly lower on economic and green complexity. The results thus provide new perspectives for assessing the capabilities of potential hydrogen-producing countries which may prove useful for policymakers and investors. Simultaneously this paper contributes to the theory of economic complexity by applying its methods to a new subset of products and using a dataset with long-term coverage.
Design of Gravimetric Primary Standards for Field-testing of Hydrogen Refuelling Stations
Apr 2020
Publication
The Federal Institute of Metrology METAS developed a Hydrogen Field Test Standard (HFTS) that can be used for field verification and calibration of hydrogen refuelling stations. The testing method is based on the gravimetric principle. The experimental design of the HFTS as well as the description of the method are presented here.
Renewable Hydrogen Production: A Techno-economic Comparison of Photoelectrochemical Cells and Photovoltaic-electrolysis
Aug 2020
Publication
The present paper reports a techno-economic analysis of two solar assisted hydrogen production technologies: a photoelectrochemical (PEC) system and its major competitor a photovoltaic system connected to a conventional water electrolyzer (PV-E system). A comparison between these two types was performed to identify the more promising technology based on the levelized cost of hydrogen (LCOH). The technical evaluation was carried out by considering proven designs and materials for the PV-E system and a conceptually design for the PEC system extrapolated to future commercial scale. The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2 with a solar to hydrogen efficiency of 10.9%. For the PEC system with a similar efficiency of 10% the LCOH was calculated to be much higher namely 8.43 $/kgH2. A sensitivity analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This implies that much effort would be needed for this technology to become competitive on the market. Therefore we conclude that the potential techno-economic benefits that PEC systems offer over PV-E are uncertain and even in the best case limited. While research into photoelectrochemical cells remains of interest it presents a poor case for dedicated investment in the technology’s development and scale-up.
Modelling and Evaluation of PEM Hydrogen Technologies for Frequency Ancillary Services in Future Multi-energy Sustainable Power Systems
Mar 2019
Publication
This paper examines the prospect of PEM (Proton Exchange Membrane) electrolyzers and fuel cells to partake in European electrical ancillary services markets. First the current framework of ancillary services is reviewed and discussed emphasizing the ongoing European harmonization plans for future frequency balancing markets. Next the technical characteristics of PEM hydrogen technologies and their potential uses within the electrical power system are discussed to evaluate their adequacy to the requirements of ancillary services markets. Last a case study based on a realistic representation of the transmission grid in the north of the Netherlands for the year 2030 is presented. The main goal of this case study is to ascertain the effectiveness of PEM electrolyzers and fuel cells for the provision of primary frequency reserves. Dynamic generic models suitable for grid simulations are developed for both technologies including the required controllers to enable participation in ancillary services markets. The obtained results show that PEM hydrogen technologies can improve the frequency response when compared to the procurement with synchronous generators of the same reserve value. Moreover the fast dynamics of PEM electrolyzers and fuel cells can help mitigate the negative effects attributed to the reduction of inertia in the system.
Review and Survey of Methods for Analysis of Impurities in Hydrogen for Fuel Cell Vehicles According to ISO 14687:2019
Feb 2021
Publication
Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly this document intends to review the sampling of hydrogen and the available analytical methods together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed however some of them are challenging especially the halogenated compounds since only some halogenated compounds are covered not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.
Carbon Capture and Biomass in Industry: A Techno-economic Analysis and Comparison of Negative Emission Options
Apr 2021
Publication
Meeting the Paris Agreement will most likely require the combination of CO2 capture and biomass in the industrial sector resulting in net negative emissions. CO2 capture within the industry has been extensively investigated. However biomass options have been poorly explored with literature alluding to technical and economic barriers. In addition a lack of consistency among studies makes comparing the performance of CO2 capture and/or biomass use between studies and sectors difficult. These inconsistencies include differences in methodology system boundaries level of integration costs greenhouse gas intensity of feedstock and energy carriers and capital cost estimations. Therefore an integrated evaluation of the techno-economic performance regarding CO2 capture and biomass use was performed for five energy-intensive industrial sub-sectors. Harmonization results indicate that CO2 mitigation potentials vary for each sub-sector resulting in reductions of 1.4–2.7 t CO2/t steel (77%–149%) 0.7 t CO2/t cement (92%) 0.2 t CO2/t crude oil (68%) 1.9 t CO2/t pulp (1663%–2548%) and 34.9 t CO2/t H2 (313%). Negative emissions can be reached in the steel paper and H2 sectors. Novel bio-based production routes might enable net negative emissions in the cement and (petro) chemical sectors as well. All the above-mentioned potentials can be reached for 100 €/t CO2 or less. Implementing mitigation options could reduce industrial CO2 emissions by 10 Gt CO2/y by 2050 easily meeting the targets of the 2 ◦C scenario by the International Energy Agency (1.8 Gt CO2/y reduction) for the industrial sector and even the Beyond 2 ◦C scenario (4.2 Gt CO2/y reduction).
Exploring the Possibility of Using Molten Carbonate Fuel Cell for the Flexible Coproduction of Hydrogen and Power
Sep 2021
Publication
Fuel cells are electrochemical devices that are conventionally used to convert the chemical energy of fuels into electricity while producing heat as a byproduct. High temperature fuel cells such as molten carbonate fuel cells and solid oxide fuel cells produce significant amounts of heat that can be used for internal reforming of fuels such as natural gas to produce gas mixtures which are rich in hydrogen while also producing electricity. This opens up the possibility of using high temperature fuel cells in systems designed for flexible coproduction of hydrogen and power at very high system efficiency. In a previous study the flowsheet software Cycle-Tempo has been used to determine the technical feasibility of a solid oxide fuel cell system for flexible coproduction of hydrogen and power by running the system at different fuel utilization factors (between 60 and 95%). Lower utilization factors correspond to higher hydrogen production while at a higher fuel utilization standard fuel cell operation is achieved. This study uses the same basis to investigate how a system with molten carbonate fuel cells performs in identical conditions also using Cycle-Tempo. A comparison is made with the results from the solid oxide fuel cell study.
International Competitiveness of Low-carbon Hydrogen Supply to the Northwest European Market
Oct 2022
Publication
This paper analyses which sources of low-carbon hydrogen for the Northwest European market are most competitive taking into account costs of local production conversion and transport. Production costs of electrolysis are strongly affected by local renewable electricity costs and capacity factors. Transport costs are the lowest by pipelines for distances under 10000 km with costs linearly increasing with distance. For larger distances transport as ammonia is more efficient with less relation to distance despite higher conversion costs. The most competitive low-carbon hydrogen supply to the Northwest European market appears to be local Steam Methane Reforming with Carbon Capture and Storage when international gas prices return back to historical levels. When gas prices however remain high then import from Morocco with electrolysis directly connected to offshore wind generation is found to be the most competitive source of low-carbon hydrogen. These conclusions are robust for various assumptions on costs and capacity factors.
High Technical and Temporal Resolution Integrated Energy System Modelling of Industrial Decarbonisation
Aug 2022
Publication
Owing to the complexity of the sector industrial activities are often represented with limited technological resolution in integrated energy system models. In this study we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals hydrocarbons ammonia and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes namely a bio-based industry a hydrogen-based industry a fully electrified industry and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass hydrogen and natural gas prices carbon storage potentials technological learning and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based hydrogen-based fully electrified and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally we reveal that based on the current (2022) energy prices the energy transition is cost-effective and fossil fuels can be fully displaced from industry and the national mix by 2050
Reduction Kinetics of Hematite Powder in Hydrogen Atmosphere at Moderate Temperatures
Sep 2018
Publication
Hydrogen has received much attention in the development of direct reduction of iron ores because hydrogen metallurgy is one of the effective methods to reduce CO2 emission in the iron and steel industry. In this study the kinetic mechanism of reduction of hematite particles was studied in a hydrogen atmosphere. The phases and morphological transformation of hematite during the reduction were characterized using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. It was found that porous magnetite was formed and the particles were degraded during the reduction. Finally sintering of the reduced iron and wüstite retarded the reductive progress. The average activation energy was extracted to be 86.1 kJ/mol and 79.1 kJ/mol according to Flynn-Wall-Ozawa (FWO) and Starink methods respectively. The reaction fraction dependent values of activation energy were suggested to be the result of multi-stage reactions during the reduction process. Furthermore the variation of activation energy value was smoothed after heat treatment of hematite particles.
Optimization of Small-Scale Hydrogen Production with Membrane Reactors
Mar 2023
Publication
In the pathway towards decarbonization hydrogen can provide valid support in different sectors such as transportation iron and steel industries and domestic heating concurrently reducing air pollution. Thanks to its versatility hydrogen can be produced in different ways among which steam reforming of natural gas is still the most commonly used method. Today less than 0.7% of global hydrogen production can be considered low-carbon-emission. Among the various solutions under investigation for low-carbon hydrogen production membrane reactor technology has the potential especially at a small scale to efficiently convert biogas into green hydrogen leading to a substantial process intensification. Fluidized bed membrane reactors for autothermal reforming of biogas have reached industrial maturity. Reliable modelling support is thus necessary to develop their full potential. In this work a mathematical model of the reactor is used to provide guidelines for their design and operations in off-design conditions. The analysis shows the influence of temperature pressures catalyst and steam amounts and inlet temperature. Moreover the influence of different membrane lengths numbers and pitches is investigated. From the results guidelines are provided to properly design the geometry to obtain a set recovery factor value and hydrogen production. For a given reactor geometry and fluidization velocity operating the reactor at 12 bar and the permeate-side pressure of 0.1 bar while increasing reactor temperature from 450 to 500 °C leads to an increase of 33% in hydrogen production and about 40% in HRF. At a reactor temperature of 500 °C going from 8 to 20 bar inside the reactor doubled hydrogen production with a loss in recovery factor of about 16%. With the reactor at 12 bar a vacuum pressure of 0.5 bar reduces hydrogen production by 43% and HRF by 45%. With the given catalyst it is sufficient to have only 20% of solids filled into the reactor being catalytic particles. With the fixed operating conditions it is worth mentioning that by adding membranes and maintaining the same spacing it is possible to increase hydrogen production proportionally to the membrane area maintaining the same HRF.
An Economic and Greenhouse Gas Footprint Assessment of International Maritime Transportation of Hydrogen Using Liquid Organic Hydrogen Carriers
Apr 2023
Publication
The supply storage and (international) transport of green hydrogen (H2) are essential for the decarbonization of the energy sector. The goal of this study was to assess the final cost-price and carbon footprint of imported green H2 in the market via maritime shipping of liquid organic hydrogen carriers (LOHCs) including dibenzyl toluene-perhydro-dibenzyltoluene (DBTPDBT) and toluene-methylcyclohexane (TOL-MCH) systems. The study focused on logistic steps in intra-European supply chains in different scenarios of future production in Portugal and demand in the Netherlands and carbon tariffs between 2030 and 2050. The case study is based on a formally accepted agreement between Portugal and the Netherlands within the Strategic Forum on Important Projects of Common European Interest (IPCEI). Under the following assumptions the results show that LOHCs are a viable technical-economic solution with logistics costs from 2030 to 2050 varying between 0.30-0.37 €/kg-H2 for DBT-PDBT and 0.28-0.34 €/kg-H2 for TOL-MCH. The associated CO2 emissions of these international H2 supply chains are between 0.46 and 2.46 kg-CO2/GJ (LHV) and 0.55-2.95 kg-CO2/GJ (LHV) for DBT-PDBT and TOL-MCH respectively.
An Approach for Sizing a PV-battery-electrolyzer-fuel cell Energy System: A Cast Study at a Field Lab
May 2023
Publication
Hydrogen is becoming increasingly popular as a clean secure and affordable energy source for the future. This study develops an approach for designing a PV–battery–electrolyzer–fuel cell energy system that utilizes hydrogen as a long-term storage medium and battery as a short-term storage medium. The system is designed to supply load demand primarily through direct electricity generation in the summer and indirect electricity generation through hydrogen in the winter. The sizing of system components is based on the direct electricity and indirect hydrogen demand with a key input parameter being the load sizing factor which determines the extent to which hydrogen is used to meet seasonal imbalance. Technical and financial indicators are used to assess the performance of the designed system. Simulation results indicate that the energy system can effectively balance the seasonal variation of renewable generation and load demand with the use of hydrogen. Additionally guidelines for achieving self-sufficiency and system sustainability for providing enough power in the following years are provided to determine the appropriate component size. The sensitivity analysis indicates that the energy system can achieve self-sufficiency and system sustainability with a proper load sizing factor from a technical perspective. From an economic perspective the levelized cost of energy is relatively high because of the high costs of hydrogen-related components at this moment. However it has great economic potential for future self-sufficient energy systems with the maturity of hydrogen technologies.
Lessons Learned from Large Scale Hydrogen Production Project
Sep 2023
Publication
In August 2022 Shell started construction of Holland Hydrogen I (HH I) a 200 MW electrolyser plant in the port of Rotterdam’s industrial zone on Maasvlakte II in the Netherlands. HH I will produce up to 60000 kg of renewable hydrogen per day. The development and demonstration of a safe layout and plant design had been challenging due to ambitious HH I project premises many technical novelties common uncertainties in hydrogen leak effect prediction a lack of large-scale water electrolyzer operating history and limited standardization in this industry sector. This paper provides an industry perspective of the major challenges in commercial electrolyzer plant HSSE risk assessment and risk mitigation work processes required to develop and demonstrate a safe design and it describes lessons learned in this area during the HH I project. Furthermore the paper lists major common gaps in relevant knowledge engineering tools standards and OEM deliverables that need closure to enable future commercial electrolyzer plant projects to develop an economically viable and plant design and layout more efficiently and cost-effectively.
Hydrogen Fuel Quality from Two Main Production Processes: Steam Methane Reforming and Proton Exchange Membrane Water Electrolysis
Oct 2019
Publication
Thomas Bacquart,
Karine Arrhenius,
Stefan Persijn,
Andrés Rojo,
Fabien Auprêtre,
Bruno Gozlan,
Abigail Morris,
Andreas Fischer,
Arul Murugan,
Sam Bartlett,
Niamh Moore,
Guillaume Doucet,
François Laridant,
Eric Gernot,
Teresa E. Fernandez,
Concepcion Gomez,
Martine Carré,
Guy De Reals and
Frédérique Haloua
The absence of contaminants in the hydrogen delivered at the hydrogen refuelling station is critical to ensure the length life of FCEV. Hydrogen quality has to be ensured according to the two international standards ISO 14687–2:2012 and ISO/DIS 19880-8. Amount fraction of contaminants from the two hydrogen production processes steam methane reforming and PEM water electrolyser is not clearly documented. Twenty five different hydrogen samples were taken and analysed for all contaminants listed in ISO 14687-2. The first results of hydrogen quality from production processes: PEM water electrolysis with TSA and SMR with PSA are presented. The results on more than 16 different plants or occasions demonstrated that in all cases the 13 compounds listed in ISO 14687 were below the threshold of the international standards. Several contaminated hydrogen samples demonstrated the needs for validated and standardised sampling system and procedure. The results validated the probability of contaminants presence proposed in ISO/DIS 19880-8. It will support the implementation of ISO/ DIS 19880-8 and the development of hydrogen quality control monitoring plan. It is recommended to extend the study to other production method (i.e. alkaline electrolysis) the HRS supply chain (i.e. compressor) to support the technology growth.
Modelling of Hydrogen-blended Dual-fuel Combustion using Flamelet-generated Manifold and Preferential Diffusion Effects
Oct 2022
Publication
In the present study Reynolds-Averaged Navier-Stokes simulations together with a novel flamelet generated manifold (FGM) hybrid combustion model incorporating preferential diffusion effects is utilised for the investigation of a hydrogen-blended diesel-hydrogen dual-fuel engine combustion process with high hydrogen energy share. The FGM hybrid combustion model was developed by coupling laminar flamelet databases obtained from diffusion flamelets and premixed flamelets. The model employed three control variables namely mixture fraction reaction progress variable and enthalpy. The preferential diffusion effects were included in the laminar flamelet calculations and in the diffusion terms in the transport equations of the control variables. The resulting model is then validated against an experimental diesel-hydrogen dual-fuel combustion engine. The results show that the FGM hybrid combustion model incorporating preferential diffusion effects in the flame chemistry and transport equations yields better predictions with good accuracy for the in-cylinder characteristics. The inclusion of preferential diffusion effects in the flame chemistry and transport equations was found to predict well several characteristics of the diesel-hydrogen dual-fuel combustion process: 1) ignition delay 2) start and end of combustion 3) faster flame propagation and quicker burning rate of hydrogen 4) high temperature combustion due to highly reactive nature of hydrogen radicals 5) peak values of the heat release rate due to high temperature combustion of the partially premixed pilot fuel spray with entrained hydrogen/air and then background hydrogen-air premixed mixture. The comparison between diesel-hydrogen dual-fuel combustion and diesel only combustion shows early start of combustion longer ignition delay time higher flame temperature and NOx emissions for dual-fuel combustion compared to diesel only combustion.
Performance Analysis of a Stand-alone Integrated Solar Hydrogen Energy System for Zero Energy Buildings
Oct 2022
Publication
This study analyzes the optimal sizing design of a stand-alone solar hydrogen hybrid energy system for a house in Afyon Turkey. The house is not connected to the grid and the proposed hybrid system meets all its energy demands; therefore it is considered a zero-energy building. The designed system guarantees uninterrupted and reliable power throughout the year. Since the reliability of the power supply is crucial for the house optimal sizing of the components photovoltaic (PV) panels electrolyzer storage tank and fuel cell stack is critical. Determining the sufficient number of PV panels suitable electrolyzer model and size number of fuel cell stacks and the minimum storage tank volume to use in the proposed system can guarantee an uninterrupted energy supply to the house. In this study a stand-alone hybrid energy system is proposed. The system consists of PV panels a proton exchange membrane (PEM) electrolyzer a storage tank and a PEM fuel cell stack. It can meet the continuous energy demand of the house is sized by using 10 min of averaged solar irradiation and temperature data of the site and consumption data of the house. Present results show that the size of each component in a solar hydrogen hybrid energy system in terms of power depends on the size of each other components to meet the efficiency requirement of the whole system. Choosing the nominal electrolyzer power is critical in such energy systems
Opportunities for Production and Utilization of Green Hydrogen in the Philippines
Jun 2021
Publication
The Philippines is exploring different alternative sources of energy to become energy-independent while significantly reducing the country’s greenhouse gas emissions. Green hydrogen from renewable energy is one of the most sustainable alternatives with its application as an energy carrier and as a source of clean and sustainable energy as well as raw material for various industrial processes. As a preliminary study in the country this paper aims to explore different production and utilization routes for a green hydrogen economy in the Philippines. Production from electrolysis includes various available renewable sources consisting of geothermal hydropower wind solar and biomass as well as ocean technology and nuclear energy when they become available in the future. Different utilization routes include the application of green hydrogen in the transportation power generation industry and utility sectors. The results of this study can be incorporated in the development of the pathways for hydrogen economy in the Philippines and can be applied in other emerging economies.
Economic Feasibility of Green Hydrogen in Providing Flexibility to Medium-voltage Distribution Grids in the Presence of Local-heat Systems
Nov 2022
Publication
The recent strong increase in the penetration of renewable energy sources (RESs) in medium-voltage distribution grids (MVDNs) has raised the need for congestion management in such grids as they were not designed for this new condition. This paper examines to what extent producing green hydrogen through electrolyzers can profitably contribute to congestion alleviation in MVDNs in the presence of high amounts of RES as well as flexible consumers of electricity and a local heat system. To address this issue an incentive-based method for improving flexibility in MVDNs is used which is based on a single-leader–multiple-followers game formulated by bi-level mathematical programming. At the upper level the distribution system operator who is the leader of this game determines dynamic prices as incentives at each node based on the levels of generation and load. Next at the lower level providers of flexibility including producers using electrolyzers price-responsive power consumers heat consumers as well as heat producers respond to these incentives by reshaping their output and consumption patterns. The model is applied to a region in the North of The Netherlands. The obtained results demonstrate that converting power to hydrogen can be an economically efficient way to reduce congestion in MVDNs when there is a high amount of RES. However the economic value of electrolyzers as providers of flexibility to MVDNs decreases when more other options for flexibility provision exist.
The Effects of Fuel Type and Cathode Off-gas Recirculation on Combined Heat and Power Generation of Marine SOFC Systems
Dec 2022
Publication
An increasing demand in the marine industry to reduce emissions led to investigations into more efficient power conversion using fuels with sustainable production pathways. Solid Oxide Fuel Cells (SOFCs) are under consideration for long-range shipping because of its high efficiency low pollutant emissions and fuel flexibility. SOFC systems also have great potential to cater for the heat demand in ships but the heat integration is not often considered when assessing its feasibility. This study evaluates the electrical and heat efficiency of a 100 kW SOFC system for marine applications fuelled with methane methanol diesel ammonia or hydrogen. In addition cathode off-gas recirculation (COGR) is investigated to tackle low oxygen utilisation and thus improve heat regeneration. The software Cycle Tempo is used to simulate the power plant which uses a 1D model for the SOFCs. At nominal conditions the highest net electrical efficiency (LHV) was found for methane (58.1%) followed by diesel (57.6%) and ammonia (55.1%). The highest heat efficiency was found for ammonia (27.4%) followed by hydrogen (25.6%). COGR resulted in similar electrical efficiencies but increased the heat efficiency by 11.9% to 105.0% for the different fuels. The model was verified with a sensitivity analysis and validated by comparison with similar studies. It is concluded that COGR is a promising method to increase the heat efficiency of marine SOFC systems.
Moving Toward the Low-carbon Hydrogen Economy: Experiences and Key Learnings from National Case Studies
Sep 2022
Publication
The urgency to achieve net-zero carbon dioxide (CO2) emissions by 2050 as first presented by the IPCC special report on 1.5°C Global Warming has spurred renewed interest in hydrogen to complement electrification for widespread decarbonization of the economy. We present reflections on estimates of future hydrogen demand optimization of infrastructure for hydrogen production transport and storage development of viable business cases and environmental impact evaluations using life cycle assessments. We highlight challenges and opportunities that are common across studies of the business cases for hydrogen in Germany the UK the Netherlands Switzerland and Norway. The use of hydrogen in the industrial sector is an important driver and could incentivise large-scale hydrogen value chains. In the long-term hydrogen becomes important also for the transport sector. Hydrogen production from natural gas with capture and permanent storage of the produced CO2 (CCS) enables large-scale hydrogen production in the intermediate future and is complementary to hydrogen from renewable power. Furthermore timely establishment of hydrogen and CO2 infrastructures serves as an anchor to support the deployment of carbon dioxide removal technologies such as direct air carbon capture and storage (DACCS) and biohydrogen production with CCS. Significant public support is needed to ensure coordinated planning governance and the establishment of supportive regulatory frameworks which foster the growth of hydrogen markets.
Critical Parameters Controlling Wettability in Hydrogen Underground Storage - An Analytical Study
Sep 2022
Publication
Hypothesis.<br/>The large-scale implementation of hydrogen economy requires immense storage spaces to facilitate the periodic storage/production cycles. Extensive modelling of hydrogen transport in porous media is required to comprehend the hydrogen-induced complexities prior to storage to avoid energy loss. Wettability of hydrogen-brine-rock systems influence flow properties (e.g. capillary pressure and relative permeability curves) and the residual saturations which are all essential for subsurface hydrogen systems.<br/>Model.<br/>This study aims to understand which parameters critically control the contact angle for hydrogen-brine-rock systems using the surface force analysis following the DLVO theory and sensitivity analysis. Furthermore the effect of roughness is studied using the Cassie-Baxter model.<br/>Findings.<br/>Our results reveal no considerable difference between H2 and other gases such as N2. Besides the inclusion of roughness highly affects the observed apparent contact angles and even lead to water-repelling features. It was observed that contact angle does not vary significantly with variations of surface charge and density at high salinity which is representative for reservoir conditions. Based on the analysis it is speculated that the influence of roughness on contact angle becomes significant at low water saturation (i.e. high capillary pressure).
Paving the Way: Analysing Energy Transition Pathways and Green Hydrogen Exports in Developing Countries - The Case of Algeria
Apr 2024
Publication
The measures needed to limit global warming pose a particular challenge to current fossil fuel exporters who must not only decarbonise their local energy systems but also compensate for the expected decline in fossil fuel revenues. One possibility is seen in the export of green hydrogen. Using Algeria as a case study this paper analyses how different levels of ambition in hydrogen exports energy efficiency and fuel switching affect the costoptimal expansion of the power sector for a given overall emissions reduction path. Despite falling costs for photovoltaics and wind turbines the results indicate that in countries with very low natural gas prices such as Algeria a fully renewable electricity system by 2050 is unlikely without appropriate policy measures. The expansion of renewable energy should therefore start early given the high annual growth rates required which will be reinforced by additional green hydrogen exports. In parallel energy efficiency is a key factor as it directly mitigates CO2 emissions from fossil fuels and reduces domestic electricity demand which could instead be used for hydrogen production. Integrating electrolysers into the power system could potentially help to reduce specific costs through load shifting. Overall it seems advisable to analyse hydrogen exports together with local decarbonisation in order to better understand their interactions and to reduce emissions as efficiently as possible. These results and the methodology could be transferred to other countries that want to become green hydrogen exporters in the future and are therefore a useful addition for researchers and policy makers.
Carbon Footprint of Hydrogen-powered Inland Shipping: Impacts and Hotspots
Aug 2023
Publication
The shipping sector is facing increasing pressure to implement clean fuels and drivetrains. Especially hydrogen fuel cell drivetrains seem attractive. Although several studies have been conducted to assess the carbon footprint of hydrogen and its application in ships their results remain hard to interpret and compare. Namely it is necessary to include a variety of drivetrain solutions and different studies are based on various assumptions and are expressed in other units. This paper addresses this problem by offering a three-step meta-review of life cycle assessment studies. First a literature review was conducted. Second results from the literature were harmonized to make the different analyses comparable serving cross-examination. The entire life cycle of both the fuels and drivetrains were included. The results showed that the dominant impact was fuel use and related fuel production. And finally life-cycle hot spots have been identified by looking at the effect of specific configurations in more detail. Hydrogen production by electrolysis powered by wind has the most negligible impact. For this ultra-low carbon pathway the modes of hydrogen transport and the use of specific materials and components become relevant.
Enabling Industrial Decarbonization: A MILP Optimization Model for Low-carbon Hydrogen Supply Chains
Jun 2024
Publication
This study develops a an optimization model focused on the layout and dispatch of a low-carbon hydrogen supply chain. The objective is to identify the lowest Levelized Cost of Hydrogen for a given demand. The model considers various elements including electricity supply from the local grid and renewable sources (photovoltaic and wind) alongside hydrogen production compression storage and transportation to end users. Applied to an industrial case study in Sweden the findings indicate that the major cost components are linked to electricity generation and investment in electrolyzers with the LCOH reaching 5.2 EUR/kgH2 under typical demand conditions. Under scenarios with higher peak demands and greater demand volatility the LCOH increases to 6.8 EUR/kgH2 due to the need for additional renewable energy capacity. These results highlight the critical impact of electricity availability and demand fluctuations on the LCOH emphasizing the complex interdependencies within the hydrogen supply chain. This study provides valuable insights into the feasibility and cost-effectiveness of adopting hydrogen as an energy carrier for renewable electricity in the context of decarbonizing industrial processes in the energy system.
Interdisciplinary Perspectives on Offshore Energy System Integration in the North Sea: A Systematic Literature Review
Oct 2023
Publication
To facilitate the rapid and large-scale developments of offshore wind energy scholars policymakers and infrastructure developers must start considering its integration into the larger onshore energy system. Such offshore system integration is defined as the coordinated approach to planning and operation of energy generation transport and storage in the offshore energy system across multiple energy carriers and sectors. This article conducts a systematic literature review to identify infrastructure components of offshore energy system integration (including alternative cable connections offshore energy storage and power-to-hydrogen applications) and barriers to their development. An interdisciplinary perspective is provided where current offshore developments require not only mature and economically feasible technologies but equally strong legal and governance frameworks. The findings demonstrate that current literature lacks a holistic perspective on the offshore energy system. To date techno-economic assessments solving challenges of specific infrastructure components prevail over an integrated approach. Nevertheless permitting issues gaps in legal frameworks strict safety and environmental regulations and spatial competition also emerge as important barriers. Overall this literature review emphasizes the necessity of aligning various disciplines to provide a fundamental approach for the development of an integrated offshore energy system. More specifically timely policy and legal developments are key to incentivize technical development and enable economic feasibility of novel components of offshore system integration. Accordingly to maximize real-world application and policy learning future research will benefit from an interdisciplinary perspective.
Simulation and Analysis of Hybrid Hydrogen-battery Renewable Energy Storage for Off-electric-grid Dutch Household System
May 2024
Publication
The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers storage tanks and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min. A simulation to hybridize the hydrogen system including its purification unit with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system. Although the energy use of the purification unit is small it influences the operation of the system affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
Green Hydrogen for Ammonia Production - A Case for the Netherlands
Jul 2023
Publication
An integrated system is studied to supply green hydrogen feedstock for ammonia production in the Netherlands. The system is modeled to compare wind and solar resources when coupled to Alkaline Electrolysis (AEL) and Proton Exchange Membrane Electrolysis (PEMEL) technologies with a compressed hydrogen storage system. The nominal installed capacity of the electrolysis plant is around 2.3 GW with the most suitable energy source offshore wind and the preferred storage technology pressurized tubes. For Alkaline Electrolysis and Proton Exchange Membrane Electrolysis technologies the levelized cost of hydrogen is 5.30 V/kg H2 and 6.03 V/kg H2 respectively.
Impact of Experimentally Measured Relative Permeability Hysteresis on Reservoir-scale Performance of Undergound Hydrogen Storage (UHS)
Jan 2024
Publication
Underground Hydrogen Storage (UHS) is an emerging large-scale energy storage technology. Researchers are investigating its feasibility and performance including its injectivity productivity and storage capacity through numerical simulations. However several ad-hoc relative permeability and capillary pressure functions have been used in the literature with no direct link to the underlying physics of the hydrogen storage and production process. Recent relative permeability measurements for the hydrogen-brine system show very low hydrogen relative permeability and strong liquid phase hysteresis very different to what has been observed for other fluid systems for the same rock type. This raises the concern as to what extend the existing studies in the literature are able to reliably quantify the feasibility of the potential storage projects. In this study we investigate how experimentally measured hydrogen-brine relative permeability hysteresis affects the performance of UHS projects through numerical reservoir simulations. Relative permeability data measured during a hydrogen-water core-flooding experiment within ADMIRE project is used to design a relative permeability hysteresis model. Next numerical simulation for a UHS project in a generic braided-fluvial water-gas reservoir is performed using this hysteresis model. A performance assessment is carried out for several UHS scenarios with different drainage relative permeability curves hysteresis model coefficients and injection/production rates. Our results show that both gas and liquid relative permeability hysteresis play an important role in UHS irrespective of injection/production rate. Ignoring gas hysteresis may cause up to 338% of uncertainty on cumulative hydrogen production as it has negative effects on injectivity and productivity due to the resulting limited variation range of gas saturation and pressure during cyclic operations. In contrast hysteresis in the liquid phase relative permeability resolves this issue to some extent by improving the displacement of the liquid phase. Finally implementing relative permeability curves from other fluid systems during UHS performance assessment will cause uncertainty in terms of gas saturation and up to 141% underestimation on cumulative hydrogen production. These observations illustrate the importance of using relative permeability curves characteristic of hydrogen-brine system for assessing the UHS performances.
Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas
Sep 2016
Publication
Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen) while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes such as in Fischer–Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500– 1000 °C) while different ionic agents can be electrochemically transferred during the electrolysis process (OH− H+ O2− ). Singular requirements apply in each of the electrolysis technologies (alkaline polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst–electrode materials on the electrolyzer’s performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed.
Multi-option Analytical Modeling of Levelised Costs Across Various Hydrogen Supply Chain Nodes
May 2024
Publication
Hydrogen is envisioned to become a fundamental energy vector for the decarbonization of energy systems. Two key factors that will define the success of hydrogen are its sustainability and competitiveness with alternative solutions. One of the many challenges for the proliferation of hydrogen is the creation of a sustainable supply chain. In this study a methodology aimed at assessing the economic feasibility of holistic hydrogen supply chains is developed. Based on the designed methodology a tool which calculates the levelized cost of hydrogen for the different stages of its supply chain: production transmission & distribution storage and conversion is proposed. Each stage is evaluated individually combining relevant technical and economic notions such as learning curves and scaling factors. Subsequently the findings from each stage are combined to assess the entire supply chain as a whole. The tool is then applied to evaluate case studies of various supply chains including large-scale remote and small-scale distributed green hydrogen supply chains as well as conventional steam methane reforming coupled with carbon capture and storage technologies. The results show that both green hydrogen supply chains and conventional methods can achieve a competitive LCOH of around €4/kg in 2030. However the key contribution of this study is the development of the tool which provides a foundation for a comprehensive evaluation of hydrogen supply chains that can be continuously improved through the inputs of additional users and further research on one or more of the interconnected stages.
The Effect of Defueling Rate on the Temperature Evolution of On-board Hydrogen Tanks
Jul 2015
Publication
During the driving of a fuel cell car the expansion of the hydrogen along the emptying of the high pressure storage tank produces a cooling of the gas. The hydrogen vessel can experience a fast depressurization during acceleration or under an emergency release. This can result on the one hand in exceeding the low safety temperature limit of 40 C inside the on-board compressed hydrogen tank and on the other hand in the cooling of its walls. In the present paper defueling experiments of two different types of on-board hydrogen tanks (Type III and Type IV) have been performed in all the range of expected defueling rates. The lowest temperatures have been found on the bottom part of the Type IV tank in very fast defuelings. For average driving conditions in both types of vessels the inside gas temperature gets closer to that of the walls and the tank would arrive to the refuelling station at a temperature significantly lower than the ambient temperature.
Electricity Supply Configurations for Green Hydrogen Hubs: A European Case Study on Decarbonizing Urban Transport
Aug 2024
Publication
In this study a techno-economic analysis tool for conducting detailed feasibility studies on the deployment of green hydrogen hubs for fuel cell bus fleets is developed. The study evaluates and compares five green hydrogen hub configurations’ operational and economic performance under a typical metropolitan bus fleet refuelling schedule. Each configuration differs based on its electricity sourcing characteristics such as the mix of energy sources capacity sizing financial structure and grid interaction. A detailed comparative analysis of distinct green hydrogen hub configurations for decarbonising a fleet of fuel-cell buses is conducted. Among the key findings is that a hybrid renewable electricity source and hydrogen storage are essential for cost-optimal operation across all configurations. Furthermore bi-directional grid-interactive configurations are the most costefficient and can benefit the electricity grid by flattening the duck curve. Lastly the paper highlights the potential for cost reduction when the fleet refuelling schedule is co-optimized with the green hydrogen hub electricity supply configuration.
Life Cycle Assessments Use in Hydrogen-related Policies: The Case for a Harmonized Methodology Addressing Multifunctionality
May 2024
Publication
Legislation regulating the sustainability requirements for hydrogen technologies relies more and more on life cycle assessments (LCAs). Due to different scopes and development processes different pieces of EU legislation refer to different LCA methodologies with differences in the way multifunctional processes (i.e. co-productions recycling and energy recovery) are treated. These inconsistencies arise because incentive mechanisms are not standardized across sectors even though the end product hydrogen remains the same. The goal of this paper is to compare the life-cycle greenhouse gas (GHG) emissions of hydrogen from four production pathways depending on the multifunctional approach prescribed by the different EU policies (e.g. using substitution or allocation). The study reveals a large variation in the LCA results. For instance the life-cycle GHG emissions of hydrogen co-produced with methanol is found to vary from 1 kg CO2-equivalent/kg H2 (when mass allocation is considered) to 11 kg CO2-equivalent/kg H2 (when economic allocation is used). These inconsistencies could affect the market (e.g. hydrogen from a certain pathway could be considered sustainable or unsustainable depending on the approach) and the environment (e.g. pathways that do not lead to a global emission reduction could be promoted). To mitigate these potential negative effects we urge for harmonized and strict guidelines to assess the life-cycle GHG emissions of hydrogen technologies in an EU policy context. Harmonization should cover international policies too to avoid the same risks when hydrogen will be traded based on its GHG emissions. The appropriate methodological approach for each production pathway should be chosen by policymakers in collaboration with the LCA community and stakeholders from the industry based on the potential market and environmental consequences of such choice.
Comprehensive Review of Geomechanics of Underground Hydrogen Storage in Depleted Reservoirs and Salt Caverns
Sep 2023
Publication
Hydrogen is a promising energy carrier for a low-carbon future energy system as it can be stored on a megaton scale (equivalent to TWh of energy) in subsurface reservoirs. However safe and efficient underground hydrogen storage requires a thorough understanding of the geomechanics of the host rock under fluid pressure fluctuations. In this context we summarize the current state of knowledge regarding geomechanics relevant to carbon dioxide and natural gas storage in salt caverns and depleted reservoirs. We further elaborate on how this knowledge can be applied to underground hydrogen storage. The primary focus lies on the mechanical response of rocks under cyclic hydrogen injection and production fault reactivation the impact of hydrogen on rock properties and other associated risks and challenges. In addition we discuss wellbore integrity from the perspective of underground hydrogen storage. The paper provides insights into the history of energy storage laboratory scale experiments and analytical and simulation studies at the field scale. We also emphasize the current knowledge gaps and the necessity to enhance our understanding of the geomechanical aspects of hydrogen storage. This involves developing predictive models coupled with laboratory scale and field-scale testing along with benchmarking methodologies.
Multiperiod Modeling and Optimization of Hydrogen-Based Dense Energy Carrier Supply Chains
Feb 2024
Publication
The production of hydrogen-based dense energy carriers (DECs) has been proposed as a combined solution for the storage and dispatch of power generated through intermittent renewables. Frameworks that model and optimize the production storage and dispatch of generated energy are important for data-driven decision making in the energy systems space. The proposed multiperiod framework considers the evolution of technology costs under different levels of promotion through research and targeted policies using the year 2021 as a baseline. Furthermore carbon credits are included as proposed by the 45Q tax amendment for the capture sequestration and utilization of carbon. The implementation of the mixed-integer linear programming (MILP) framework is illustrated through computational case studies to meet set hydrogen demands. The trade-offs between different technology pathways and contributions to system expenditure are elucidated and promising configurations and technology niches are identified. It is found that while carbon credits can subsidize carbon capture utilization and sequestration (CCUS) pathways substantial reductions in the cost of novel processes are needed to compete with extant technology pathways. Further research and policy push can reduce the levelized cost of hydrogen (LCOH) by upwards of 2 USD/kg.
Stakeholder Perspectives on the Scale-up of Green Hydrogen and Electrolyzers
Nov 2023
Publication
Green hydrogen is a promising alternative to fossil fuels. However current production capacities for electrolyzers and green hydrogen are not in line with national political goals and projected demand. Considering these issues we conducted semi-structured interviews to determine the narratives of different stakeholders during this transformation as well as challenges and opportunities for the green hydrogen value chain. We interviewed eight experts with different roles along the green hydrogen value chain ranging from producers and consumers of green hydrogen to electrolyzer manufacturers and consultants as well as experts from the political sphere. Most experts see the government as necessary for scale-up by setting national capacity targets policy support and providing subsidies. However the experts also accuse the governments of delaying development through overregulation and long implementation times for regulations. The main challenges that were identified are the current lack of renewable electricity and demand for green hydrogen. Demand for green hydrogen is influenced by supply costs which partly depend on prices for electrolyzers. However one key takeaway of the interviews is the skeptical assessments by the experts on the currently discussed estimates for price reduction potential of electrolyzers. While demand supply and prices are all factors that influence each other they result in feedback loops in investment decisions for the energy and manufacturing industries. A second key takeaway is that according to the experts current investment decisions in new production capacities are not solely dependent on short-term financial gains but also based on expected first mover advantages. These include experience and market share which are seen as factors for opportunities for future financial gains. Summarized the results present several challenges and opportunities for green hydrogen and electrolyzers and how to address them effectively. These insights contribute to a deeper understanding of the dynamics of the emerging green hydrogen value chain.
Hazard Identification of Hydrogen-Based Alternative Fuels Onboard Ships
Dec 2023
Publication
It is essential to use alternative fuels if we are to reach the emission reduction targets set by the IMO. Hydrogen carriers are classified as zero-emission while having a higher energy density (including packing factor) than pure hydrogen. They are often considered as safe alternative fuels. The exact definition of what safety entails is often lacking both for hydrogen carriers as well as for ship safety. The aim of this study is to review the safety of hydrogen carriers from two perspectives investigating potential connections between the chemical and maritime approaches to safety. This enables a reasoned consideration between safety aspects and other design drivers in ship design and operation. The hydrogen carriers AB NaBH4 KBH4 and two LOHCs (NEC and DBT) are taken into consideration together with a couple reference fuels (ammonia methanol and MDO). After the evaluation of chemical properties related to safety and the scope of the current IMO safety framework it can be concluded that safety remains a vague and non-explicit concept from both perspectives. Therefore further research is required to prove the safe application of hydrogen carriers onboard ships.
Lifetime Design, Operation, and Cost Analysis for the Energy System of a Retrofitted Cargo Vessel with Fuel Cells and Batteries
Oct 2024
Publication
Fuel cell-battery electric drivetrains are attractive alternatives to reduce the shipping emissions. This research focuses on emission-free cargo vessels and provides insight on the design lifetime operation and costs of hydrogen-hybrid systems which require further research for increased utilization. A representative round trip is created by analysing one-year operational data based on load ramps and power frequency. A low-pass filter controller is employed for power distribution. For the lifetime cost analysis 14 scenarios with varying capital and operational expenses were considered. The Net Present Value of the retrofitted fuel cell-battery propulsion system can be up to $ 2.2 million lower or up to $ 18.8 million higher than the original diesel mechanical configuration highly dependent on the costs of green hydrogen and carbon taxes. The main propulsion system weights and volumes of the two versions are comparable but the hydrogen tank (68 tons 193 m3 ) poses significant design and safety challenges.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
Impact on Canadian Residential End Use Appliances with the Introduction of Hydrogen into the Natural Gas Stream - An Application
Sep 2023
Publication
Canada’s commitment to be net-zero by 2050 combined with ATCO’s own Environmental Social and Governance goals has led ATCO to pursue hydrogen blending within the existing natural gas system to reduce CO2 emissions while continuing to provide safe reliable energy service to customers. Utilization of hydrogen in the distribution system is the least-cost alternative for decarbonizing the heating loads in jurisdictions like Alberta where harsh winter climates are encountered and low-carbon hydrogen production can be abundant. ATCO’s own Fort Saskatchewan Hydrogen Blending Project began blending 5% hydrogen by volume to over 2100 customers in the Fall of 2022 and plans to increase the blend rates to 20% hydrogen in 2023. Prior to blending ATCO worked together with DNV to examine the impact of hydrogen blended natural gas to twelve Canadian appliances: range/stove oven garage heater high and medium efficiency furnaces conventional and on demand hot water heaters barbeque clothes dryer radiant heater and two gas fireplaces. The tests were performed not only within the planned blend rates of 0-20% hydrogen but also to higher percentages to determine how much hydrogen can be blended into a system before appliance retrofits would be required. The testing was designed to get insights on safety-related combustion issues such as flash-back burner overheating flame detection and other performance parameters such as emissions and burner power. The experimental results indicate that the radiant heater is the most sensitive appliance for flashback observed at 30 vol% hydrogen in natural gas. At 50% hydrogen the range and the radiant burner of the barbeque tested were found to be sensitive to flashback. All other 9 appliances were found to be robust for flashback with no other short-term issues observed. This paper will detail the findings of ATCO and DNV’s appliance testing program including results on failure mechanisms and sensitivities for each appliance.
The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System
Jul 2024
Publication
Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region generation costs of other emerging offshore renewable technologies remain high. Hence it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First offshore wind plays a crucial role in the North Sea power sector where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030 contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings) when compared with the slow learning and constrained space use case. Second floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided while fixed-bottom offshore wind deployment remains unchanged. Lastly the role of other emerging offshore renewables remains limited in all scenarios considered as they are expensive compared to other technology choices in the system. However around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.
Towards Renewable Hydrogen-based Electrolysis: Alkaline vs Proton Exchange Membrane
Jul 2023
Publication
This paper focuses on the battle for a dominant design for renewable hydrogen electrolysis in which the designs alkaline and proton exchange membrane compete for dominance. First a literature review is performed to determine the most relevant factors that influence technology dominance. Following that a Best Worst Method analysis is conducted by interviewing multiple industry experts. The most important factors appear to be: Price Safety Energy consumption Flexibility Lifetime Stack size and Materials used. The opinion of experts on Proton Exchange Membrane and alkaline electrolyser technologies is slightly skewed in favour of alkaline technologies. However the margin is too small to identify a winner in this technology battle. The following paper contributes to the ongoing research on modelling the process of technology selection in the energy sector.
Impact of Large-scale Hydrogen Electrification and Retrofitting of Natural Gas Infrastructure on the European Power System
Nov 2023
Publication
In this paper we aim to analyse the impact of hydrogen production decarbonisation and electrification scenarios on the infrastructure development generation mix CO2 emissions and system costs of the European power system considering the retrofit of the natural gas infrastructure. We define a reference scenario for the European power system in 2050 and use scenario variants to obtain additional insights by breaking down the effects of different assumptions. The scenarios were analysed using the European electricity market model COMPETES including a proposed formulation to consider retrofitting existing natural gas networks to transport hydrogen instead of methane. According to the results 60% of the EU’s hydrogen demand is electrified and approximately 30% of the total electricity demand will be to cover that hydrogen demand. The primary source of this electricity would be non-polluting technologies. Moreover hydrogen flexibility significantly increases variable renewable energy investment and production and reduces CO2 emissions. In contrast relying on only electricity transmission increases costs and CO2 emissions emphasising the importance of investing in an H2 network through retrofitting or new pipelines. In conclusion this paper shows that electrifying hydrogen is necessary and cost-effective to achieve the EU’s objective of reducing long-term emissions.
No more items...