Netherlands
Achievements of European Projects on Membrane Reactor for Hydrogen Production
May 2017
Publication
Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects (FERRET FluidCELL BIONICO) which investigate the application of the membrane reactor concept to hydrogen production and micro-cogeneration systems using both natural gas and biofuels (biogas and bio-ethanol) as feedstock. The membranes used to selectively separate hydrogen from the other reaction products (CH4 CO2 H2O etc.) are of asymmetric type with a thin layer of Pd alloy (<5 μm) and supported on a ceramic porous material to increase their mechanical stability. In FERRET the flexibility of the membrane reactor under diverse natural gas quality is validated. The reactor is integrated in a micro-CHP system and achieves a net electric efficiency of about 42% (8% points higher than the reference case). In FluidCELL the use of bio-ethanol as feedstock for micro-cogeneration Polymeric Electrolyte Membrane based system is investigated in off-grid applications and a net electric efficiency around 40% is obtained (6% higher than the reference case). Finally BIONICO investigates the hydrogen production from biogas. While BIONICO has just started FERRET and FluidCELL are in their third year and the two prototypes are close to be tested confirming the potentiality of membrane reactor technology at small scale.
How Far Away is Hydrogen? Its Role in the Medium and Long-term Decarbonisation of the European Energy System
Nov 2015
Publication
Hydrogen is a promising avenue for decarbonising energy systems and providing flexibility. In this paper the JRC-EU-TIMES model – a bottom-up technology-rich model of the EU28 energy system – is used to assess the role of hydrogen in a future decarbonised Europe under two climate scenarios current policy initiative (CPI) and long-term decarbonisation (CAP). Our results indicate that hydrogen could become a viable option already in 2030 – however a long-term CO2 cap is needed to sustain the transition. In the CAP scenario the share of hydrogen in the final energy consumption of the transport and industry sectors reaches 5% and 6% by 2050. Low-carbon hydrogen production technologies dominate and electrolysers provide flexibility by absorbing electricity at times of high availability of intermittent sources. Hydrogen could also play a significant role in the industrial and transport sectors while the emergence of stationary hydrogen fuel cells for hydrogen-to-power would require significant cost improvements over and above those projected by the experts.
Fatigue Behavior of AA2198 in Liquid Hydrogen
Aug 2019
Publication
Tensile and fatigue tests were performed on an AA2198 aluminum alloy in the T851 condition in ambient air and liquid hydrogen (LH2). All fatigue tests were performed under load control at a frequency of 20 Hz and a stress ratio of R=0.1. The Gecks-Och-Function [1] was fitted on the measured cyclic lifetimes.<br/><br/>The tensile strength in LH2 was measured to be 46 % higher compared to the value determined at ambient conditions and the fatigue limit was increased by approximately 60 %. Both S-N curves show a distinct S-shape but also significant differences. Under LH2 environment the transition from LCF- to HCF-region as well as the transition to the fatigue limit is shifted to higher cyclic lifetimes compared to ambient test results. The investigation of the crack surfaces showed distinct differences between ambient and LH2 conditions. These observed differences are important factors in the fatigue behavior change.
The Impact of Climate Targets on Future Steel Production – An Analysis Based on a Global Energy System Model
Apr 2020
Publication
This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model ETSAP-TIAM was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous growth and is likely to be a major route for steel production in the long run. However as the global average of in-use steel stock increases up to the current average stock of the industrialised economies global steel demand keeps growing and stagnates only after 2050. Due to high steel demand levels and scarcity of scrap more than 50% of the steel production in 2050 will still have to come from virgin materials. Hydrogen-based steel production could become a major technology option for production from virgin materials particularly in a scenario where Carbon Capture and Storage (CCS) is not available. Imposing a binding climate target will shift the crude steel price to approximately 500 USD per tonne in the year 2050 provided that CCS is available. However the increased prices are induced by CO2 prices rather than inflated production costs. It is concluded that a global climate target is not likely to influence the use of scrap whereas it shall have an impact on the price of scrap. Finally the results indicate that energy efficiency improvements of current processes will only be sufficient to meet the climate target in combination with CCS. New innovative techniques with lower climate impact will be vital for mitigating climate change.
Clean or Renewable – Hydrogen and Power-to-gas in EU Energy Law
Aug 2020
Publication
Interest in hydrogen as a carbon-neutral energy carrier is on the rise around the globe including in Europe. In particular power-to-gas as a technology to transform electricity to hydrogen is receiving ample attention. This article scrutinises current updates in the energy law framework of the EU to explain the legal pre-conditions for the various possible applications of power-to-gas technology. It highlights the influence of both electricity and gas legislation on conversion storage and transmission of hydrogen and demonstrates why ‘green’ hydrogen might come with certain legal privileges under the Renewable Energy Directive attached to it as opposed to the European Commission’s so-called ‘clean’ hydrogen. The article concludes by advocating for legal system integration in EU energy law namely merging the currently distinct EU electricity and gas law frameworks into one unified EU Energy Act.
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations such as saline aquifers and depleted hydrocarbon reservoirs. Large-scale UHSP offers the much-needed capacity to balance inter-seasonal discrepancies between demand and supply decouple energy generation from demand and decarbonise heating and transport supporting decarbonisation of the entire energy system. Despite the vast opportunity provided by UHSP the maturity is considered low and as such UHSP is associated with several uncertainties and challenges. Here the safety and economic impacts triggered by poorly understood key processes are identified such as the formation of corrosive hydrogen sulfide gas hydrogen loss due to the activity of microbes or permeability changes due to geochemical interactions impacting on the predictability of hydrogen flow through porous media. The wide range of scientific challenges facing UHSP are outlined to improve procedures and workflows for the hydrogen storage cycle from site selection to storage site operation. Multidisciplinary research including reservoir engineering chemistry geology and microbiology more complex than required for CH4 or CO2 storage is required in order to implement the safe efficient and much needed large-scale commercial deployment of UHSP.
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns a thorough analysis of the geological domain becomes crucial. To date few studies have attempted to analyze the infuence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D fnite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The infuence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity which involves diferent elastic and creep properties of the diferent materials in the geological domain is rigorously studied and quantifed. Moreover multi-cavern simulations are conducted to investigate the infuence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the infuence of creep and damage on deformation and stress evolution around the salt cavern confgurations.
Fuel Cell Cars in a Microgrid for Synergies Between Hydrogen and Electricity Networks
Nov 2016
Publication
Fuel cell electric vehicles convert chemical energy of hydrogen into electricity to power their motor. Since cars are used for transport only during a small part of the time energy stored in the on-board hydrogen tanks of fuel cell vehicles can be used to provide power when cars are parked. In this paper we present a community microgrid with photovoltaic systems wind turbines and fuel cell electric vehicles that are used to provide vehicle-to-grid power when renewable power generation is scarce. Excess renewable power generation is used to produce hydrogen which is stored in a refilling station. A central control system is designed to operate the system in such a way that the operational costs are minimized. To this end a hybrid model for the system is derived in which both the characteristics of the fuel cell vehicles and their traveling schedules are considered. The operational costs of the system are formulated considering the presence of uncertainty in the prediction of the load and renewable energy generation. A robust minmax model predictive control scheme is developed and finally a case study illustrates the performance of the designed system.
Integrating a Hydrogen Fuel Cell Electric Vehicle with Vehicle-to-grid Technology, Photovoltaic Power and a Residential Building
Feb 2018
Publication
This paper presents the results of a demonstration project including building-integrated photovoltaic (BIPV) solar panels a residential building and a hydrogen fuel cell electric vehicle (FCEV) for combined mobility and power generation aiming to achieve a net zero-energy residential building target. The experiment was conducted as part of the Car as Power Plant project at The Green Village in the Netherlands. The main objective was to assess the end-user’s potential of implementing FCEVs in vehicle-to-grid operation (FCEV2G) to act as a local energy source. FCEV2G field test performance with a Hyundai ix35 FCEV are presented. The car was adapted using a power output socket capable of delivering up to 10 kW direct current (DC) to the alternating current (AC) national grid when parked via an off-board (grid-tie) inverter. A Tank-To-AC-Grid efficiency (analogous to Tank- To-Wheel efficiency when driving) of 44% (measured on a Higher Heating Value basis) was obtained when the car was operating in vehicle-to-grid (V2G) mode at the maximum power output. By collecting and analysing real data on the FCEV power production in V2G mode and on BIPV production and household consumption two different operating modes for the FCEV offering balanced services to a residential microgrid were identified namely fixed power output and load following. Based on the data collected one-year simulations of a microgrid consisting of 10 all-electric dwellings and 5 cars with the different FCEV2G modes of operation were performed. Simulation results were evaluated on the factors of autonomy self-consumption of locally produced energy and net-energy consumption by implementing different energy indicators. The results show that utilizing an FCEV working in V2G mode can reduce the annual imported electricity from the grid by approximately 71% over one year and aiding the buildings in the microgrid to achieve a net zero-energy building target. Furthermore the simulation results show that utilizing the FCEV2G setup in both modes analysed could be economically beneficial for the end-user if hydrogen prices at the pump fall below 8.24 €/kg.
Fuel Cell Electric Vehicle as a Power Plant and SOFC as a Natural Gas Reformer: An Exergy Analysis of Different System Designs
Apr 2016
Publication
Delft University of Technology under its ‘‘Green Village” programme has an initiative to build a power plant (car parking lot) based on the fuel cells used in vehicles for motive power. It is a trigeneration system capable of producing electricity heat and hydrogen. It comprises three main zones: a hydrogen production zone a parking zone and a pump station zone. This study focuses mainly on the hydrogen production zone which assesses four different system designs in two different operation modes of the facility: Car as Power Plant (CaPP) mode corresponding to the open period of the facility which uses fuel cell electric vehicles (FCEVs) as energy and water producers while parked; and Pump mode corresponding to the closed period which compresses the hydrogen and pumps to the vehicle’s fuel tank. These system designs differ by the reforming technology: the existing catalytic reformer (CR) and a solid oxide fuel cell operating as reformer (SOFCR); and the option of integrating a carbon capture and storage (CCS). Results reveal that the SOFCR unit significantly reduces the exergy destruction resulting in an improvement of efficiency over 20% in SOFCR-based system designs compared to CR-based system designs in both operation modes. It also mitigates the reduction in system efficiency by integration of a CCS unit achieving a value of 2% whereas in CR-based systems is 7–8%. The SOFCR-based system running in Pump mode achieves a trigeneration efficiency of 60%.
Optimal Hydrogen Production in a Wind-dominated Zero-emission Energy System
May 2021
Publication
The role of hydrogen in future energy systems is widely acknowledged: from fuel for difficult-to-decarbonize applications to feedstock for chemicals synthesis to energy storage for high penetration of undispatchable renewable electricity. While several literature studies investigate such energy systems the details of how electrolysers and renewable technologies optimally behave and interact remain an open question. With this work we study the interplay between (i) renewable electricity generation through wind and solar (ii) electricity storage in batteries (iii) electricity storage via Power-to-H2 and (iv) hydrogen commodity demand. We do so by designing a cost-optimal zero-emission energy system and use the Netherlands as a case study in a mixed integer linear model with hourly resolution for a time horizon of one year. To account for the significant role of wind we also provide an elaborate approach to model broad portfolios of wind turbines. The results show that if electrolyzers can operate flexibly batteries and power-to-H2-to-power are complementary with the latter using renewable power peaks and the former using lower renewable power outputs. If the operating modes of the power-to-H2-to-power system are limited - artificially or technically - the competitive advantage over batteries decreases. The preference of electrolyzers for power peaks also leads to an increase in renewable energy utilization for increased levels of operation flexibility highlighting the importance of capturing this feature both from a technical and a modeling perspective. When adding a commodity hydrogen demand the amount of hydrogen converted to electricity decreases hence decreasing its role as electricity storage medium.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
A Solar Thermal Sorption-enhanced Steam Methane Reforming (SE-SMR) Approach and its Performance Assessment
Feb 2022
Publication
This paper proposes an integration of concentrating solar power (CSP) with a sorption-enhanced steam methane reforming (SE-SMR) process and assesses its overall solar-to-fuel conversion performance. A thermodynamic treatment of the SE-SMR process for H2 production is presented and evaluated in an innovative two reactors system configuration using CSP as a heat input. Four metal carbonate/metal oxide pairs are considered and the equilibrium thermodynamics reveals that CaCO3/CaO pair is the most suitable candidate for this process. Additionally a reactor-scale thermodynamic model is developed to determine the optimum operating conditions for the process. For the carbonation step temperatures between 700 and 900 K and steam-to-methane ratio ≥4 are found to be the most favorable. Furthermore an advanced process model which utilizes operating conditions determined from the reactor-scale model is developed to evaluate the process efficiency. The model predicts that the proposed process can achieve a solar-to-fuel efficiency ~41% for calcination temperature of 1500 K and carbonation temperature of 800 K without considering any solid heat recovery. An additional 2.5% increase in the process efficiency is feasible with the consideration of the solid heat recovery. This study shows the thermodynamic feasibility of integrating the SE-SMR process with CSP technologies.
Timmermans’ Dream: An Electricity and Hydrogen Partnership Between Europe and North Africa
Oct 2021
Publication
Because of differences in irradiation levels it could be more efficient to produce solar electricity and hydrogen in North Africa and import these energy carriers to Europe rather than generating them at higher costs domestically in Europe. From a global climate change mitigation point of view exploiting such efficiencies can be profitable since they reduce overall renewable electricity capacity requirements. Yet the construction of this capacity in North Africa would imply costs associated with the infrastructure needed to transport electricity and hydrogen. The ensuing geopolitical dependencies may also raise energy security concerns. With the integrated assessment model TIAM-ECN we quantify the trade-off between costs and benefits emanating from establishing import-export links between Europe and North Africa for electricity and hydrogen. We show that for Europe a net price may have to be paid for exploiting such interlinkages even while they reduce the domestic investments for renewable electricity capacity needed to implement the EU’s Green Deal. For North African countries the potential net benefits thanks to trade revenues may build up to 50 billion €/yr in 2050. Despite fears over costs and security Europe should seriously consider an energy partnership with North Africa because trade revenues are likely to lead to positive employment income and stability effects in North Africa. Europe can indirectly benefit from such impacts.
Electrochemical Conversion Technologies for Optimal Design of Decentralized Multi-energy Systems: Modeling Framework and Technology Assessment
Apr 2018
Publication
The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically linear conversion performance or fixed data from technology manufacturers are employed especially for new or advanced technologies. This contribution provides a new modeling framework for electrochemical devices that bridges first-principles models to their simplified implementation in the optimization routine. First thermodynamic models are implemented to determine the on/off-design performance and dynamic behavior of different types of fuel cells and of electrolyzers. Then as such nonlinear models are intractable for use in the optimization of integrated systems different linear approximations are developed. The proposed strategies for the synthesis of reduced order models are compared to assess the impact of modeling approximations on the optimal design of multi-energy systems including fuel cells and electrolyzers. This allows to determine the most suitable level of detail for modeling the underlying electrochemical technologies from an integrated system perspective. It is found that the approximation methodology affects both the design and operation of the system with a significant effect on system costs and violation of the thermal energy demand. Finally the optimization and technology modeling framework is exploited to determine guidelines for the installation of the most suitable fuel cell technology in decentralized multi-energy systems. We show how the installation costs of PEMFC SOFC and MCFC their electrical and thermal efficiencies their conversion dynamics and the electricity price affect the system design and technology selection.
Parametric Study of Pt/C-Catalysed Hydrothermal Decarboxylation of Butyric Acid as a Potential Route for Biopropane Production
Jun 2021
Publication
Sustainable fuel-range hydrocarbons can be produced via the catalytic decarboxylation of biomass-derived carboxylic acids without the need for hydrogen addition. In this present study 5 wt% platinum on carbon (Pt/C) has been found to be an effective catalyst for hydrothermally decarboxylating butyric acid in order to produce mainly propane and carbon dioxide. However optimisation of the reaction conditions is required to minimise secondary reactions and increase hydrocarbon selectivity towards propane. To do this reactions using the catalyst with varying parameters such as reaction temperatures residence times feedstock loading and bulk catalyst loading were carried out in a batch reactor. The highest yield of propane obtained was 47 wt% (close to the theoretical decarboxylation yield of 50 wt% on butyric acid basis) corresponding to a 96% hydrocarbon selectivity towards propane. The results showed that the optimum parameters to produce the highest yield of propane from the range investigated were 0.5 g butyric acid (0.57 M aqueous solution) 1.0 g Pt/C (50 mg Pt content) at 300 °C for 1 h. The reusability of the catalyst was also investigated which showed little or no loss of catalytic activity after four cycles. This work has shown that Pt/C is a suitable and potentially hydrothermally stable heterogeneous catalyst for making biopropane a major component of bioLPG from aqueous butyric acid solutions which can be sourced from bio-derived feedstocks via acetone-butanol-ethanol (ABE) fermentation.
Decarbonization of Australia’s Energy System: Integrated Modelling of the Transformation of Electricity, Transportation, and Industrial Sectors
Jul 2020
Publication
To achieve the Paris Agreement’s long-term temperature goal current energy systems must be transformed. Australia represents an interesting case for energy system transformation modelling: with a power system dominated by fossil fuels and specifically with a heavy coal component there is at the same time a vast potential for expansion and use of renewables. We used the multi-sectoral Australian Energy Modelling System (AUSeMOSYS) to perform an integrated analysis of implications for the electricity transport and selected industry sectors to the mid-century. The state-level resolution allows representation of regional discrepancies in renewable supply and the quantification of inter-regional grid extensions necessary for the physical integration of variable renewables. We investigated the impacts of different CO2 budgets and selected key factors on energy system transformation. Results indicate that coal-fired generation has to be phased out completely by 2030 and a fully renewable electricity supply achieved in the 2030s according to the cost-optimal pathway implied by the 1.5 °C Paris Agreement-compatible carbon budget. Wind and solar PV can play a dominant role in decarbonizing Australia’s energy system with continuous growth of demand due to the strong electrification of linked energy sectors.
Analysing Future Demand, Supply, and Transport of Hydrogen
Jun 2021
Publication
Hydrogen is crucial to Europe’s transformation into a climate-neutral continent by mid-century. This study concludes that the European Union (EU) and UK could see a hydrogen demand of 2300 TWh (2150-2750 TWh) by 2050. This corresponds to 20-25% of EU and UK final energy consumption by 2050. Achieving this future role of hydrogen depends on many factors including market frameworks legislation technology readiness and consumer choice.
The document can be download on their website
The document can be download on their website
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly when employing the membranes in fluidized bed reactors the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes resistance to hydrogen embrittlement and stability at high temperature.
Detecting Hydrogen Concentrations During Admixing Hydrogen in Natural Gas Grids
Aug 2021
Publication
The first applications of hydrogen in a natural gas grid will be the admixing of low concentrations in an existing distribution grid. For easy quality and process control it is essential to monitor the hydrogen concentration in real time preferably using cost effective monitoring solutions. In this paper we introduce the use of a platinum based hydrogen sensor that can accurately (at 0.1 vol%) and reversibly monitor the concentration of hydrogen in a carrier gas. This carrier gas that can be nitrogen methane or natural gas has no influence on the accuracy of the hydrogen detection. The hydrogen sensor consists of an interdigitated electrode on a chip coated with a platinum nanocomposite layer that interacts with the gas. This chip can be easily added to a gas sensor for natural gas and biogas that was already developed in previous research. Just by the addition of an extra chip we extended the applicability of the natural gas sensor to hydrogen admixing. The feasibility of the sensor was demonstrated in our own (TNO) laboratory and at a field test location of the HyDeploy program at Keele University in the U.K
No more items...