Korea, Republic of
Modelling and Simulation of a Hydrogen-Based Hybrid Energy Storage System with a Switching Algorithm
Oct 2022
Publication
Currently transitioning from fossil fuels to renewable sources of energy is needed considering the impact of climate change on the globe. From this point of view there is a need for development in several stages such as storage transmission and conversion of power. In this paper we demonstrate a simulation of a hybrid energy storage system consisting of a battery and fuel cell in parallel operation. The novelty in the proposed system is the inclusion of an electrolyser along with a switching algorithm. The electrolyser consumes electricity to intrinsically produce hydrogen and store it in a tank. This implies that the system consumes electricity as input energy as opposed to hydrogen being the input fuel. The hydrogen produced by the electrolyser and stored in the tank is later utilised by the fuel cell to produce electricity to power the load when needed. Energy is therefore stored in the form of hydrogen. A battery of lower capacity is coupled with the fuel cell to handle transient loads. A parallel control algorithm is developed to switch on/off the charging and discharging cycle of the fuel cell and battery depending upon the connected load. Electrically equivalent circuits of a polymer electrolyte membrane electrolyser polymer electrolyte membrane fuel cell necessary hydrogen oxygen water tanks and switching controller for the parallel operation were modelled with their respective mathematical equations in MATLAB® Simulink®. In this paper we mainly focus on the modelling and simulation of the proposed system. The results showcase the simulated system’s mentioned advantages and compare its ability to handle loads to a battery-only system.
Non-precious Electrocatalysts for Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolysis: A Mini Review
Sep 2021
Publication
Anion exchange membrane water electrolysis (AEMWE) is considered the next generation of green hydrogen production method because it uses low-cost non-noble metal oxide electrocatalyst electrodes and can store highpurity hydrogen under high pressure. However the commercialization of AEMWE with non-precious metal oxide electrocatalysts is challenging due to low electrocatalytic activity and durability. Overcoming the low kinetics caused by four-electron transfer is vital in addressing the low activity of non-noble metal oxide electrocatalysts for oxygen evolution reaction. This article overviews the synthesis methods and related techniques for various anode electrodes applied to AEMWE systems. We highlight effective strategies that have been developed to improve the performance and durability of the non-precious electrocatalysts and ensure the stable operation of AEMWE followed by a critical perspective to encourage the development of this technology.
Recent Developments in State-of-the-art Hydrogen Energy Technologies – Review of Hydrogen Storage Materials
Jan 2023
Publication
Hydrogen energy has been assessed as a clean and renewable energy source for future energy demand. For harnessing hydrogen energy to its fullest potential storage is a key parameter. It is well known that important hydrogen storage characteristics are operating pressure-temperature of hydrogen hydrogen storage capacity hydrogen absorption-desorption kinetics and heat transfer in the hydride bed. Each application needs specific properties. Every class of hydrogen storage materials has a different set of hydrogenation characteristics. Hence it is required to understand the properties of all hydrogen storage materials. The present review is focused on the state-of– the–art hydrogen storage materials including metal hydrides magnesium-based materials complex hydride systems carbonaceous materials metal organic frameworks perovskites and materials and processes based on artificial intelligence. In each category of materials‘ discovery hydrogen storage mechanism and reaction crystal structure and recent progress have been discussed in detail. Together with the fundamental synthesis process latest techniques of material tailoring like nanostructuring nanoconfinement catalyzing alloying and functionalization have also been discussed. Hydrogen energy research has a promising potential to replace fossil fuels from energy uses especially from automobile sector. In this context efforts initiated worldwide for clean hydrogen production and its use via fuel cell in vehicles is much awaiting steps towards sustainable energy demand.
Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain
Oct 2022
Publication
Hydrogen energy one of the energy sources of the future represents a substantial issue which affects the industries and national technologies that will develop in the future. In order to utilize hydrogen energy a hydrogen supply chain is required so that hydrogen can be processed and transported to vehicles. It is helpful for technology and policy development to analyze technologies necessary to charge the hydrogen energy generated into vehicles through the supply chain to discover technologies with high potential for future development. The purpose of this paper is to identify promising technologies required in storing transporting and charging vehicles generated by the hydrogen fuel supply chain. Afterward the promising technologies identified are expected to help researchers set a direction in researching technologies and developing related policies. Therefore we provide technology information that can be used promisingly in the future so that researchers in the related field can utilize it effectively. In this paper data analysis is performed using related patents and research papers for technical analysis. Promising technologies that will be the core of the hydrogen fuel supply chain in the future were identified using the published patents and research paper database (DB) in Korea the United States Europe China and Japan. A text mining technique was applied to preprocess data and then a generic topographic map (GTM) analysis discovered promising technologies. Then a technology roadmap was identified by analyzing the promising technology derived from patents and research papers in parallel. In this study through the analysis of patents and research papers related to the hydrogen supply chain the development status of hydrogen storage/transport/charging technology was analyzed and promising technologies with high potential for future development were found. The technology roadmap derived from the analysis can help researchers in the field of hydrogen research establish policies and research technologies.
Photocatalytic Water Splitting: How Far Away Are We from Being Able to Industrially Produce Solar Hydrogen?
Oct 2022
Publication
Solar water splitting (SWS) has been researched for about five decades but despite successes there has not been a big breakthrough advancement. While the three fundamental steps light absorption charge carrier separation and diffusion and charge utilization at redox sites are given a great deal of attention either separately or simultaneously practical considerations that can help to increase efficiency are rarely discussed or put into practice. Nevertheless it is possible to increase the generation of solar hydrogen by making a few little but important adjustments. In this review we talk about various methods for photocatalytic water splitting that have been documented in the literature and importance of the thin film approach to move closer to the large-scale photocatalytic hydrogen production. For instance when comparing the film form of the identical catalyst to the particulate form it was found that the solar hydrogen production increased by up to two orders of magnitude. The major topic of this review with thin-film forms is discussion on several methods of increased hydrogen generation under direct solar and one-sun circumstances. The advantages and disadvantages of thin film and particle technologies are extensively discussed. In the current assessment potential approaches and scalable success factors are also covered. As demonstrated by a film-based approach the local charge utilization at a zero applied potential is an appealing characteristic for SWS. Furthermore we compare the PEC-WS and SWS for solar hydrogen generation and discuss how far we are from producing solar hydrogen on an industrial scale. We believe that the currently employed variety of attempts may be condensed to fewer strategies such as film-based evaluation which will create a path to address the SWS issue and achieve sustainable solar hydrogen generation.
A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector
Jul 2022
Publication
Hydrogen fuel cell technology is securing a place in the future of advanced mobility and the energy revolution as engineers explore multiple paths in the quest for decarbonization. The feasibility of hydrogen-based fuel cell vehicles particularly relies on the development of safe lightweight and cost-competitive solutions for hydrogen storage. After the demonstration of hundreds of prototype vehicles today commercial hydrogen tanks are in the first stages of market introduction adopting configurations that use composite materials. However production rates remain low and costs high. This paper intends to provide an insight into the evolving scenario of solutions for hydrogen storage in the transportation sector. Current applications in different sectors of transport are covered focusing on their individual requirements. Furthermore this work addresses the efforts to produce economically attractive composite tanks discussing the challenges surrounding material choices and manufacturing practices as well as cutting-edge trends pursued by research and development teams. Key issues in the design and analysis of hydrogen tanks are also discussed. Finally testing and certification requirements are debated once they play a vital role in industry acceptance.
Jet Flame Risk Analysis for Safe Response to Hydrogen Vehicle Accidents
Jun 2023
Publication
With an increase in the use of eco-friendly vehicles such as hybrid electric and hydrogen vehicles in response to the global climate crisis accidents related to these vehicles have also increased. Numerical analysis was performed to optimize the safety of first responders responding to hydrogen vehicle accidents wherein hydrogen jet flames occur. The influence range of the jet flame generated through a 1.8-mm-diameter nozzle was analyzed based on five discharge angles (90 75 60 45 and 30◦ ) between the road surface and the downward vertical. As the discharge angle decreases toward the road surface the risk area that could cause damage moves from the center of the vehicle to the rear; at a discharge angle of 90◦ the range above 9.5 kW/m2 was 1.59 m and 4.09 m to the front and rear of the vehicle respectively. However at a discharge angle of 30◦ it was not generated at the front but was 10.39 m to the rear. In response to a hydrogen vehicle accident first responders should perform rescue activities approaching from a diagonal direction to the vehicle front to minimize injury risk. This study can be used in future hydrogen vehicle design to develop the response strategy of the first responders.
A Web-based Decision Support System (DSS) for Hydrogen Refueling Station Location and Supply Chain Optimisation
Jun 2023
Publication
This study presents a novel web-based decision support system (DSS) that optimizes the locations of hydrogen refueling stations (HRSs) and hydrogen supply chains (HSCs). The system is developed with a design science approach that identifies key design requirements and features through interviews and literature reviews. Based on the findings a system architecture and data model were designed incorporating scenario management optimization model visualization and data management components. The DSS provides a two-stage solution model that links demand to HRSs and production facilities to HRSs. A prototype is demonstrated with a plan for 2025 and 2030 in the Republic of Korea where 450 to 660 stations were deployed nationwide and linked to production facilities. User evaluation confirmed the effectiveness of the DSS in solving optimization problems and its potential to assist the government and municipalities in planning hydrogen infrastructure.
Risk Assessment of a Hydrogen Refueling Station in an Urban Area
May 2023
Publication
After the Paris Agreement was signed in 2015 many countries worldwide focused on the hydrogen economy aiming for eco-friendly and renewable energy by moving away from the existing carbon economy which has been the primary source of global warming. Hydrogen is the most common element on Earth. As a light substance hydrogen can diffuse quickly; however it also has a small risk of explosion. Representative explosion accidents have included the Muskingum River Power Plant Vapor Cloud Explosion accident in 2007 and the Silver Eagle Refinery Vapor Cloud Explosion accident in 2009. In addition there was an explosion in a hydrogen tank in Gangneung Korea in May 2019 and a hydrogen refueling station (HRS) in Norway exploded in 2018. Despite this risk Korea is promoting the establishment of HRSs in major urban centers including downtown areas and public buildings by using the Regulatory Sandbox to install HRSs. This paper employed the Hydrogen Risk Assessment Model (HyRAM) of Sandia National Laboratories (SNL) a quantitative risk assessment (QRA) program specialized in hydrogen energy for HRSs installed in major urban hubs. A feasibility evaluation of the site conditions of an HRS was conducted using the French land use planning method based on the results obtained through evaluation using the HyRAM and the overpressure results of PHAST 8.0. After a risk assessment we confirmed that an HRS would be considered safe even if it was installed in the city center within a radius of influence of jet fires and overpressure.
Economic and Environmental Potential of Green Hydrogen Carriers (GHCs) Produced via Reduction of Amine-capture CO2
Jun 2023
Publication
Hydrogen is deemed as a crucial component in the transition to a carbon-free energy system and researchers are actively working to realize the hydrogen economy. While hydrogen derived from renewable energy sources is a promising means of providing clean energy to households and industries its practical usage is currently hindered by difficulties in transportation and storage. Due to the extreme operating conditions required for liquefying hydrogen various hydrogen carriers are being considered which can be transported and stored at mild operating conditions and provide hydrogen at the site of usage. Among various candidates green hydrogen carriers obtained via carbon dioxide utilization have been proposed as an economically and environmentally feasible option. Herein the potential of using methanol and formic acid as green hydrogen carriers are evaluated regarding various production and dehydrogenation pathways within a hydrogen distribution system including the recycle of carbon dioxide. Recent progress in carbon dioxide utilization processes especially conversion of carbon dioxide captured in amine solutions have demonstrated promising results for methanol and formic acid production. This study analyzes seven scenarios that consider carbon dioxide utilization-based thermocatalytic and electrochemical methanol and formic acid production as well as different dehydrogenation pathways and compares them to the scenario of delivering liquefied hydrogen. The scenarios are thoroughly analyzed via techno-economic analysis and life cycle assessment methods. The results of the study indicate that methanol-based options are economically viable reducing the cost up to 43% compared to liquefied hydrogen delivery. As for formic acid only the electrochemical production method is profitable retaining 10% less cost compared to liquefied hydrogen delivery. In terms of environmental impact all of the scenarios show higher global warming impact values than liquefied hydrogen distribution. However results show that in an optimistic case where wind electricity is widely used electrochemical formic acid production is competitive with liquefied hydrogen distribution retaining 39% less global warming impact values. This is because high conversion can be achieved at mild operating conditions for the production and dehydrogenation reactions of formic acid reducing the input of utilities other than electricity. This study suggests that while methanol can be a shortterm solution for hydrogen distribution electrochemical formic acid production may be a viable long-term option.
Hydrogen Technology Development and Policy Status by Value Chain in South Korea
Nov 2022
Publication
Global transitions from carbon- to hydrogen-based economies are an essential component of curbing greenhouse gas emissions and climate change. This study provides an investigative review of the technological development trends within the overall hydrogen value chain in terms of production storage transportation and application with the aim of identifying patterns in the announcement and execution of hydrogen-based policies both domestically within Korea as well as internationally. The current status of technological trends was analyzed across the three areas of natural hydrogen carbon dioxide capture utilization and storage technology linked to blue hydrogen and green hydrogen production linked to renewable energy (e.g. water electrolysis). In Korea the establishment of underground hydrogen storage facilities is potentially highly advantageous for the storage of domestically produced and imported hydrogen providing the foundations for large-scale application as economic feasibility is the most important national factor for the provision of fuel cells. To realize a hydrogen economy pacing policy and technological development is essential in addition to establishing a roadmap for efficient policy support. In terms of technological development it is important to prioritize that which can connect the value chain all of which will ultimately play a major role in the transformation of human energy consumption.
Proposal of Zero-Emission Tug in South Korea Using Fuel Cell/Energy Storage System: Economic and Environmental Long-Term Impacts
Mar 2023
Publication
This study presents the results of economic and environmental analysis for two types of zero-emission ships (ZESs) that are receiving more attention to meet strengthened environmental regulations. One of the two types of ZES is the ZES using only the energy storage system (All-ESS) and the other is the ZES with fuel cell and ESS hybrid system (FC–ESS). The target ship is a tug operating in South Korea and the main parameters are based on the specific circumstances of South Korea. The optimal capacity of the ESS for each proposed system is determined using an optimization tool. The total cost for a ship’s lifetime is calculated using economic analysis. The greenhouse gas (GHG) emission for the fuel’s lifecycle (well-to-wake) is calculated using environmental analysis. The results reveal that the proposed ZESs are 1.7–3.4 times more expensive than the conventional marine gas oil (MGO)-fueled ship; however it could be reduced by 1.3–2.4 times if the carbon price is considered. The proposed ZESs have 58.7–74.3% lower lifecycle GHG emissions than the one from the conventional ship. The results also highlight that the electricity- or hydrogen-based ZESs should reduce GHG emissions from the upstream phase (well-to-tank) to realize genuine ZESs.
Environmental Life-Cycle Assessment of Eco-Friendly Alternative Ship Fuels (MGO, LNG, and Hydrogen) for 170 GT Nearshore Ferry
May 2022
Publication
With increasing concerns about environmental pollution the shipping industry has been considering various fuels as alternative power sources. This paper presents a study of the holistic environmental impacts of eco-friendly alternative ship fuels of marine gas oil (MGO) liquefied natural gas (LNG) and hydrogen across each of their life cycles from their production to the operation of the ship. The environmental impacts of the fuels were estimated by life-cycle assessment (LCA) analysis in the categories of well-to-tank tank-to-wake and well-to-wake phases. The LCA analysis was targeted for a 170 gross tonnage (GT) nearshore ferry operating in the ROK which was conceptually designed in the study to be equipped with the hydrogen fuel cell propulsion system. The environmental impact performance was presented with comparisons for the terms of global warming potential (GWP) acidification potential (AP) photochemical ozone creation potential (POCP) eutrophication potential (EP) and particulate matter (PM). The results showed that the hydrogen showed the highest GWP level during its life cycle due to the large amount of emissions in the hydrogen generation process through the steam methane reforming (SMR) method. The paper concludes with suggestions of an alternative fuel for the nearshore ferry and its production method based on the results of the study.
Options for Methane Fuel Processing in PEMFC System with Potential Maritime Applications
Nov 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are low-temperature fuel cells that have excellent starting performance due to their low operating temperature can respond quickly to frequent load fluctuations and can be manufactured in small packages. Unlike existing studies that mainly used hydrogen as fuel for PEMFCs in this study methane is used as fuel for PEMFCs to investigate its performance and economy. Methane is a major component of natural gas which is more economically competitive than hydrogen. In this study methane gas is reformed by the steam reforming method and is applied to the following five gas post-treatment systems: (a) Case 1—water– gas shift only (WGS) (b) Case 2—partial oxidation reforming only (PROX) (c) Case 3—methanation only (d) Case 4—WGS + methanation (e) Case 5—WGS + PROX. In the evaluation the carbon monoxide concentration in the gas did not exceed 10 ppm and the methane component which has a very large greenhouse effect was not regenerated in the post-treated exhaust gas. As a result Case 5 (WGS and PROX) is the only case that satisfied both criteria. Therefore we propose Case 5 as an optimized post-treatment system for methane reforming gas in ship PEMFCs.
Preliminary Study for the Commercialization of a Electrochemical Hydrogen Compressor
Mar 2023
Publication
A global energy shift to a carbon‐neutral society requires clean energy. Hydrogen can accelerate the process of expanding clean and renewable energy sources. However conventional hydrogen compression and storage technology still suffers from inefficiencies high costs and safety concerns. An electrochemical hydrogen compressor (EHC) is a device similar in structure to a water electrolyzer. Its most significant advantage is that it can accomplish hydrogen separation and compression at the same time. With no mechanical motion and low energy consumption the EHC is the key to future hydrogen compression and purification technology breakthroughs. In this study the compression performance efficiency and other related parameters of EHC are investigated through experiments and simulation calculations. The experimental results show that under the same experimental conditions increasing the supply voltage and the pressure in the anode chamber can improve the reaction rate of EHC and balance the pressure difference between the cathode and anode. The presence of residual air in the anode can impede the interaction between hydrogen and the catalyst as well as the proton exchange membrane (PEM) resulting in a decrease in performance. In addition it was found that a single EHC has a better compression ratio and reaction rate than a double EHC. The experimental results were compatible with the theoretical calculations within less than a 7% deviation. Finally the conditions required to reach commercialization were evaluated using the theoretical model.
Economic Evaluation of an Ammonia-Fueled Ammonia Carrier Depending on Methods of Ammonia Fuel Storage
Dec 2021
Publication
This study proposed two concepts for ammonia fuel storage for an ammonia-fueled ammonia carrier and evaluated these concepts in terms of economics. The first concept was to use ammonia in the cargo tank as fuel and the second concept was to install an additional independent fuel tank in the vessel. When more fuel tanks were installed there was no cargo loss. However there were extra costs for fuel tanks. The target ship was an 84000 m3 ammonia carrier (very large gas carrier VLGC). It traveled from Kuwait to South Korea. The capacity of fuel tanks was 4170 m3 which is the required amount for the round trip. This study conducted an economic evaluation to compare the two proposed concepts. Profits were estimated based on sales and life cycle cost (LCC). Results showed that sales were USD 1223 million for the first concept and USD 1287 million for the second concept. Profits for the first and second concepts were USD 684.3 million and USD 739.5 million respectively. The second concept showed a USD 53.1 million higher profit than the first concept. This means that the second concept which installed additional independent fuel tanks was better than the first concept in terms of economics. Sensitivity analysis was performed to investigate the influence of given parameters on the results. When the ammonia fuel price was changed by ±25% there was a 15% change in the profits and if the ammonia (transport) fee was changed by ±25% there was a 45% change in the profits. The ammonia fuel price and ammonia (cargo) transport fee had a substantial influence on the business of ammonia carriers.
Comparative Risk Assessment of a Hydrogen Refueling Station Using Gaseous Hydrogen and Formic Acid as the Hydrogen Carrier
Mar 2023
Publication
To realize a hydrogen economy many studies are being conducted regarding the development and analysis of hydrogen carriers. Recently formic acid has been receiving attention as a potential hydrogen carrier due to its high volumetric energy density and relatively safe characteristics. However hydrogen refueling systems using formic acid are very different from conventional hydrogen refueling stations and quantitative risks assessments need to be conducted to verify their safe usage. In this study a comparative safety analysis of a formic acid hydrogen refueling station (FAHRS) and a gaseous hydrogen refueling station (GHRS) was conducted. Since there is no FAHRS under operation a process simulation model was developed and integrated with quantitative risk assessment techniques to perform safety analysis. Results of the analysis show that the FAHRS poses less risk than the GHRS where the vapor cloud explosion occurring in the buffer tank is of greatest consequence. A GHRS poses a greater risk than an FAHRS due to the high pressure required to store hydrogen in the tube trailer. The mild operating conditions required for storage and dehydrogenation of formic acid contribute to the low risk values of an FAHRS. For risk scenarios exceeding the risk limit risk mitigation measures were applied to design a safe process for GHRS. The results show that the installation of active safety systems for the GHRS allow the system to operate within acceptable safety regions.
Comparative Study on Ammonia and Liquid Hydrogen Transportation Costs in Comparison to LNG
Feb 2023
Publication
Since ammonia and liquid hydrogen are the optional future shipping cargo and fuels the applicability was crucial using the current technologies and expectations. Existing studies for the economic feasibility of the energies had limitations: empirical evaluation with assumptions and insufficiency related to causality. A distorted estimation can result in failure of decision-making or policy in terms of future energy. The present study aimed to evaluate the transportation costs of future energy including ammonia and liquid hydrogen in comparison to LNG for overcoming the limitations. An integrated mathematical model was applied to the investigation for economic feasibility. The transportation costs of the chosen energies were evaluated for the given transportation plan considering key factors: ship speed BOR and transportation plan. The transportation costs at the design speed for LNG and liquid hydrogen were approximately 55 % and 80 % of that for ammonia without considering the social cost due to CO2 emission. Although ammonia was the most expensive energy for transportation ammonia could be an effective alternative due to insensitivity to the transportation plan. If the social cost was taken into account liquid hydrogen already gained competitiveness in comparison to LNG. The advantage of liquid hydrogen was maximized for higher speed where more BOG was injected into main engines.
Urban Hydrogen Production Model Using Environmental Infrastructures to Achieve the Net Zero Goal
Dec 2022
Publication
Land available for energy production is limited in cities owing to high population density. To reach the net zero goal cities contributing 70% of overall greenhouse gas emissions need to dramatically reduce emissions and increase self-sufficiency in energy production. Environmental infrastructures such as sewage treatment and incineration plants can be used as energy production facilities in cities. This study attempted to examine the effect of using environmental infrastructure such as energy production facilities to contribute toward the carbon neutrality goal through urban energy systems. In particular since the facilities are suitable for hydrogen supply in cities the analysis was conducted focusing on the possibility of hydrogen production. First the current status of energy supply and demand and additional energy production potential in sewage treatment and incineration plants in Seoul were analyzed. Then the role of these environmental infrastructures toward energy self-sufficiency in the urban system was examined. This study confirmed that the facilities can contribute to the city’s energy self-sufficiency and the achievement of its net-zero goal.
Economic Analysis of P2G Green Hydrogen Generated by Existing Wind Turbines on Jeju Island
Dec 2022
Publication
Every wind turbine is subject to fluctuations in power generation depending on climatic conditions. When electricity supply exceeds demand wind turbines are forced to implement curtailment causing a reduction in generation efficiency and commercial loss to turbine owners. Since the frequency and amount of curtailment of wind turbines increases as the amount of renewable energy become higher on Jeju Island in South Korea Jeju is configuring a Power to Gas (P2G) water electrolysis system that will be connected to an existing wind farm to use the “wasted energy”. In this study economic analysis was performed by calculating the production cost of green hydrogen and sensitivity analysis evaluated the variance in hydrogen cost depending on several influential factors. Approaches to lower hydrogen costs are necessary for the following reasons. The operating company needs a periodical update of hydrogen sale prices by reflecting a change in the system margin price (SMP) with the highest sensitivity to hydrogen cost. Technical development to reduce hydrogen costs in order to reduce power consumption for producing hydrogen and a decrease in annual reduction rate for the efficiency of water electrolysis is recommended. Discussions and research regarding government policy can be followed to lower the hydrogen cost.
No more items...