Italy
Risk Analysis of the Storage Unit in Hydrogen Refuelling Station
Sep 2007
Publication
Nowadays consumer demand for local and global environmental quality in terms of air pollution and in particular greenhouse gas emissions reduction may help to drive to the introduction of zero emission vehicles. At this regard the hydrogen technology appears to have future market valuablepotential. On the other hand the use of hydrogen vehicles which requires appropriate infrastructures for production storage and refuelling stages presents a lot of safety problems due to the peculiar chemicophysical hydrogen characteristics. Therefore safe at the most practices are essential for the successful proliferation of hydrogen vehicles. Indeed to avoid limit hazards it is necessary to implement practices that if early adopted in the development of a fuelling station project can allow very low environmental impact safety being incorporated in the project itself. Such practices generally consist in the integrated use of Failure Mode and Effect Analysis (FMEA) HAZard OPerability (HAZOP) and Fault Tree Analysis (FTA) which constitute well established standards in reliability engineering. At this regard however a drawback is the lack of experience and the scarcity of the relevant data collection. In this work we present the results obtained by the integrated use of FMEA HAZOP and FTA analyses relevant for the moment the high-pressure storage equipment in a hydrogen gas refuelling station. The study that is intended to obtain elements for improving safety of the system can constitute a basis for further more refined works.
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
Mixing of Dense or Light Gases with Turbulent Air- a Fast-Running Model for Lumped Parameter Codes
Sep 2005
Publication
The release of gases heavier than air like propane at ground level or lighter than air like hydrogen close to a ceiling can both lead to fire and explosion hazards that must be carefully considered in safety analyses. Even if the simulation of accident scenarios in complex installations and long transients often appears feasible only using lumped parameter computer codes the phenomenon of denser or lighter gas dispersion is not implicitly accounted by these kind of tools. In the aim to set up an ad hoc model to be used in the computer code ECART fluid-dynamic simulations by the commercial FLUENT 6.0 CFD code are used. The reference geometry is related to cavities having variable depth (2 to 4 m) inside long tunnels filled with a gas heavier or lighter than air (propane or hydrogen). Three different geometrical configurations with a cavity width of 3 6 and 9 m are considered imposing different horizontal air stream velocities ranging from 1 to 5 m/s. A stably-stratified flow region is observed inside the cavity during gas shearing. In particular it is found that the density gradient tends to inhibit turbulent mixing thus reducing the dispersion rate. The obtained data are correlated in terms of main dimensionless groups by means of a least squares method. In particular the Sherwood number is correlated as a function of Reynolds a density ratio modified Froude numbers and in terms of the geometrical parameter obtained as a ratio between the depth of the air-dense gas interface and the length of the cavity. This correlation is implemented in the ECART code to add the possibility to simulate large installations during complex transients lasting many hours with reasonable computation time. An example of application to a typical case is presented.
Safety Distances- Definition and Values
Sep 2005
Publication
In order to facilitate the introduction of a new technology as it is the utilization of hydrogen as an energy carrier development of safety codes and standards besides the conduction of demonstrative projects becomes a very important action to be realized. Useful tools of work could be the existing gaseous fuel codes (natural gas and propane) regulating the stationary and automotive applications. Some safety codes have been updated to include hydrogen but they have been based on criteria and/or data applicable for large industrial facilities making the realization of public hydrogen infrastructures prohibitive in terms of space. In order to solve the above mentioned problems others questions come out: how these safety distances have been defined? Which hazard events have been taken as reference for calculation? Is it possible to reduce the safety distances through an appropriate design of systems and components or through the predisposition of adequate mitigation measures? This paper presents an analysis of the definitions of “safety distances” and “hazardous locations” as well as a synoptic analysis of the different values in force in several States for hydrogen and natural gas. The above mentioned synoptic table will highlight the lacks and so some fields that need to be investigated in order to produce a suitable hydrogen standard.
Experimental Study of Vented Hydrogen Deflagration with Ignition Inside and Outside the Vented Volume
Sep 2013
Publication
Experiments were carried out inside a 25 m3 vented combustion test facility (CVE) with a fixed vent area sealed by a plastic sheet vent. Inside the CVE a 0.64 m3 open vent box called RED-CVE was placed. The vent of the RED-CVE was left open and three different vent area were tested. Two different mixing fans one for each compartment were used to establish homogeneous H2 concentrations. This study examined H2 concentrations in the range between 8.5% vol. to 12.5% vol. and three different ignition locations (1) far vent ignition (2) inside the RED-CVE box ignition and (3) near vent ignition (the vent refers to the CVE vent). Peak overpressures generated inside the test facility and the smaller compartment were measured. The results indicate that the near vent ignition generates negligible peak overpressures inside the test facility as compared to those originated by far vent ignition and ignition inside the RED-CVE box. The experiments with far vent ignition showed a pressure increase with increasing hydrogen concentration which reached a peak value at 11% vol. concentration and then decreased showing a non-monotonic behaviour. The overpressure measured inside the RED-CVE was higher when the ignition was outside the box whereas the flame entered the box through the small vent.
Fire Prevention Technical Rule for Gaseous Hydrogen Refuelling Stations
Sep 2005
Publication
In the last years different Italian hydrogen projects provided for gaseous hydrogen motor vehicles refuelling stations. Motivated by the lack of suitable set of rules in the year 2002 Italian National Firecorps (Institute under the Italian Ministry of the Interior) formed an Ad Hoc Working Group asked to regulate the above-said stations as regards fire prevention and protection safety. This Working Group consists of members coming from both Firecorps and academic world (Pisa University). Throughout his work this Group produced a technical rule covering the fire prevention requirements for design construction and operation of gaseous hydrogen refuelling stations. This document has been approved by the Ministry’s Technical Scientific Central Committee for fire prevention (C.C.T.S.) and now it has to carry out the “Community procedure for the provision of information”. This paper describes the main safety contents of the technical rule.
Methanol Steam Reforming for Hydrogen Generation Via Conventional and Membrane Reactors: A Review
Sep 2013
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Hydrogen Embrittlement in a 2101 Lean Duplex Stainless Steel
Sep 2019
Publication
Duplex Stainless Steels (DSSs) are an attractive class of materials characterized by a strong corrosion resistance in many aggressive environments. Thanks to the high mechanical performances DSSs are widely used for many applications in petrochemical industry chemical and nuclear plants marine environment desalination etc.<br/>Among the DSSs critical aspects concerning the embrittlement process it is possible to remember the steel sensitization and the hydrogen embrittlement.<br/>The sensitization of the DSSs is due to the peculiar chemical composition of these grades which at high temperature are susceptible to carbide nitrides and second phases precipitation processes mainly at grains boundary and in the ferritic grains. The hydrogen embrittlement process is strongly influenced by the duplex (austenitic-ferritic) microstructure and by the loading conditions.<br/>In this work a rolled lean ferritic-austenitic DSS (2101) has been investigated in order to analyze the hydrogen embrittlement mechanisms by means of slow strain rate tensile tests considering the steel after different heat treatments. The damaging micromechanisms have been investigated by means of the scanning electron microscope observations on the fracture surfaces.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I
Jun 2021
Publication
Biomass gasification for energy purposes has several advantages such as the mitigation of global warming and national energy independency. In the present work the data from an innovative and intensified steam/oxygen biomass gasification process integrating a gas filtration step directly inside the reactor are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen carbon monoxide carbon dioxide and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER) 0.4–0.5 Steam/Biomass (S/B) and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2 23–29%v CO 31–36%v CO2 9–11%v CH4 and light hydrocarbons lower than 1%v were also observed. Correspondingly a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.
The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy
Apr 2021
Publication
The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So research studies are numerous but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145 respectively. Besides the storage capacity at 30 MPa of a solid-state system they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties.
A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application
Apr 2022
Publication
The paper presents a sustainable electric powertrain for a transit city bus featuring an electrochemical battery-free power unit consisting of a hydrogen fuel cell stack and a kinetic energy storage system based on high-speed flywheels. A rare-earth free high-efficiency motor technology is adopted to pursue a more sustainable vehicle architecture by limiting the use of critical raw materials. A suitable dynamic energetic model of the full vehicle powertrain has been developed to investigate the feasibility of the traction system and the related energy management control strategy. The model includes losses characterisation as a function of the load of the main components of the powertrain by using experimental tests and literature data. The performance of the proposed solution is evaluated by simulating a vehicle mission on an urban path in real traffic conditions. Considerations about the effectiveness of the traction system are discussed.
Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model
May 2022
Publication
The need to significantly reduce emissions from the steelmaking sector requires effective and ready-to-use technical solutions. With this aim different decarbonization strategies have been investigated by both researchers and practitioners. To this concern the most promising pathway is represented by the replacement of natural gas with pure hydrogen in the direct reduced iron (DRI) production process to feed an electric arc furnace (EAF). This solution allows to significantly reduce direct emissions of carbon dioxide from the DRI process but requires a significant amount of electricity to power electrolyzers adopted to produce hydrogen. The adoption of renewable electricity sources (green hydrogen) would reduce emissions by 95–100% compared to the blast furnace–basic oxygen furnace (BF–BOF) route. In this work an analytical model for the identification of the minimum emission configuration of a green energy–steel system consisting of a secondary route supported by a DRI production process and a renewable energy conversion system is proposed. In the model both technological features of the hydrogen steel plant and renewable energy production potential of the site where it is to be located are considered. Compared to previous studies the novelty of this work consists of the joint modeling of a renewable energy system and a steel plant. This allows to optimize the overall system from an environmental point of view considering the availability of green hydrogen as an inherent part of the model. Numerical experiments proved the effectiveness of the model proposed in evaluating the suitability of using green hydrogen in the steelmaking process. Depending on the characteristics of the site and the renewable energy conversion system adopted decreases in emissions ranging from 60% to 91% compared to the BF–BOF route were observed for the green energy–steel system considered It was found that the environmental benefit of using hydrogen in the secondary route is strictly related to the national energy mix and to the electrolyzers’ technology. Depending on the reference context it was found that there exists a maximum value of the emission factor from the national electricity grid below which is environmentally convenient to produce DRI by using only hydrogen. It was moreover found that the lower the electricity consumption of the electrolyzer the higher the value assumed by the emission factor from the electricity grid which makes the use of hydrogen convenient.
An Innovative and Comprehensive Approach for the Consequence Analysis of Liquid Hydrogen Vessel Explosions
Oct 2020
Publication
Hydrogen is one of the most suitable solutions to replace hydrocarbons in the future. Hydrogen consumption is expected to grow in the next years. Hydrogen liquefaction is one of the processes that allows for increase of hydrogen density and it is suggested when a large amount of substance must be stored or transported. Despite being a clean fuel its chemical and physical properties often arise concerns about the safety of the hydrogen technologies. A potentially critical scenario for the liquid hydrogen (LH2) tanks is the catastrophic rupture causing a consequent boiling liquid expanding vapour explosion (BLEVE) with consequent overpressure fragments projection and eventually a fireball. In this work all the BLEVE consequence typologies are evaluated through theoretical and analytical models. These models are validated with the experimental results provided by the BMW care manufacturer safety tests conducted during the 1990’s. After the validation the most suitable methods are selected to perform a blind prediction study of the forthcoming LH2 BLEVE experiments of the Safe Hydrogen fuel handling and Use for Efficient Implementation (SH2IFT) project. The models drawbacks together with the uncertainties and the knowledge gap in LH2 physical explosions are highlighted. Finally future works on the modelling activity of the LH2 BLEVE are suggested.
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations from the events are described. The lessons learned have been divided into four categories including system design; system manufacturing installation and modification; human factors and emergency response. An overarching lesson learned is that minor events which occurred simultaneously could still result in serious consequences echoing James Reason's Swiss Cheese theory. Recommendations were formulated in relation to the established safety principles adapted for hydrogen by the European Hydrogen Safety Panel considering operational modes industrial sectors and human factors. This work provide an important contribution to the safety of systems involving hydrogen benefitting technical safety engineers emergency responders and emergency services. The lesson learned and the discussion derived from the statistics can also be used in training and risk assessment studies being of equal importance to promote and assist the development of sound safety culture in organisations.
Impact Assessments on People and Buildings for Hydrogen Pipeline Explosions
Sep 2019
Publication
Hydrogen has the potential to act as the energy carrier of the future. It will be then produced in large amounts and will certainly need to be transported for long distances. The safest way to transport hydrogen is through pipelines. Failure of pipelines carrying gaseous hydrogen can have several effects some of which can pose a significant threat of damage to people and buildings in the immediate proximity of the failure location. This paper presents a probabilistic risk assessment procedure for the estimation of damage to people and buildings endangered by high-pressure hydrogen pipeline explosions. The procedure provides evaluation of annual probability of damage to people and buildings under an extreme event as a combination of the conditional probability of damage triggered by an explosion and the probability of occurrence of the explosion as a consequence of the pipeline failure. Physical features such as the gas jet release process flammable cloud size blast generation and explosion effects on people and buildings are considered and evaluated through the SLAB integral model TNO model Probit equations and Pressure-Impulse diagrams. For people both direct and indirect effects of overpressure events are considered. For buildings a comparison of the damage to different types of buildings (i.e. reinforced concrete buildings and tuff stone masonry buildings) is made. The probabilistic procedure presented may be used for designing a new hydrogen pipeline network and will be an advantageous tool for safety management of hydrogen gas pipelines.
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
Analysis of Acoustic Pressure Oscillation During Vented Deflagration
Oct 2015
Publication
In industrial buildings explosion relief panels or doors are often used to reduce damages caused by gas explosion. Decades of research produced a significant contribution to the understanding of the phenomena involved nevertheless among the aspects that need further research interaction between acoustic oscillation and the flame front is one of the more important. Interaction between the flame front and acoustic oscillation has raised technical problem in lots of combustion applications as well and had been studied theoretically and experimentally in such cases. Pressure oscillation had been observed in vented deflagration and in certain cases they are responsible for the highest pressure peak generated during the event. At Scalbatraio laboratory of Pisa University CVE test facility was built in order to investigate vented hydrogen deflagration. This paper is aimed to present an overview of the results obtained during several experimental campaigns which tests are analysed with the focus on the investigation of flame acoustic interaction phenomenon. Qualitative and quantitative analysis is presented and the possible physic generating the phenomenon investigated.
Seasonal Energy Storage for Zero-emissions Multi-energy Systems Via Underground Hydrogen Storage
Jan 2020
Publication
The deployment of diverse energy storage technologies with the combination of daily weekly and seasonal storage dynamics allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular the production storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic possibility for large-scale hydrogen storage suitable for long-term storage dynamics is presented by salt caverns. In this contribution we provide a framework for modelling underground hydrogen storage with a focus on salt caverns and we evaluate its potential for reducing the CO2 emissions within an integrated energy systems context. To this end we develop a first-principle model which accounts for the transport phenomena within the rock and describes the dynamics of the stored energy when injecting and withdrawing hydrogen. Then we derive a linear reduced order model that can be used for mixed-integer linear program optimization while retaining an accurate description of the storage dynamics under a variety of operating conditions. Using this new framework we determine the minimum-emissions design and operation of a multi-energy system with H2 storage. Ultimately we assess the potential of hydrogen storage for reducing CO2 emissions when different capacities for renewable energy production and energy storage are available mapping emissions regions on a plane defined by storage capacity and renewable generation. We extend the analysis for solar- and wind-based energy generation and for different energy demands representing typical profiles of electrical and thermal demands and different CO2 emissions associated with the electric grid.
Stress Corrosion Cracking of Gas Pipeline Steels of Different Strength
Jul 2016
Publication
With the development of the natural gas industry gas transmission pipelines have been developed rapidly in terms of safety economy and efficiency. Our recent studies have shown that an important factor of main pipelines serviceability loss under their long-term service is the in-bulk metal degradation of the pipe wall. This leads to the loss of the initial mechanical properties primarily resistance to brittle fracture which were set in engineering calculations at the pipeline design stage. At the same time stress corrosion cracking has been identified as one of the predominant failures in pipeline steels in humid environments which causes rupture of high-pressure gas transmission pipes as well as serious economic losses and disasters.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
No more items...