Detecting Hydrogen Concentrations During Admixing Hydrogen in Natural Gas Grids
Abstract
The first applications of hydrogen in a natural gas grid will be the admixing of low concentrations in an existing distribution grid. For easy quality and process control, it is essential to monitor the hydrogen concentration in real time, preferably using cost effective monitoring solutions. In this paper, we introduce the use of a platinum based hydrogen sensor that can accurately (at 0.1 vol%) and reversibly monitor the concentration of hydrogen in a carrier gas. This carrier gas, that can be nitrogen, methane or natural gas, has no influence on the accuracy of the hydrogen detection. The hydrogen sensor consists of an interdigitated electrode on a chip coated with a platinum nanocomposite layer that interacts with the gas. This chip can be easily added to a gas sensor for natural gas and biogas that was already developed in previous research. Just by the addition of an extra chip, we extended the applicability of the natural gas sensor to hydrogen admixing. The feasibility of the sensor was demonstrated in our own (TNO) laboratory, and at a field test location of the HyDeploy program at Keele University in the U.K