Korea, Republic of
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
Sep 2024
Publication
Climatic changes are reaching alarming levels globally seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water with solar hydrogen production—using solar light to split water—standing out as a cost-effective and environmentally friendly approach. However the widespread adoption of hydrogen energy is challenged by transportation and storage issues as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods as it uses self-generated power. Similarly solid storage of hydrogen is also attractive in many ways including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially but once the materials and methods are established they will become more attractive considering rising fuel prices depletion of fossil fuel resources and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient safe and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between −40 and 60 ◦C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage and discusses current challenges in hydrogen generation and storage. This includes material selection and the structural and chemical modifications needed for optimal performance and potential applications.
The Environmental Impacts of Future Global Sales of Hydrogen Fuel Cell Vehicles
Oct 2024
Publication
During the last decade developing more sustainable transportation modes has become a primary objective for car manufacturers and governments around the world to mitigate environmental issues such as climate change the continuous increase in greenhouse gas (GHG) emissions and energy depletion. The use of hydrogen fuel cell technology as a source of energy in electric vehicles is considered an emerging and promising technology that could contribute significantly to addressing these environmental issues. In this study the effects of Hydrogen Fuel Cell Battery Electric Vehicles (HFCBEVs) on global GHG emissions compared to other technologies such as BEVs were determined based on different relevant factors such as predicted sales for 2050 (the result of the developed prediction model) estimated daily traveling distance estimated future average global electricity emission factors future average Battery Electric Vehicle (BEV) emission factors future global hydrogen production emission factors and future average HFCBEV emission factors. As a result the annual GHG emissions produced by passenger cars that are expected to be sold in 2050 were determined by considering BEV sales in the first scenario and HFCBEV replacement in the second scenario. The results indicate that the environmental benefits of HFCBEVs are expected to increase over time compared to those of BEVs due to the eco-friendly methods that are expected to be used in hydrogen production in the future. For instance in 2021 HFCBEVs could produce more GHG emissions than BEVs by 54.9% per km of travel whereas in 2050 BEVs could produce more GHG emissions than HFCBEVs by 225% per km of travel.
Techno‑Economic Comparative Analysis of Two Hybrid Renewable Energy Systems for Powering a Simulated House, including a Hydrogen Vehicle Load at Jeju Island
Nov 2023
Publication
This work undertakes a techno‑economic comparative analysis of the design of photo‑ voltaic panel/wind turbine/electrolyzer‑H2 tank–fuel cell/electrolyzer‑H2 tank (configuration 1) and photovoltaic panel/wind turbine/battery/electrolyzer‑H2 tank (configuration 2) to supply electricity to a simulated house and a hydrogen‑powered vehicle on Jeju Island. The aim is to find a system that will make optimum use of the excess energy produced by renewable energies to power the hydrogen vehicle while guaranteeing the reliability and cost‑effectiveness of the entire system. In addition to evaluating the Loss of Power Supply Probability (LPSP) and the Levelized Cost of Energy (LCOE) the search for achieving that objective leads to the evaluation of two new performance indicators: Loss of Hydrogen Supply Probability (LHSP) and Levelized Cost of Hydrogen (LCOH). After anal‑ ysis for 0 < LPSP < 1 and 0 < LHSP < 1 used as the constraints in a multi‑objective genetic algorithm configuration 1 turns out to be the most efficient loads feeder with an LCOE of 0.3322 USD/kWh an LPSP of 0% concerning the simulated house load an LCOH of 11.5671 USD/kg for a 5 kg hydrogen storage and an LHSP of 0.0043% regarding the hydrogen vehicle load.
Recent Developments in Materials for Physical Hydrogen Storage: A Review
Jan 2024
Publication
The depletion of reliable energy sources and the environmental and climatic repercussions of polluting energy sources have become global challenges. Hence many countries have adopted various renewable energy sources including hydrogen. Hydrogen is a future energy carrier in the global energy system and has the potential to produce zero carbon emissions. For the non-fossil energy sources hydrogen and electricity are considered the dominant energy carriers for providing end-user services because they can satisfy most of the consumer requirements. Hence the development of both hydrogen production and storage is necessary to meet the standards of a “hydrogen economy”. The physical and chemical absorption of hydrogen in solid storage materials is a promising hydrogen storage method because of the high storage and transportation performance. In this paper physical hydrogen storage materials such as hollow spheres carbon-based materials zeolites and metal– organic frameworks are reviewed. We summarize and discuss the properties hydrogen storage densities at different temperatures and pressures and the fabrication and modification methods of these materials. The challenges associated with these physical hydrogen storage materials are also discussed.
Predictive Maintenance and Reinspection Strategies for Hydrogen Refueling Station Pressure Vessels: A Case Study in South Korea
Jul 2024
Publication
Hydrogen refueling stations rely on pressure vessels capable of withstanding pressures up to 90 MPa while mitigating concerns related to hydrogen embrittlement. However a gap exists in understanding the long-term fatigue behavior of these vessels under real operational conditions. This study focuses on evaluating the safety of SA372 pressure vessels using operational data from a hydrogen refueling station in Pyeongtaek South Korea. A predictive reinspection methodology is proposed based on this evaluation. Parameters including hydrogen-induced stress intensity factor (KIH) initial crack size (a0 c0) and pressure vessel specifications are considered to assess critical crack depth (ac) critical usage cycles (Nc) and allowable usage cycles (Nallowed). Leveraging operational data collected between August and November 2023 fatigue analysis and Rainflow counting inform reinspection schedules. Results indicate a need for mid-bank vessel reinspection within the second year high-bank vessel reinspection every 20 years and low-bank vessel reinspection every 143 years in accordance with safety regulations. Additionally a revised refueling logic is proposed to optimize vehicle charging methods and pressure ranges enhancing operational safety. This study serves as a preliminary investigation highlighting the need for broader data collection and analysis to generalize findings across multiple stations.
Energy, Exergy and Thermoeconomic Analyses on Hydrogen Production Systems Using High-temperature Gas-cooled and Water-cooled Nuclear Reactors
Dec 2023
Publication
The use of nuclear energy is inevitable to reduce the dependence on fossil fuels in the energy sector. High-temperature gas-cooled reactors (HTGRs) are considered as a system suitable for the purpose of reducing the use of fossil fuels. Furthermore eco-friendly mass production of hydrogen is crucial because hydrogen is emerging as a next-generation energy carrier. The unit cost of hydrogen production by the levelized cost of energy (LCOE) method varies widely depending on the energy source and system configuration. In this study energy exergy and thermoeconomic analyses were performed on the hydrogen production system using the HTGR and high-temperature water-cooled nuclear reactor (HTWR) to calculate reasonable unit cost of the hydrogen produced using a thermoeconomic method called modified production structure analysis (MOPSA). A flowsheet analysis was performed to confirm the energy conservation in each component. The electricity generated from the 600 MW HTGR system was used to produce 1.28 kmol/s of hydrogen by electrolysis to split hot water vapor. Meanwhile 515 MW of heat from the 600 MW HTWR was used to produce 8.10 kmol/s of hydrogen through steam reforming and 83.6 MW of electricity produced by the steam turbine was used for grid power. The estimated unit cost of hydrogen from HTGR is approximately USD 35.6/GJ with an initial investment cost of USD 2.6 billion. If the unit cost of natural gas is USD 10/GJ and the carbon tax is USD 0.08/kg of carbon dioxide the unit cost of hydrogen produced from HTWR is approximately USD 13.92/GJ with initial investment of USD 2.32 billion. The unit cost of the hydrogen produced in the scaled-down plant was also considered.
Techno-economic Analysis of High-power Solid Oxide Electrolysis Cell System
Jan 2023
Publication
Water electrolysis using solid oxide electrolysis cells is a promising method for hydrogen production because it is highly efficient clean and scalable. Recently a lot of researches focusing on development of high-power stack system have been introduced. However there are very few studies of economic analysis for this promising system. Consequently this study proposed 20-kW-scale high-power solid oxide electrolysis cells system config urations then conducted economic analysis. Especially the economic context was in South Korea. For com parison a low-power system with similar design was used as a reference; the levelized cost of hydrogen of each system was calculated based on the revenue requirement method. Furthermore a sensitivity analysis was also performed to identify how the economic variables affect the hydrogen production cost in a specific context. The results show that a high-power system is superior to a low-power system from an economic perspective. The stack cost is the dominant component of the capital cost but the electricity cost is the factor that contributes the most to the hydrogen cost. In the first case study it was found that if a high-power system can be installed inside a nuclear power plant the cost of hydrogen produced can reach $3.65/kg when the electricity cost is 3.28¢/kWh and the stack cost is assumed to be $574/kW. The second case study indicated that the hydrogen cost can decrease by 24% if the system is scaled up to a 2-MW scale.
Supply and Demand Drivers of Global Hydrogen Deployment in the Transition Toward a Decarbonized Energy System
Nov 2023
Publication
The role of hydrogen in energy system decarbonization is being actively examined by the research and policy communities. We evaluate the potential “hydrogen economy” in global climate change mitigation scenarios using the Global Change Analysis Model (GCAM). We consider major hydrogen production methods in conjunction with delivery options to understand how hydrogen infrastructure affects its deployment. We also consider a rich set of hydrogen end-use technologies and vary their costs to understand how demand technologies affect deployment. We find that the availability of hydrogen transmission and distribution infrastructure primarily affects the hydrogen production mix particularly the share produced centrally versus on-site whereas assumptions about end-use technology primarily affect the scale of hydrogen deployment. In effect hydrogen can be a source of distributed energy enabled by on-site renewable electrolysis and to a lesser extent by on-site production at industrial facilities using natural gas with carbon capture and storage (CCS). While the share of hydrogen in final energy is small relative to the share of other major energy carriers in our scenarios hydrogen enables decarbonization in difficult-to-electrify end uses such as industrial high-temperature heat. Hydrogen deployment and in turn its contribution to greenhouse gas mitigation increases as the climate objective is tightened.
Prediction of Freezing Time During Hydrogen Fueling Using Machine Learning
Nov 2024
Publication
This study presents a method for predicting nozzle surface temperature and the timing of frost formation during hydrogen refueling using machine learning. A continuous refueling system was implemented based on a simulation model that was developed and validated in previous research. Data were collected under various boundary conditions and eight regression models were trained and evaluated for their predictive performance. Hyperparameter optimization was performed using random search to enhance model performance. The final models were validated by applying boundary conditions not used during model development and comparing the predicted values with simulation results. The comparison revealed that the maximum error rate occurred after the second refueling with a value of approximately 4.79%. Currently nitrogen and heating air are used for defrosting and frost reduction which can be costly. The developed machine learning models are expected to enable prediction of both frost formation and defrosting timings potentially allowing for more cost-effective management of defrosting and frost reduction strategies.
Comparative Analysis of Marine Alternative Fuels for Offshore Supply Vessels
Nov 2024
Publication
This paper provides an in-depth analysis of alternative fuels including liquefied natural gas (LNG) hydrogen ammonia and biofuels assessing their feasibility based on operational requirements availability safety concerns and the infrastructure needed for large-scale adoption. Moreover it examines hybrid and fully electric propulsion systems considering advancements in battery technology and the integration of renewable energy sources such as wind and solar power to further reduce SOV emissions. Key findings from this research indicate that LNG serves as a viable short- to medium-term solution for reducing GHG emissions in the SOV sector due to its relatively lower carbon content compared to MDO and HFO. This paper finally insists that while LNG presents an immediate opportunity for emission reduction in the SOV sector a combination of hydrogen ammonia and hybrid propulsion systems will be necessary to meet long-term decarbonisation goals. The findings underscore the importance of coordinated industry efforts technological innovation and supportive regulatory frameworks to overcome the technical economic and infrastructural challenges associated with decarbonising the maritime industry.
Strategic Public Relations Policy for Accelerating Hydrogen Acceptance: Insights from an Expert Survey in South Korea
Aug 2024
Publication
Hydrogen has great growth potential due to its green carbon-neutral nature but public acceptance is low due to negative perceptions of the dangers associated with hydrogen energy. Safety concerns particularly related to its flammability and explosiveness are an obstacle to hydrogen energy policy. In South Korea recent hydrogen-related explosions have exacerbated these concerns undermining public confidence. This study developed public relations (PR) strategies to manage risk perception and promote hydrogen energy acceptance by analyzing the opinions of government officials and experts using SWOT factors the TOWS matrix and the analytic hierarchy process. The findings highlight the importance of addressing weaknesses and threats in PR efforts. Key weaknesses include Korea’s technological lag and the low localization of core hydrogen technologies both of which hinder competitiveness and negatively impact public perception of hydrogen energy. Notable threats include deteriorating energy dependency and expanding global carbon regulations. This information can be used to influence attitudes and foster public acceptance of hydrogen energy policies. Emphasizing weaknesses and threats may result in more effective PR strategies even if they do not directly address the primary concerns of scientific experts. The persuasive insights identified in this study can support future policy communication and PR strategies.
A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles
Jul 2023
Publication
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles there can be various operational pressure and volume capacity of the tanks ranging from passenger vehicles to heavy-duty trucks. The current commercial hydrogen storage method for vehicles involves storing compressed hydrogen gas in high-pressure tanks at pressures of 700 bar for passenger vehicles and 350 bar to 700 bar for heavy-duty trucks. In particular hydrogen is stored in rapidly refillable onboard tanks meeting the driving range needs of heavy-duty applications such as regional and line-haul trucking. One of the most important factors for fuel cell vehicles to be successful is their cost-effectiveness. So in this review the cost analysis including the process analysis raw materials and manufacturing processes is reviewed. It aims to contribute to the optimization of both the cost and performance of compressed hydrogen storage tanks for various applications.
Recent Developments in Hydrogen Production, Storage, and Transportation: Challenges, Opportunities, and Perspectives
Jul 2024
Publication
Hydrogen (H2 ) is considered a suitable substitute for conventional energy sources because it is abundant and environmentally friendly. However the widespread adoption of H2 as an energy source poses several challenges in H2 production storage safety and transportation. Recent efforts to address these challenges have focused on improving the efficiency and cost-effectiveness of H2 production methods developing advanced storage technologies to ensure safe handling and transportation of H2 and implementing comprehensive safety protocols. Furthermore efforts are being made to integrate H2 into the existing energy infrastructure and explore new opportunities for its application in various sectors such as transportation industry and residential applications. Overall recent developments in H2 production storage safety and transportation have opened new avenues for the widespread adoption of H2 as a clean and sustainable energy source. This review highlights potential solutions to overcome the challenges associated with H2 production storage safety and transportation. Additionally it discusses opportunities to achieve a carbon-neutral society and reduce the dependence on fossil fuels.
A Study on the Thermal Behavior of Series and Parallel Connection Methods in the Process of Hydrogenation of Ship-Borne Hydrogen Storage Cylinder
Feb 2024
Publication
As a subdivision of the hydrogen energy application field ship-borne hydrogen fuel cell systems have certain differences from vehicle or other application scenarios in terms of their structural type safety environmental adaptability and test verification. The connection method of the ship-borne hydrogen storage cylinder (SHSC) is very important for the hydrogen fuel cell ship and the structural parameters of the SHSC are particularly important in the hydrogen refueling process. To ensure the safe and reliable operation of the hydrogen-powered ship research on the filling of the SHSC under different connection modes was carried out during refueling. In our study a thermal flow physical model of the SHSC was established to research the hydrogen refueling process of the series and parallel SHSCs. The influence of series and parallel modes of the SHSCs on the hydrogen refueling process was explored and the evolution law of the internal flow field pressure and temperature of series and parallel SHSCs under different filling parameters was analyzed by numerical simulation. Our results confirmed the superiority of the parallel modular approach in terms of thermal safety during refueling. The results can supply a technical basis for the future development of hydrogen refueling stations and ship-board hydrogenation control algorithms.
Overview of Hydrogen Production Technologies for Fuel Cell Utilization
Jun 2023
Publication
With rapidly depleting fossil fuels and growing environmental alarms due to their usage hydrogen as an energy vector provides a clean and sustainable solution. However the challenge lies in replacing mature fossil fuel technology with efficient and economical hydrogen production. This paper provides a technoeconomic and environmental overview of H2 production technologies. Reforming of fossil fuels is still considered as the backbone of large-scale H2 production. Whereas renewable hydrogen has technically advanced and improved its cost remains an area of concern. Finding alternative catalytic materials would reduce such costs for renewable hydrogen production. Taking a mid-term timeframe a viable scenario is replacing fossil fuels with solar hydrogen production integrated with water splitting methods or from biomass gasification. Gasification of biomass is the preferred option as it is carbon neutral and costeffective producing hydrogen at 1.77 – 2.77 $/kg of H2. Among other uses of hydrogen in industrial applications the most viable approach is to use it in hydrogen fuel cells for generating electricity. Commercialization of fuel cell technology is hindered by a lack of hydrogen infrastructure. Fuel cells and hydrogen production units should be integrated to achieve desired results. Case studies of different fuel cells and hydrogen production technologies are presented at the end of this paper depicting a viable and environmentally acceptable approach compared with fossil fuels.
A Thermodynamic Model for Cryogenic Liquid Hydrogen Fuel Tanks
Apr 2024
Publication
Hydrogen is used as a fuel in various fields such as aviation space and automobiles due to its high specific energy. Hydrogen can be stored as a compressed gas at high pressure and as a liquid at cryogenic temperatures. In order to keep liquid hydrogen at a cryogenic temperature the tanks for storing liquid hydrogen are required to have insulation to prevent heat leakage. When liquid hydrogen is vaporized by heat inflow a large pressure is generated inside the tank. Therefore a technology capable of predicting the tank pressure is required for cryogenic liquid hydrogen tanks. In this study a thermodynamic model was developed to predict the maximum internal pressure and pressure behavior of cryogenic liquid hydrogen fuel tanks. The developed model considers the heat inflow of the tank due to heat transfer the phase change from liquid to gas hydrogen and the fuel consumption rate. To verify the accuracy of the proposed model it was compared with the analyses and experimental results in the referenced literature and the model presented good results. A cryogenic liquid hydrogen fuel tank was simulated using the proposed model and it was confirmed that the storage time along with conditions such as the fuel filling ratio of liquid hydrogen and the fuel consumption rate should be considered when designing the fuel tanks. Finally it was confirmed that the proposed thermodynamic model can be used to sufficiently predict the internal pressure and the pressure behavior of cryogenic liquid hydrogen fuel tanks.
Economic Prospects of Taxis Powered by Hydrogen Fuel Cells in Palestine
Feb 2024
Publication
Recently major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study aimed to investigate the economic prospects of using hydrogen fuel cell technology in taxi fleets in Westbank. For this purpose a model that could predict the number of taxis was developed and the expected economic implications of using hydrogen fuel cell technology in taxi fleets were determined based on the expected future fuel consumption and future fuel cost. After analysis of the results it was concluded that a slight annual increase in the number of taxis in Palestine is expected in the future due to the government restrictions on issuing new taxi permits in order to get this sector organized. Furthermore using hydrogen fuel cells in taxi fleets is expected to become more and more feasible over time due to the expected future increase in oil price and the expected significant reduction in hydrogen cost as a result of the new technologies that are expected to be used in the production and handling of hydrogen.
Field Test Series for Development of Mitigation Barriers and its Designs Against Hydrogen Explosion
Sep 2023
Publication
A field test series where a composite pressure vessel for hydrogen is exploded by fire 1) to provide the facts and the data for the safety distance based on overpressure; 2) to validate the current status of mitigation barrier per KGS FP216 and further designs for developments of the codes and standards relating to hydrogen refueling stations. A pair of barriers to be tested are installed approximately 4 m apart standing face to face. The explosion source is a type-4 composite vessel of 175 L filled with compressed hydrogen up to 70 MPa. The vessel is in the middle of the barriers and the body part is heated with an LPG burner until it blows out. The incident overpressures from the blast are measured with 40 high-speed pressure sensors which are respectively installed 2 to 32 m away from the explosion. In the tests with the barrier constructed per the current status of KGS FP216 the explosion of the vessel resulted in partial destruction of the reinforced concrete barrier and made the steel plate barrier dissociated from the foundation then flew away approximately 25 m. The peak overpressure was 14.65 kPa at 32 m. The test data will be further analyzed to select the barriers for the subsequent tests and to develop the codes and standards for hydrogen refueling stations.
Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis
Feb 2024
Publication
Hydrogen tractors are being developed necessitating consideration of the variation in the center of gravity depending on the arrangement of components such as power packs and cooling modules that replace traditional engines. This study analyzes the effects of component arrangement on stability and rollover angle in hydrogen tractors through simulations and proposes an optimal configuration. Stability is evaluated by analyzing rollover angles in various directions with rotations around the tractor’s midpoint. Based on the analysis of rollover angles for Type 1 Type 2 and Type 3 hydrogen tractors Type 2 demonstrates superior stability compared to the other types. Specifically when comparing lateral rollover angles at 0◦ rotation Type 2 exhibits a 2% increase over Type 3. Upon rotations at 90◦ and 180◦ Type 2 consistently displays the highest rollover angles with differences ranging from approximately 6% to 12% compared to the other types. These results indicate that Type 2 with its specific component arrangement offers the most stable configuration among the three types of tractors. It is confirmed that the rollover angle changes based on component arrangement with a lower center of gravity resulting in greater stability. These findings serve as a crucial foundation for enhancing stability in the future design and manufacturing phases of hydrogen tractors.
Secure Hydrogen Production Analysis and Prediction Based on Blockchain Service Framework for Intelligent Power Management System
Nov 2023
Publication
The rapid adoption of hydrogen as an eco-friendly energy source has necessitated the development of intelligent power management systems capable of efficiently utilizing hydrogen resources. However guaranteeing the security and integrity of hydrogen-related data has become a significant challenge. This paper proposes a pioneering approach to ensure secure hydrogen data analysis by integrating blockchain technology enhancing trust transparency and privacy in handling hydrogen-related information. Combining blockchain with intelligent power management systems makes the efficient utilization of hydrogen resources feasible. Using smart contracts and distributed ledger technology facilitates secure data analysis (SDA) real-time monitoring prediction and optimization of hydrogen-based power systems. The effectiveness and performance of the proposed approach are demonstrated through comprehensive case studies and simulations. Notably our prediction models including ABiLSTM ALSTM and ARNN consistently delivered high accuracy with MAE values of approximately 0.154 0.151 and 0.151 respectively enhancing the security and efficiency of hydrogen consumption forecasts. The blockchain-based solution offers enhanced security integrity and privacy for hydrogen data analysis thus advancing clean and sustainable energy systems. Additionally the research identifies existing challenges and outlines future directions for further enhancing the proposed system. This study adds to the growing body of research on blockchain applications in the energy sector specifically on secure hydrogen data analysis and intelligent power management systems.
No more items...