Korea, Republic of
A Theoretical Study on the Hydrogen Filling Process of the On-board Storage Cylinder in Hydrogen Refueling Station
May 2023
Publication
With the development of the hydrogen fuel automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogen charging process of hydrogen refueling stations. At present the technological difficulty of hydrogen fueling is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. Vehicle hydrogen storage cylinder (VHSC) is one of the important components of hydrogen fuel cell vehicles. This study proposed a theoretical model for calculating the temperature rise in the VHSC during the high pressure refueling process and revealed the hydrogen temperature rise during refueling. A hydrogen temperature rise prediction model was constructed to elucidate the relationship between filling parameters and temperature rise. The filling process of VHSC was analyzed from the theoretical method. The theoretical analysis results were consistent with the simulation and experimental analysis results which provided a theoretical basis for the current hydrogen temperature control algorithm of the gas source in the hydrogen refueling station and then reduced the energy consumption required for hydrogen cooling in the hydrogen refueling station.
Life Cycle Cost Analysis of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Feb 2024
Publication
The use of autonomous vehicles for marine and submarine work has risen considerably in the last decade. Developing new monitoring systems navigation and communications technologies allows a wide range of operational possibilities. Autonomous Underwater Vehicles (AUVs) are being used in offshore missions and applications with some innovative purposes by using sustainable and green energy sources. This paper considers an AUV that uses a hydrogen fuel cell achieving zero emissions. This paper analyses the life cycle cost of the UAV and compares it with a UAV powered by conventional energy. The EN 60300-3-3 guidelines have been employed to develop the cost models. The output results show estimations for the net present value under different scenarios and financial strategies. The study has been completed with the discount rate sensibility analysis in terms of financial viability.
Thermal Design of a Biohydrogen Production System Driven by Integrated Gasification Combined Cycle Waste Heat Using Dynamic Simulation
Apr 2022
Publication
Utilizing biological processes for hydrogen production via gasification is a promising alternative method to coal gasification. The present study proposes a dynamic simulation model that uses a one-dimensional heat-transfer analysis method to simulate a biohydrogen production system. The proposed model is based on an existing experimental design setup. It is used to simulate a biohydrogen production system driven by the waste heat from an integrated gasification combined cycle (IGCC) power plant equipped with carbon capture and storage technologies. The data from the simulated results are compared with the experimental measurement data to validate the developed model’s reliability. The results show good agreement between the experimental data and the developed model. The relative root-mean-square error for the heat storage feed-mixing and bioreactor tanks is 1.26% 3.59% and 1.78% respectively. After the developed model’s reliability is confirmed it is used to simulate and optimize the biohydrogen production system inside the IGCC power plant. The bioreactor tank’s time constant can be improved when reducing the operating volume of the feed-mixing tank by the scale factors of 0.75 and 0.50 leading to a 15.76% and 31.54% faster time constant respectively when compared with the existing design.
Technology Portfolio Assessment for Near-zero Emission Iron and Steel Industry in China
May 2023
Publication
China aims to peak CO2 emissions before 2030 and to achieve carbon neutrality before 2060; hence industrial sectors in China are keen to figure out appropriate pathways to support the national target of carbon neutrality. The objective of this study is to explore near-zero emission pathways for the steel industry of China through a detailed technology assessment. The innovative technology development has been simulated using the AIM-China/steel model developed by including material-based technologies and optimal cost analysis. Six scenarios have been given in terms of different levels of production output emission reduction and carbon tax. Near-zero emission and carbon tax scenarios have shown that China’s steel industry can achieve near-zero emission using electric furnaces and hydrogen-based direct reduction iron technologies with policy support. Based on these technologies minimised production costs have been calculated revealing that the steel produced by these technologies is cost-effective. Moreover the feedstock cost can play a key role in these technology portfolios especially the cost of scrap iron ore and hydrogen. In addition the feedstock supply can have strong regional effects and can subsequently impact the allocation of steelmaking in the future. Therefore China can achieve near-zero emissions in the steel industry and electric furnace and hydrogen-based direct reduction iron technologies are crucial to achieving them.
Behavior of Barrier Wall under Hydrogen Storage Tank Explosion with Simulation and TNT Equivalent Weight Method
Mar 2023
Publication
Hydrogen gas storage place has been increasing daily because of its consumption. Hydrogen gas is a dream fuel of the future with many social economic and environmental benefits to its credit. However many hydrogen storage tanks exploded accidentally and significantly lost the economy infrastructure and living beings. In this study a protection wall under a worst-case scenario explosion of a hydrogen gas tank was analyzed with commercial software LS-DYNA. TNT equivalent method was used to calculate the weight of TNT for Hydrogen. Reinforced concrete and composite protection wall under TNT explosion was analyzed with a different distance of TNT. The initial dimension of the reinforced concrete protection wall was taken from the Korea gas safety code book (KGS FP217) and studied the various condition. H-beam was used to make the composite protection wall. Arbitrary-Lagrangian-Eulerian (ALE) simulation from LS-DYNA and ConWep pressure had a good agreement. Used of the composite structure had a minimum displacement than a normal reinforced concrete protection wall. During the worst-case scenario explosion of a hydrogen gas 300 kg storage tank the minimum distance between the hydrogen gas tank storage and protection wall should be 3.6 m.
What Can Accelerate Technological Convergence of Hydrogen Energy: A Regional Perspective
Jun 2023
Publication
Focusing on technological innovation and convergence is crucial for utilizing hydrogen energy an emerging infrastructure area. This research paper analyzes the extent of technological capabilities in a region that could accelerate the occurrence of technological convergence in the fields related to hydrogen energy through the use of triadic patents their citation information and their regional information. The results of the Bayesian spatial model indicate that the active exchange of diverse original technologies could facilitate technological convergence in the region. On the other hand it is difficult to achieve regional convergence with regard to radical technology. The findings could shed light on the establishment of an R&D strategy for hydrogen technologies. This study could contribute to the dissemination and utilization of hydrogen technologies for sustainable industrial development.
Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming
Nov 2022
Publication
Hydrogen has received substantial attention because of its diverse application in the energy sector. Steam methane reforming (SMR) dominates the current hydrogen production and is the least expensive endothermic reaction to produce grey hydrogen. This technology provides the advantages of low cost and high energy efficiency; however it emits an enormous amount of CO2. Carbon capture storage (CCS) technology helps reduce these emissions by 47% to 53% producing blue hydrogen. Methane pyrolysis is an alternative to SMR that produces (ideally) CO2-free turquoise hydrogen. In practice methane pyrolysis reduces CO2 emissions by 71% compared to grey hydrogen and 46% compared to blue hydrogen. While carbon dioxide emissions decrease with CCS fugitive methane emissions (FMEs) for blue and turquoise hydrogen are higher than those for grey hydrogen because of the increased use of natural gas to power carbon capture. We undertake FMEs of 3.6% of natural gas consumption for individual processes. In this study we also explore the utilization of biogas as a feedstock and additional Boudouard reactions for efficient utilization of solid carbon from methane pyrolysis and carbon dioxide from biogas. The present study focuses on possible ways to reduce overall emissions from turquoise hydrogen to provide solutions for a sustainable low-CO2 energy source.
Frequency Regulation of an Islanded Microgrid Using Hydrogen Energy Storage Systems: A Data-Driven Control Approach
Nov 2022
Publication
Hydrogen energy storage (HES) systems have recently received attention due to their potential to support real-time power balancing in a power grid. This paper proposes a data-driven model predictive control (MPC) strategy for HES systems in coordination with distributed generators (DGs) in an islanded microgrid (MG). In the proposed strategy a data-driven model of the HES system is developed to reflect interactive operations of an electrolyzer hydrogen tank and fuel cell and hence the optimal power sharing with DGs is achieved to support real-time grid frequency regulation (FR). The MG-level controller cooperates with a device-level controller of the HES system that overrides the FR support based on the level of hydrogen. Small-signal analysis is used to evaluate the contribution of FR support. Simulation case studies are also carried out to verify the accuracy of the data-driven model and the proposed strategy is effective for improving the real-time MG frequency regulation compared with the conventional PI-based strategy.
Estimation of Liquid Hydrogen Fuels in Aviation
Sep 2022
Publication
As the demand for alternative fuels to solve environmental problems increases worldwide due to the greenhouse gas problem this study predicted the demand for liquid hydrogen fuel in aviation to achieve ‘zero‐emission flight’. The liquid hydrogen fuel models of an aircraft and all aviation sectors were produced based on the prediction of aviation fleet growth through the classification of currently operated aircraft. Using these models the required amount of liquid hydrogen fuel and the total cost of liquid hydrogen were also calculated when various environmental regulations were satisfied. As a result it was found to be necessary to convert approximately 66% to 100% of all aircraft from existing aircraft to liquid hydrogen aircraft in 2050 according to regulations. The annual liquid hydrogen cost was 4.7–5.2 times higher in the beginning due to the high production cost but after 2030 it will be maintained at almost the same price and it was found that the cost was rather low compared to jet fuel.
Solid Air Hydrogen Liquefaction, the Missing Link of the Hydrogen Economy
Mar 2023
Publication
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However the cost and energy consumption for liquefaction is currently prohibitively high creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy.
Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review
May 2023
Publication
Rapid industrialization is consuming too much energy and non-renewable energy resources are currently supplying the world’s majority of energy requirements. As a result the global energy mix is being pushed towards renewable and sustainable energy sources by the world’s future energy plan and climate change. Thus hydrogen has been suggested as a potential energy source for sustainable development. Currently the production of hydrogen from fossil fuels is dominant in the world and its utilization is increasing daily. As discussed in the paper a large amount of hydrogen is used in rocket engines oil refining ammonia production and many other processes. This paper also analyzes the environmental impacts of hydrogen utilization in various applications such as iron and steel production rocket engines ammonia production and hydrogenation. It is predicted that all of our fossil fuels will run out soon if we continue to consume them at our current pace of consumption. Hydrogen is only ecologically friendly when it is produced from renewable energy. Therefore a transition towards hydrogen production from renewable energy resources such as solar geothermal and wind is necessary. However many things need to be achieved before we can transition from a fossil-fuel-driven economy to one based on renewable energy
Potential Global Warming Impact of 1 kW Polymer Electrolyte Membrane Fuel Cell System for Residential Buildings on Operation Phase
Mar 2023
Publication
This study established global warming potential(GWP) emission factors through a life cycle assessment on the operation phases of two different 1 kW polymer electrolyte membrane fuel cell (PEMFC) systems for residential buildings (NG-PEMFC fed with hydrogen from natural gas reforming; WE-PEMFC fed with hydrogen from photovoltaics-powered water electrolyzer). Their effectiveness was also compared with conventional power grid systems in Korea specifically in the area of greenhouse gas emissions. The operation phases of the NG-PEMFC and the WE-PEMFC were divided into burner reformer and stack and into water electrolysis and stack respectively. The functional unit of each fuel cell system was defined as 1 kWh of electricity production. In the case of NG-PEMFC the GWP was 3.72E-01 kg-CO2eq/kWh the embodied carbon emissions due to using city gas during the life cycle process was about 20.87 % the carbon emission ratio according to the reformer's combustion burner was 6.07 % and the direct carbon emission ratio of the air emissions from the reformer was 73.06 % indicating that the carbon emission from the reformer contributed over 80 % of the total GWP. As for the WE-PEMFC the GWP was 1.76E-01 kg-CO2eq/kWh and the embodied carbon emissions from photovoltaic power generation during the life cycle process contributed over 99 % of the total GWP.
Oxy-fuel Combustion-based Blue Hydrogen Production with the Integration of Water Electrolysis
Jun 2023
Publication
Blue hydrogen is gaining attention as an intermediate step toward achieving eco-friendly green hydrogen production. However the general blue hydrogen production requires an energy-intensive process for carbon capture and storage resulting in low process efficiency. Additionally the hydrogen production processes steam methane reforming (SMR) and electrolysis emits waste heat and byproduct oxygen respectively. To solve these problems this study proposes an oxy-fuel combustion-based blue hydrogen production process that integrates fossil fuel-based hydrogen production and electrolysis processes. The proposed processes are SMR + SOEC and SMR + PEMEC whereas SMR solid oxide electrolysis cell (SOEC) and proton exchange membrane electrolysis cell (PEMEC) are also examined for comparison. In the proposed processes the oxygen produced by the electrolyzer is utilized for oxy-fuel combustion in the SMR process and the resulting flue gas containing CO2 and H2O is condensed to easily separate CO2. Additionally the waste heat from the SMR process is recovered to heat the feed water for the electrolyzer thereby maximizing the process efficiency. Techno-economic sensitivity and greenhouse gas (GHG) analyses were conducted to evaluate the efficiency and feasibility of the proposed processes. The results show that SMR + SOEC demonstrated the highest thermal efficiency (85.2%) and exergy efficiency (80.5%) exceeding the efficiency of the SMR process (78.4% and 70.4% for thermal and exergy efficiencies respectively). Furthermore the SMR + SOEC process showed the lowest levelized cost of hydrogen of 6.21 USD/kgH2. Lastly the SMR + SOEC demonstrated the lowest life cycle GHG emissions. In conclusion the proposed SMR + SOEC process is expected to be a suitable technology for the transition from gray to green hydrogen.
CFD Thermo‑Hydraulic Evaluation of a Liquid Hydrogen Storage Tank with Different Insulation Thickness in a Small‑Scale Hydrogen Liquefier
Aug 2023
Publication
Accurate evaluation of thermo‑fluid dynamic characteristics in tanks is critically important for designing liquid hydrogen tanks for small‑scale hydrogen liquefiers to minimize heat leakage into the liquid and ullage. Due to the high costs most future liquid hydrogen storage tank designs will have to rely on predictive computational models for minimizing pressurization and heat leakage. Therefore in this study to improve the storage efficiency of a small‑scale hydrogen liquefier a three‑ dimensional CFD model that can predict the boil‑off rate and the thermo‑fluid characteristics due to heat penetration has been developed. The prediction performance and accuracy of the CFD model was validated based on comparisons between its results and previous experimental data and a good agreement was obtained. To evaluate the insulation performance of polyurethane foam with three different insulation thicknesses the pressure changes and thermo‑fluid characteristics in a partially liquid hydrogen tank subject to fixed ambient temperature and wind velocity were investigated nu‑ merically. It was confirmed that the numerical simulation results well describe not only the temporal variations in the thermal gradient due to coupling between the buoyance and convection but also the buoyancy‑driven turbulent flow characteristics inside liquid hydrogen storage tanks with differ‑ ent insulation thicknesses. In the future the numerical model developed in this study will be used for optimizing the insulation systems of storage tanks for small‑scale hydrogen liquefiers which is a cost‑effective and highly efficient approach.
Expansion of Next-Generation Sustainable Clean Hydrogen Energy in South Korea: Domino Explosion Risk Analysis and Preventive Measures Due to Hydrogen Leakage from Hydrogen Re-Fueling Stations Using Monte Carlo Simulation
Apr 2024
Publication
Hydrogen an advanced energy source is growing quickly in its infrastructure and technological development. Urban areas are constructing convergence-type hydrogen refilling stations utilizing existing gas stations to ensure economic viability. However it is essential to conduct a risk analysis as hydrogen has a broad range for combustion and possesses significant explosive capabilities potentially leading to a domino explosion in the most severe circumstances. This study employed quantitative risk assessment to evaluate the range of damage effects of single and domino explosions. The PHAST program was utilized to generate quantitative data on the impacts of fires and explosions in the event of a single explosion with notable effects from explosions. Monte Carlo simulations were utilized to forecast a domino explosion aiming to predict uncertain events by reflecting the outcome of a single explosion. Monte Carlo simulations indicate a 69% chance of a domino explosion happening at a hydrogen refueling station if multi-layer safety devices fail resulting in damage estimated to be three times greater than a single explosion
The Effect of Ventilation on the Hazards of Hydrogen Release in Enclosed Areas of Hydrogen-fueled Ship
Aug 2023
Publication
This paper presents a systematic investigation that encompasses the safety assessment of a fuel preparation room (FPR) intended for a hydrogen-fueled ship. The primary objective is to determine the appropriate ventilation strategy to mitigate the risks associated with potential hydrogen leakage. The study focuses on a case involving an FPR measuring 10.2 m × 5.3 m × 2.65 m which is part of a 750 DWT hydrogen-powered fishing vessel. To identify the potential events leading to hydrogen dispersion an event tree analysis is conducted. Additionally existing regulations and guidelines related to the safety assessments of hydrogen leakage in enclosed areas are summarized and analyzed. Computational fluid dynamics FLACS-CFD are utilized for the consequence analysis in order to evaluate the impact of ventilation on hydrogen dispersion and concentration within the FPR. The research findings indicate significant effects of ventilation on the hazards and safety assessments of FPRs and high-pressure fuel gas supply systems. The study highlights that hydrogen vapor tends to accumulate at the ceiling and in the corners and spaces created by the equipment. The position and size of ventilation openings greatly influence the dispersion of hydrogen leakage. Proper ventilation design including top inlet ventilation and outlet ventilation on the opposite side helps to maintain a safe FPR by facilitating the efficient dispersion of hydrogen vapor. Moreover locating inlet ventilation on the same side as the outlet ventilation is found to hinder dispersion while the cross-ventilation achieved by placing inlets and outlets on opposite sides enhances airflow and dispersion. Consequently it is recommended to prioritize the structural design of FPRs and implement enhanced safety measures. Additionally updating the relevant regulations to address these concerns is strongly advised.
Solar–Hydrogen Storage System: Architecture and Integration Design of University Energy Management Systems
May 2024
Publication
As a case study on sustainable energy use in educational institutions this study examines the design and integration of a solar–hydrogen storage system within the energy management framework of Kangwon National University’s Samcheok Campus. This paper provides an extensive analysis of the architecture and integrated design of such a system which is necessary given the increasing focus on renewable energy sources and the requirement for effective energy management. This study starts with a survey of the literature on hydrogen storage techniques solar energy storage technologies and current university energy management systems. In order to pinpoint areas in need of improvement and chances for progress it also looks at earlier research on solar–hydrogen storage systems. This study’s methodology describes the system architecture which includes fuel cell integration electrolysis for hydrogen production solar energy harvesting hydrogen storage and an energy management system customized for the needs of the university. This research explores the energy consumption characteristics of the Samcheok Campus of Kangwon National University and provides recommendations for the scalability and scale of the suggested system by designing three architecture systems of microgrids with EMS Optimization for solar–hydrogen hybrid solar–hydrogen and energy storage. To guarantee effective and safe functioning control strategies and safety considerations are also covered. Prototype creation testing and validation are all part of the implementation process which ends with a thorough case study of the solar–hydrogen storage system’s integration into the university’s energy grid. The effectiveness of the system its effect on campus energy consumption patterns its financial sustainability and comparisons with conventional energy management systems are all assessed in the findings and discussion section. Problems that arise during implementation are addressed along with suggested fixes and directions for further research—such as scalability issues and technology developments—are indicated. This study sheds important light on the viability and efficiency of solar–hydrogen storage systems in academic environments particularly with regard to accomplishing sustainable energy objectives.
Explosion Replication Test of FCEV Hydrogen Tank
Sep 2023
Publication
Due to the increased interest in alternative energy sources hydrogen device safety has become paramount. In this study we induced the explosion of a hydrogen tank from a fuel cell electric vehicle (FCEV) by igniting a fire beneath it and disabling the built-in temperature pressure relief device. Three Type 4 tanks were injected gaseous hydrogen at pressures of 700 350 and 10 bar respectively. The incident pressure generated by the tank explosion was measured by pressure transducers positioned at various points around the tank. A protective barrier was installed to examine its effect on the resulting damage and the reflected pressure was measured along the barrier. The internal pressure and external temperature of the tanks were measured in multiple locations. The 700- and 350-bar hydrogen tanks exploded approximately 10 and 16 min after burner ignition respectively. The 10-bar hydrogen tank did not explode but ruptured approximately 29 min after burner ignition The explosions generated blast waves fireballs and fragments. The impact on the surrounding area was evaluated and we verified that the blast pressure fireballs and fragments were almost completely blocked by the protective barrier. The results of this study are expected to improve safety on an FCEV accident scene.
Re-enacting the Hydrogen Tank Explosion of a Fuel-cell Electric Vehicle: An Experimental Study
May 2023
Publication
With the world-wide decision to reduce carbon emissions through the Paris Agreement (2015) the demand for hydrogen-fuelled vehicles has been increasing. Although hydrogen is not a toxic gas it has a wide flammable range (4e75%) and can explode due to static electricity. Therefore studies on hydrogen safety are urgently required. In this study an explosion was induced by applying fire to the lower part of a fuel cell electric vehicle (FCEV). Out of three compressed hydrogen storage tanks installed in the vehicle two did not have hydrogen fuel and one was filled with compressed gaseous hydrogen of 700 bar and forcedly deactivated its temperature-activated pressure relief device. The side-on overpressure transducers were installed by distance in main directions to measure the side-on overpressure generated by the vehicle explosion. A 10 m-long protective barrier was installed on which reflected overpressure displacement and acceleration were measured to examine the effect of attenuation of explosion damage in the event of an accident. The vehicle exploded approximately 11 min after ignition generating a blast wave fireballs and fragments. The results of the experiment showed that the protective barrier could almost completely block explosive pressure smoke and scattering generated during an explosion. Through Probit function analysis the probabilities of an accident occurring were derived based on peak overpressure peak impulse and scattering. The results of this study can be used to develop standard operating procedures (SOPs) for firefighters as the base data for setting the initial operation location and deriving the safe separation distance.
Risk Assessment of Explosion Accidents in Hydrogen Fuel-Cell Rooms Using Experimental Investigations and Computational Fluid Dynamics Simulations
Oct 2023
Publication
For the safe utilization and management of hydrogen energy within a fuel-cell room in a hydrogen-fueled house an explosion test was conducted to evaluate the potential hazards associated with hydrogen accident scenarios. The overpressure and heat radiation were measured for an explosion accident at distances of 1 2 3 5 and 10 m for hydrogen–air mixing ratios of 10% 25% 40% and 60%. When the hydrogen–air mixture ratio was 40% the greatest overpressure was 24.35 kPa at a distance of 1 m from the fuel-cell room. Additionally the thermal radiation was more than 1.5 kW/m2 which could cause burns at a distance of 5 m from the hydrogen fuel-cell room. Moreover a thermal radiation in excess of 1.5 kW/m2 was computed at a distance of 3 m from the hydrogen fuel-cell room when the hydrogen–air mixing ratio was 25% and 60%. Consequently an explosion in the hydrogen fuel-cell room did not considerably affect fatality levels but could affect the injury levels and temporary threshold shifts. Furthermore the degree of physical damage did not reach major structural damage levels causing only minor structural damage.
No more items...